International Negotiations Games, Strategies and Negotiations Game-theoretic models of bargaining

Costas Roumanias

AUEB, Department of International and European Economic Studies

February 12, 2024

Bargaining models: static analysis

- Two players are to divide €1 between them
- They simultaneously suggest an amount they wish to receive. If the sum of the amounts is less or equal than €1, then each receives his/her suggestion. Else, they get 0
- Can you think of the Nash equilibria of this game?
- ► Any suggestion x for P1 and 1 x for P2 is a NE!
- NE cannot make any prediction about such a game indeterminancy

Bargaining models: static analysis

- Most models of bargaining: splitting some surplus
- $\blacktriangleright p^B > p^S$
- What can Game theory tell us about such splits?
- alternative/complementary approaches to game theoretic/rational analysis?

Surplus and bargaining

- The buyer is willing to pay at most p_A
- The seller sells for a price no less than p_S
- The two parties bargain for the split of surplus $p_B p^S$
- This is one of the most basic assumptions of most bargaining models

Surplus and bargaining

- If p_A < p_S the negotiation cannot lead to a mutually acceptable split
- We will revisit this case later. For now, let's assume that p_A > p_S

Bargaining and indeterminance

- Bargaining over a €1 split
- Game:
 - The two players (1 and 2) simultaneously and independently suggest a split v
 - If the proposals are compatible (e.g. 0.40 and 0.50), then they are realised and the game ends
 - If not, each player, knowing the other player's proposal, decides whether to accept or not
 - If both insist on their initial proposal, they get nothing and the game ends
 - If one player (say P1) retracts and the other (e.g. P2) doesn't, the suggestion of the player who didn't retract (p2) is realised
 - If both retract, each take their share in the other's proposal (possibly leaving money at the table)

Bargaining and indeterminance

- We created a game with well defined rules instead of a general "notion" of negotiation
- Nevertheless, we cannot predict how the game is to be played
- Any proposal of *n* cents to P1 and 100 − *n* cents for P2 is a Nash equilibrium → indetermiance
- N.E. does not suffice to determine the solution of the game

Possible solutions to the "split the euro" game: focal equilibria

- Sometimes some equilibria are by nature focal
- E.g. often players play 50%-50%
- Or if say it is customary for the man to take 60% of the inheritance, then it is possible that they follow that split
- Experiments confirm that if for any reason players focus on a particular split before the game then they tend to play that split

- Think of of the problem of John and Lara splitting €100
- John takes x_1 and Lara will be left with $x_2 = 100 x_1$
- Any such split is a NE (indeterminancy)
- How can we depict possible allocations?
- Two ways:
 - 1. amount each gets in each split
 - 2. (psychological) utility each gets from the split

- Nash bargaining solution comes to answer which split (and corresponding utilities) should be chosen
- Some times negotiating parties cannot find a compromise
- If an arbitrator were to choose the optimal split of the €100 between John and Lara, what split would she choose?
- how would the arbitrator pick the fairest agreement among all possible points of the two lines?

What properties should a solution to the bargaining problem have?

- Symmetry: symmetric players/situation should end up with symmetric outcomes: under the same circumstances I shouldn't get less than you if we face symmetric possibilities/reservation prices
- Efficiency: no way to make both parties better off
- Solution should be independent of the units of measurement: doesn't matter if we change scale of utility
- Independence of irrelevant alternatives (technical): If the best outcome of a large set of possibilities belongs to a smaller set (subset of the large set), then this should be the best outcome of the small (sub)set as well

Theorem (Nash bargaining solution)

In the bargaining game presented in the graphs above, there exist a unique Nash equilibrium that satisfies symmetry, efficiency, independence of the units of measurement and independence of irrelevant alternatives

the unique NE, denoted C should give both players more utility than the no-agreement point (v)

Nash bargaining solution (N.B.S)

Nash bargaining solution (N.B.S)

- With disagreement point v, Nash bargaining solution is C
- If John has higher reservation point v₁', new NBS is C' (more for John, less for Lara)

Nash bargaining solution (N.B.S)

- Note that the NBS does not predict how a specific bargain will end up
- rather it suggests the unique outcome an arbitrator would choose if he/she wanted the solution to satisfy a number of criteria of fairness and efficiency

