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SUBSTITUTION BETWEEN CLEAN AND DIRTY ENERGY INPUTS:
A MACROECONOMIC PERSPECTIVE

Chris Papageorgiou, Marianne Saam, and Patrick Schulte*

Abstract—In macroeconomic models, the elasticity of substitution between
clean and dirty energy inputs within the energy aggregate is a central
parameter in assessing the necessary conditions for long-run green growth.
Using new sectoral data in a panel of 26 countries, we formulate specifica-
tions of nested constant elasticity of substitution production functions that
allow estimating this parameter for the first time. We present evidence that
it significantly exceeds unity, a favorable condition for promoting green
growth.

I. Introduction

ADVANCES in environment-friendly, clean technolo-
gies seem indispensable if disastrous climate change

is to be prevented without compromising economic growth.
Clean technological innovation will be effective only if there
are economic incentives to reallocate resources from dirty to
clean production. While incentives may depend on economic
policies, they also depend on the production structure of an
economy. In a wide range of models, the substitution param-
eter between clean and dirty energy inputs within the energy
subaggregate of a macroeconomic production function has
fundamental importance for the possibility of long-run green
growth. In this paper, we propose parsimonious specifica-
tions of production functions to estimate this parameter and
present the first macroeconomic evidence on it.

Acemoglu, Aghion, Bursztyn, and Hemous (2012; AABH
hereafter) have formulated the relation between growth and
pollution in the framework of endogenous growth theory, in
which different assumptions about the production structure
can be discussed in an analytically stringent way. Within
this framework, the economy-wide elasticity of substitution
between clean and dirty production tasks represents a param-
eter on which the potential of clean innovation to prevent a
climate disaster crucially depends. Dirty production is con-
sidered to take place when the atmospheric concentration of
CO2 is increased as a result of the combustion of fossil fuels
(coal, oil, natural gas).
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A two-input elasticity of substitution between clean and
dirty production tasks as introduced by AABH is a con-
cept that permits representing conditions for green growth
in an elegant and parsimonious way within a growth model.
But clean and dirty tasks cannot be identified in macroe-
conomic data. Considering a production function for final
output with four factors (capital, labor, clean energy input,
and dirty energy input), we argue that the elasticity of sub-
stitution between clean and dirty energy inputs within an
energy aggregate plays a crucial role for the possibility
of long-run green growth. Besides AABH, numerous other
examples can be found in theoretical as well as in the applied
CGE literature where substitution between clean and dirty
production or substitution between clean and dirty energy
inputs affects the model’s long-run predictions. In the next
section, we discuss the properties of production functions
that are prototypical for these models.

Most of the existing empirical literature has estimated par-
tial elasticities of substitution between capital and energy or
between different fuels. Meanwhile, evidence on the substi-
tution parameter between aggregate clean and dirty energy
inputs remains scarce to date. In this paper, we make a first
attempt to evaluate this parameter by estimating the elasticity
of substitution between clean and dirty energy inputs within
the energy aggregate of macroeconomic production func-
tions. In assessing whether an energy input is clean or dirty,
we use a binary distinction: clean energy inputs are those not
causing CO2 emissions, and dirty energy inputs are those
causing such emissions. We exploit the new World Input-
Output Database (WIOD), which provides cross-country
data on energy use by fuel type in an industry classification
consistent with available productivity data. The data for our
analysis cover up to 26 countries for the years 1995 to 2009.
Our key finding is that the estimates of the elasticity of sub-
stitution within the energy aggregate are significantly greater
than unity—around 2 for the electricity-generating sector
and close to 3 for the nonenergy industries. These results
contrast with studies pointing to an elasticity of substitution
below unity. Our larger elasticity estimates are consistent
with conditions that allow green growth in the framework of
growth theory.

The rest of the paper is organized as follows. Section II
presents the theoretical underpinnings. Section III discusses
empirical evidence on substitution between energy inputs.
The methodology and the estimable equations obtained
based on production theory are presented in section IV. The
data set used in the empirical analysis is briefly discussed
in section V. Section VI presents estimates of the substitu-
tion parameters between clean and dirty energy inputs in the
electricity and nonenergy industries. Section VII concludes
with some directions for future research.
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282 THE REVIEW OF ECONOMICS AND STATISTICS

II. Theoretical Foundations

A. The Role of Substitution Parameters in Models
of Green Growth

The predictions of neoclassical and endogenous growth
models crucially depend on substitution parameters between
inputs. In many cases, the predictions of the models are
reversed if a substitution parameter changes its sign. For
green growth, the substitution between capital and energy
and the substitution between clean and dirty energy inputs
are the most important dimensions. For three reasons, we
choose to study the substitution of clean and dirty inputs
within the energy aggregate. First, evidence that the substitu-
tion parameter between the aggregates containing capital and
energy is low has already been a bit better established than
any evidence on substitution between clean and dirty energy
inputs. Second, doubts remain under which conditions sub-
stitution by capital is clean, since capital is a produced input.
Third, if substitution by clean sources is strong within the
energy aggregate, substitution between aggregate energy and
other factors of production such as capital matters less for
long-run green growth.

