International Negotiations Games, Strategies and Negotiations Game-theoretic models of bargaining

Costas Roumanias

AUEB, Department of International and European Economic Studies

February 12, 2024

Bargaining models: static analysis

- \blacktriangleright Two players are to divide \in 1 between them
- \blacktriangleright They simultaneously suggest an amount they wish to receive. If the sum of the amounts is less or equal than $\in 1$, then each receives his/her suggestion. Else, they get 0
- \triangleright Can you think of the Nash equilibria of this game?
- ▶ Any suggestion x for P1 and $1 x$ for P2 is a NE!
- ▶ NE cannot make any prediction about such a game \rightarrow indeterminancy

Bargaining models: static analysis

- ▶ Most models of bargaining: splitting some surplus
- \blacktriangleright $p^B > p^S$
- ▶ What can Game theory tell us about such splits?
- ▶ alternative/complementary approaches to game theoretic/rational analysis?

Surplus and bargaining

- ▶ The buyer is willing to pay at most ρ_A
- ▶ The seller sells for a price no less than p_S
- ▶ The two parties bargain for the split of surplus $p_B p^S$
- \triangleright This is one of the most basic assumptions of most bargaining models

Surplus and bargaining

- If $p_A < p_S$ the negotiation cannot lead to a mutually acceptable split
- ▶ We will revisit this case later. For now, let's assume that $p_A > p_S$

Bargaining and indeterminance

- \blacktriangleright Bargaining over a \in 1 split
- ▶ Game:
	- \triangleright The two players (1 and 2) simultaneously and independently suggest a split v
	- \blacktriangleright If the proposals are compatible (e.g. 0.40 and 0.50), then they are realised and the game ends
	- \blacktriangleright If not, each player, knowing the other player's proposal, decides whether to accept or not
	- ▶ If both insist on their initial proposal, they get nothing and the game ends
	- ▶ If one player (say P1) retracts and the other (e.g. P2) doesn't, the suggestion of the player who didn't retract (p2) is realised
	- \blacktriangleright If both retract, each take their share in the other's proposal (possibly leaving money at the table)

Bargaining and indeterminance

- ▶ We created a game with well defined rules instead of a general "notion" of negotiation
- \blacktriangleright Nevertheless, we cannot predict how the game is to be played
- \triangleright Any proposal of *n* cents to P1 and 100 − n cents for P2 is a Nash equilibrium → indetermiance
- \triangleright N.F. does not suffice to determine the solution of the game

Possible solutions to the "split the euro" game: focal equilibria

- ▶ Sometimes some equilibria are by nature focal
- \blacktriangleright E.g. often players play 50%-50%
- \triangleright Or if say it is customary for the man to take 60% of the inheritance, then it is possible that they follow that split
- \blacktriangleright Experiments confirm that if for any reason players focus on a particular split before the game then they tend to play that split

- ▶ Think of of the problem of John and Lara splitting ϵ 100
- \triangleright John takes x_1 and Lara will be left with $x_2 = 100 - x_1$
- \triangleright Any such split is a NE (indeterminancy)
- ▶ How can we depict possible allocations? ▶ Two ways:
	- 1. amount each gets in each split
	- 2. (psychological) utility each gets from the split

- ▶ Nash bargaining solution comes to answer which split (and corresponding utilities) should be chosen
- ▶ Some times negotiating parties cannot find a compromise
- If an arbitrator were to choose the optimal split of the \in 100 between John and Lara, what split would she choose?
- \triangleright how would the arbitrator pick the fairest agreement among all possible points of the two lines?

What properties should a solution to the bargaining problem have?

- ▶ Symmetry: symmetric players/situation should end up with symmetric outcomes: under the same circumstances I shouldn't get less than you if we face symmetric possibilities/reservation prices
- \blacktriangleright Efficiency: no way to make both parties better off
- ▶ Solution should be independent of the units of measurement: doesn't matter if we change scale of utility
- \blacktriangleright Independence of irrelevant alternatives (technical): If the best outcome of a large set of possibilities belongs to a smaller set (subset of the large set), then this should be the best outcome of the small (sub)set as well

Theorem (Nash bargaining solution)

In the bargaining game presented in the graphs above, there exist a unique Nash equilibrium that satisfies symmetry, efficiency, independence of the units of measurement and independence of irrelevant alternatives

the unique NE, denoted C should give both players more utility than the no-agreement point (v)

Nash bargaining solution (N.B.S)

Nash bargaining solution (N.B.S)

- \blacktriangleright With disagreement point v , Nash bargaining solution is \overline{C}
- \blacktriangleright If John has higher reservation point v_1 y'_1 , new NBS is C' (more for John, less for Lara)

Nash bargaining solution (N.B.S)

- ▶ Note that the NBS does not predict how a specific bargain will end up
- ▶ rather it suggests the unique outcome an arbitrator would choose if he/she wanted the solution to satisfy a number of criteria of fairness and efficiency