The Rubinstein alternating offers bargaining game

- Ariel Rubinstein (1982) proposed an extension to the ultimatum game:
- To split a €1, the two players proceed with alternating offers for a number of rounds. If a player accepts the split is realised and the game ends
- for as long as no player accepts the other player's offer, the game continues for *n* rounds and the player who turned down the offer, makes a counter offer
- if the *n*th round is reached without agreement, they go away with zero payoffs
- let's examine the alternating offers game with 2 rounds:

The alternating offers game with 2 rounds

The alternating offers game with 2 rounds

- Can you find the SPNE of this game?
- In this game, P1 has a disadvantage: P2 has all the power of the ultimatum game
- P2 will always refuse any offer by P1
- starting at the subgame after P2's refusal, we have a classic ultimatum game
- ▶ in that, P2 suggests ϵ for P1 and she keeps 1ϵ for herself
- NE of the 2 period alternating offers bargaining game:
 (P1: any (x, 1 − x), Y if P2 rejects and counters (y, 1 − y), y > 0, P2: N, (ε, 1 − ε)
)

The alternating offers game with *n* rounds

- Can you find the SPNE of the alternating game with n rounds?
- Who has the advantage (takes all the pie)?

- Let's consider a variant of the 2-period alternating offers game where players are impatient: they discount the future with discount factors: δ₁, δ₂
- Then the game in extensive form is given below:

- If players are impatient, player 1 is not so powerless: she can exploit P2's impatience to extract some rents:
- If P2 rejects P1's offer and counters (y₁, y₂ in the second round, the present value of her share will be δ₂y₂
- At most P2 can achieve a payoff of δ₂ if she keeps the whole amount for herself
- Hence in round 1, P1 could keep 1 δ_2 and hand δ_2 to P2
- SPNE of the game:

```
(
P1: (1 - \delta_2, \delta_2), accept any offer by P2 in round 2
P2: accept any offer with x_2 \ge \delta_2 in round 1, and offer (\epsilon, 1 - \epsilon) in round 2
```

SPNE of the game:

P1: $(1 - \delta_2, \delta_2)$, accept any offer by P2 in round 2 P2: accept any offer with $x_2 \ge \delta_2$ in round 1, and offer $(\epsilon, 1 - \epsilon)$ in round 2

- Note that the more patient P2 is (the higher δ₂), the larger the share of the pie she ends up with
- This is a standard result of the alternating offers bargaining game: more patient players end up with higher share of the pie!!!
- in negotiations it doesn't pay to be impatient!

- Suppose that the players keep alternating offers for n rounds
- the game would then be represented in extensive form:

- Can you find the SPNE of the alternating offers game with 3 rounds?
- Start at the final (third) node: who is playing there? (remember, at the first node P1 moves. At round 2, it's P2's turn and so on...)
- Think what the final offer would be and what that would mean for the penultimate node and so on...
- it is kind of difficult, don't worry if you can't solve it! but give it a try anyway!

The alternating offers game with infinite periods

- What is the SPNE of the infinitely repeated alternating offers bargaining game?
- Suppose the two players discount the future with discount factors δ₁, δ₂

Proposition

The bargaining game with alternating offers and infinite horizon has a unique SPNE characterised by the strategies:

- ▶ player 1 always proposes x and accepts a proposal y if and only if $y_1 \ge y_1^*$
- ▶ player 2 always proposes y and accepts a proposal x if and only if x₂ ≥ x₂^{*}, where

$$\begin{aligned} x^* = & \left(\frac{1-\delta_2}{1-\delta_1\delta_2}, \frac{\delta_2\left(1-\delta_1\right)}{1-\delta_1\delta_2}\right) \\ y^* = & \left(\frac{\delta_1\left(1-\delta_2\right)}{1-\delta_1\delta_2}, \frac{1-\delta_1}{1-\delta_1\delta_2}\right) \end{aligned}$$

Properties of the SPNE

- Efficient: offer is accepted in first round. No waste in welfare from waiting
- Patience pays: a players share is increasing in his patience and decreasing in opponent's patience (see plot next slide)
- First mover's advantage: with common δ, first mover has an advantage which disappears as δ → 1
- if players have different costs each round without deal, the player with the smaller cost will take higher share
- If players require different amounts of time before making an offer, the player who takes more time, will take a higher share (why? Imagine a player taking for ever. What does it mean for the other player?)

Patience in the alternating offers game

- a player's share rises with his/her patience
- a player's share decreases as his/her opponent becomes more patient