We formulate production functions containing substitu-
tion parameters that are important in the context of growth
theory and at the same time can be estimated from available
macroeconomic data. In section IIB, we discuss how the
properties of prototypical constant elasticity of substitution
(CES) production functions influence the prospects of long-
run growth in theoretical approaches taking into account
clean and dirty energy inputs. Section IIC gives examples
of previous theoretical work using the kind of substitution
parameters we discuss.

B. A Prototypical Macroeconomic Production Technology

In this paper we formulate variants of nested CES produc-
tion functions that can be evaluated at the macroeconomic
level. Their properties follow in a straightforward way from
those of two-input CES functions.

For the nonenergy (or final) sector, we formulate a produc-
tion function with four inputs that can be used to estimate the
substitution parameter between clean and dirty inputs within
the energy aggregate. For the electricity sector, we formu-
late a production function with two inputs that can be used to
estimate the substitution parameter between clean and dirty
electricity generation (proxied by production capacity). A
separate electricity-generating sector is important because
the substitution patterns that prevail in this sector can be
expected to be very different from those in the rest of the
economy. Modeling the electricity sector and not the other
parts of the energy sector is in line with our estimation
strategy, which provides estimates for the electricity sector
only.

Final output is represented as a CES aggregate of a com-
posite of capital K and labor L and a composite of clean
energy input EFC and dirty energy input EFD. Nonenergy

inputs have a common technology parameter AF . Clean
and dirty energy inputs have specific factor-augmenting
technology parameters AFC and AFD:

YF =
{
(1 − γ)Aφ

F[αKχ + (1 − α)Lχ] φ
χ + γ[β(AFCEFC)ψF

+ (1 − β)(AFDEFD)ψF ] φ
ψF

} 1
φ

. (1)

We consider as long-run green growth a situation in which
the inputs of capital and clean energy are increased, while
dirty energy input cannot exceed some upper limit. Labor
is held constant for simplification. Emissions are assumed
to be proportional to dirty energy input EFD. The parameter
σF = 1/1−ψF is the elasticity of substitution between clean
and dirty energy inputs within the energy aggregate of the
final sector. In order to express an elasticity that character-
izes substitution between clean and dirty energy inputs at the
level of the final output function, we would have to choose
a concept of partial elasticity, since there is no unique gen-
eralization of the two-input elasticity of substitution for the
case of more inputs. But for long-run growth, the constant
parameter values and not the partial elasticities matter, so we
focus on the substitution parameter ψF , which may assume
values between −∞ and 1.

Without technical progress and with energy as an essen-
tial input (φ ≤ 0), a necessary condition for long-run green
growth is that both subaggregates, the K-L aggregate and the
energy aggregate, have a positive long-run growth rate. This
is possible only if both χ and ψF are positive. (See online
appendix section I. The case of energy being a nonessen-
tial input is trivial in the context of investigating substitution
between clean and dirty energy inputs.) If we consider in
contrast the situation with neutral technical progress, long-
run green growth is always possible at the technological
level. But with a negative substitution parameter ψF between
clean and dirty energy, a relative increase in clean energy
input drives down its relative price more than proportionally
under competitive remuneration (see also Acemoglu, 2008):

PFC

PFD
= β

1 − β

(
AFC

AFD

)ψ (
EFC

EFD

)ψ−1

. (2)

This means that the cost share of clean energy in total energy
cost also declines. Although the precise consequences for
growth depend on the full model specifications, this is a
situation that is unlikely to be sustainable in a market econ-
omy. The only other possibility for long-run green growth
then remains a situation where the growing demand for
energy services is satisfied exclusively from their increasing
efficiency through technical progress. But the technological
feasibility of long-run green growth with constant energy
input does not necessarily preclude the existence of an eco-
nomic incentive to increase the use of both energy inputs
along the growth path. With positive ψF , it is possible to
completely switch to clean energy inputs and sustain their
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SUBSTITUTION BETWEEN CLEAN AND DIRTY ENERGY INPUTS 283

growth in the long run. Their relative price also decreases in
this case, but in a less-than-proportional way.