The Rubinstein alternating offers bargaining game

- ▶ Ariel Rubinstein (1982) proposed an extenstion to the ultimatum game:
- \blacktriangleright To split a \in 1, the two players proceed with alternating offers for a number of rounds. If a player accepts the split is realised and the game ends
- \triangleright for as long as no player accepts the other player's offer, the game continues for *n* rounds and the player who turned down the offer, makes a counter offer
- \triangleright if the *n*th round is reached without agreement, they go away with zero payoffs
- \blacktriangleright let's examine the alternating offers game with 2 rounds:

The alternating offers game with 2 rounds

The alternating offers game with 2 rounds

- ▶ Can you find the SPNE of this game?
- ▶ In this game, P1 has a disadvantage: P2 has all the power of the ultimatum game
- ▶ P2 will always refuse any offer by P1
- ▶ starting at the subgame after P2's refusal, we have a classic ultimatum game
- \triangleright in that, P2 suggests ϵ for P1 and she keeps 1 ϵ for herself
- \triangleright NE of the 2 period alternating offers bargaining game: (P1: any $(x, 1 - x)$, Y if P2 rejects and counters $(y, 1 - y)$, $y > 0$, P2: N, $(\epsilon, 1 - \epsilon)$)

The alternating offers game with *n* rounds

- \triangleright Can you find the SPNE of the alternating game with n rounds?
- \triangleright Who has the advantage (takes all the pie)?

- ▶ Let's consider a variant of the 2-period alternating offers game where players are impatient: they discount the future with discount factors: δ_1 , δ_2
- \blacktriangleright Then the game in extensive form is given below:

- \blacktriangleright If players are impatient, player 1 is not so powerless: she can exploit P2's impatience to extract some rents:
- If P2 rejects P1's offer and counters (y_1, y_2) in the second round, the present value of her share will be δ_2 γ_2
- At most P2 can achieve a payoff of δ_2 if she keeps the whole amount for herself
- ▶ Hence in round 1, P1 could keep $1 \delta_2$ and hand δ_2 to P2
- \triangleright SPNE of the game:

```
(
P1: (1 - \delta_2, \delta_2), accept any offer by P2 in round 2
P2: accept any offer with x_2 \ge \delta_2 in round 1, and offer
(\epsilon, 1 - \epsilon) in round 2
)
```
\triangleright SPNE of the game:

(P1: $(1 - \delta_2, \delta_2)$, accept any offer by P2 in round 2 P2: accept any offer with $x_2 \ge \delta_2$ in round 1, and offer $(\epsilon, 1 - \epsilon)$ in round 2)

- \blacktriangleright Note that the more patient P2 is (the higher δ_2), the larger the share of the pie she ends up with
- \triangleright This is a standard result of the alternating offers bargaining game: more patient players end up with higher share of the pie!!!
- \triangleright in negotiations it doesn't pay to be impatient!

- \triangleright Suppose that the players keep alternating offers for n rounds
- \blacktriangleright the game would then be represented in extensive form:

- ▶ Can you find the SPNE of the alternating offers game with 3 rounds?
- ▶ Start at the final (third) node: who is playing there? (remember, at the first node P1 moves. At round 2, it's P2's turn and so on...)
- \triangleright Think what the final offer would be and what that would mean for the penultimate node and so on...
- \triangleright it is kind of difficult, don't worry if you can't solve it! but give it a try anyway!

The alternating offers game with infinite periods

- ▶ What is the SPNE of the infinitely repeated alternating offers bargaining game?
- ▶ Suppose the two players discount the future with discount factors δ_1 , δ_2

Proposition

The bargaining game with alternating offers and infinite horizon has a unique SPNE characterised by the strategies:

- \triangleright player 1 always proposes x and accepts a proposal y if and only *if* $y_1 ≥ y_1^*$ 1
- ▶ player 2 always proposes y and accepts a proposal x if and only $if x_2 \ge x_2^*$ $_{2}^{\ast}$, where

$$
x^* = \left(\frac{1-\delta_2}{1-\delta_1\delta_2}, \frac{\delta_2(1-\delta_1)}{1-\delta_1\delta_2}\right)
$$

$$
y^* = \left(\frac{\delta_1(1-\delta_2)}{1-\delta_1\delta_2}, \frac{1-\delta_1}{1-\delta_1\delta_2}\right)
$$

Properties of the SPNE

- ▶ Efficient: offer is accepted in first round. No waste in welfare from waiting
- \triangleright Patience pays: a players share is increasing in his patience and decreasing in opponent's patience (see plot next slide)
- **►** First mover's advantage: with common δ , first mover has an advantage which disappears as $\delta \rightarrow 1$
- \triangleright if players have different costs each round without deal, the player with the smaller cost will take higher share
- \blacktriangleright If players require different amounts of time before making an offer, the player who takes more time, will take a higher share (why? Imagine a player taking for ever. What does it mean for the other player?)

Patience in the alternating offers game

- \blacktriangleright a player's share rises with his/her patience
- ▶ a player's share decreases as his/her opponent becomes more patient