Technical progress that is directed to the use of clean
energy input is considered in theory as well as in practice
as one of the most important conditions for long-run green
growth. With a positive substitution parameter ψF , technical
progress increasing the relative efficiency of clean energy
input AFC more than the efficiency of dirty energy input
raises the relative demand and the relative price for it (see
equation [2]). With a negative substitution parameter ψF ,
the relative demand for clean energy input would rise fol-
lowing a relative increase in the efficiency of dirty energy
input use, AFD. In models of endogenous directed techni-
cal change, technical change is ceteris paribus directed to
the more expensive input. With a positive ψF , this property
tends to support self-propelling clean progress as soon as it
is profitable. The precise results depend on the assumptions
on the market for technology (see AABH for a similar case
with two inputs into final production). With negative ψF , the
converse is true: with each advance in clean technology, the
profitability of dirty technical progress will rise. This mech-
anism is pushing technical progress toward neutrality in the
long run. More complex interactions may arise if more than
two technology parameters are endogenous. In summary, a
positive substitution parameter ψF plays an important role
for the possibility of long-run green growth without techni-
cal change, with neutral technical change, and with directed
technical change.

We assume that the final sector does not produce elec-
tricity but buys its electricity (clean) input EFC from the
electricity sector. Meanwhile, the final sector is assumed to
use primary dirty energy input EFD directly. In the electricity-
generating sector, we assume a more reduced production
function than in the final sector. The share of labor income
is negligible, and labor is not expected to be substitutable.
Thus, we exclude labor from the production function. More-
over, we implicitly assume a fixed ratio between capital
and fuel input. For clean electricity production, the cost for
primary energy input is often 0 (e.g., sunlight, wind) or neg-
ligible. Thus, our assumption is more restrictive for dirty
electricity production where there might be an economically
meaningful trade-off between fuel use and investment in bet-
ter capacity. Under these assumptions, the technology for
generating electricity EFC is modeled as a CES production
function of clean production capacity KEC in that sector and
dirty production capacity KED:

EFC = [
ω(AECKEC)ψE + (1 − ω)(AEDKED)ψE

] 1
ψE . (3)

The parameter ψE now represents the substitution parameter
between clean and dirty capacity in the electricity-generating
sector. The corresponding elasticity of substitution equals
σE = 1/1 − ψE . In the absence of technical change, the
substitution parameter ψE has to be positive in order for
long-run green growth to be possible in the electricity sector
(this result has been shown for the two-input CES function

with capital and labor by Klump & de La Grandville, 2000)
and the aggregate economy. With technical change, the evo-
lution of the relative price for clean capacity depends on
the substitution parameter in a way analogous to equation
(2). Our aim is to estimate the substitution parameters ψE

and ψF and thus the corresponding two-input elasticities of
substitution σE and σF .

C. Clean-Dirty Substitution in Theoretical Models

While the literature on environmental policy developed
from a microeconomic perspective, it has increasingly
focused on macroeconomic questions (see Popp, Newell, &
Jaffe, 2010, and Fischer & Heutel, 2013). The paradigm of
directed technical change is a general modeling framework
based on the idea of induced innovation going back to Hicks
(1932). In its most widely used contemporary version, it
has been developed by Acemoglu (1998, 2002). This theory
inspired empirical research to take a closer look at the con-
nection between growth and factor substitution (e.g., Krusell
et al., 2000, and Duffy, Papageorgiou, & Perez-Sebastian,
2004).

AABH use this framework and the Schumpeterian model
of green growth by Aghion and Howitt (1998) to place the
question of long-run green growth in the center stage of
modern neoclassical growth theory. A final good is produced
from clean and dirty intermediate inputs with a CES tech-
nology. The intermediates are in turn produced using clean
and dirty machines, which can be improved by invention.
The main question is whether optimal policy will manage to
redirect all scientists immediately to the clean sector and thus
contain long-term climate change below 2◦C. The threshold
for long-run green growth being technically feasible is an
elasticity of substitution above 1, but the policy to enforce
this would not be optimal for values only slightly above 1.
From the perspective of growth theory, the elasticity of sub-
stitution between clean and dirty production tasks modeled
by AABH represents a quite general measure of substitution
on which the possibilities of green growth in an econ-
omy crucially depend. Using a similar structure in a CGE
model, Otto, Löschel, and Dellink (2007) assume a CES util-
ity function to aggregate utility from energy-intensive and
energy-nonintensive goods.

More common in the theoretical literature is the mod-
eling of substitution between capital and energy, dirty and
clean energy inputs within the energy aggregate, or both vari-
ants in the same model (see, e.g., Bovenberg & Smulders,
1996; Goulder & Schneider, 1999; Nordhaus, 1994; Popp,
2004). Gans (2012) analyzes the effect of an emission cap
on directed technical change and growth. Contrary to more
applied and complex models, the paper explicitly discusses
the cases of an elasticity of substitution within the energy
aggregate smaller and larger than 1, the baseline assumption
being that it is equal to or larger than 1. With an elasticity of
substitution smaller than 1, the emission cap would reduce
innovation incentives for factor-augmenting technologies.
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284 THE REVIEW OF ECONOMICS AND STATISTICS

In a DSGE model analyzing welfare loss through climate
change and the potential of a carbon tax to reduce it, Golosov
et al. (2014) use a CES energy aggregate with three inputs:
coal, oil, and nonfossil energy. Assuming alternatively elas-
ticities of substitution within the energy aggregate of 0.95
and 2, they come to the conclusion that the difference
between the market and the optimal allocation is much more
pronounced with a higher elasticity.

Some theoretical work explicitly starts from the conser-
vative assumption of low substitution possibilities and iden-
tifies other technological channels thought to make long-run
growth possible without depleting nonrenewable resources
or causing excessive pollution (Bretschger & Smulders,
2012). But again this poses the empirical challenge to
identify the parameters relevant for these other channels.

III. Review of the Empirical Literature

While there is, to our knowledge, no previous econometric
estimation with the explicit goal of identifying a substitu-
tion parameter between clean and dirty energy inputs using
a binary distinction, there is a large literature on substitution
of fuels at a more disaggregated level and on capital-energy
substitution. Emerging in the 1970s in the light of high oil
prices, this literature aimed at assessing how oil could be
substituted by coal, gas, and electricity or more energy-
efficient production methods. Its focus is thus quite different
from our focus. Still, the interfuel substitution literature rep-
resents the empirical work that is most closely related to
ours. Major early contributions were made by Atkinson and
Halvorsen (1976), Fuss (1977), Griffin (1977), and Pindyck
(1979). All of these studies, as well as most of the subsequent
ones, use some variant of the translog function.1 Method-
ological aspects that later studies paid attention to were the
difficulty of estimating elasticities in the presence of con-
cavity violations of the translog function, biases resulting
from policies that regulate energy supply, and the structure of
industrial fuel and energy consumption (Considine, 1989).
Jones (1995) differentiates between fuels used for energy
purposes and fuels used for nonenergy purposes. Steinbuks
(2012) introduces a further differentiation of fuel use for
energy purposes in different manufacturing processes, some
of which require specific fuels.

Stern (2012) offers a systematic overview over the dif-
ferent partial elasticities used in the literature as well as
a meta-analysis. For the meta-analysis, the estimates and
computed elasticities from various studies are converted into
so-called shadow elasticities.2 The results show that cross-
section estimates tend to be higher than panel estimates of
the shadow elasticity of substitution, which are in turn higher

1 Some exceptions to the use of translog functions are found in the lit-
erature on capital-energy substitution (e.g., Kemfert, 1998; Van der Werf,
2008).

2 The shadow elasticity is a symmetric ratio elasticity that represents the
average of the asymmetric Morishima elasticities. It restricts cost to be
constant.

than time series estimates (see also Griffin & Gregory, 1976).
Moreover, elasticities are lower at higher levels of aggrega-
tion. Elasticities involving electricity tend to be smaller than
those between two fossil fuels.

To our knowledge, only one previous study focuses on
an empirical determination of the elasticity of substitution
between clean and dirty energy inputs using a binary distinc-
tion. Pelli (2012) extends the model developed by AABH to
a multisector setting. For the electricity sector, he then intro-
duces several assumptions that allow the calibration of the
non-U.S. elasticities from the U.S. elasticity. The calibrated
elasticities for the electricity sector concentrate around 0.51.
A small number of other studies obtain a substitution param-
eter between aggregate clean and dirty energy input as a
by-product. Lanzi and Sue Wing (2010) find a value of 1.6
for the two-input elasticity of substitution between clean and
dirty inputs in the energy sector from econometric estima-
tion using a steady-state assumption. Pottier, Hourcade, and
Espagne (2014) cast doubt on the possibility of measuring
the elasticity of substitution between clean and dirty produc-
tion modeled by AABH. What in their view comes closest to
it in previous econometric research is the absolute value of
the price elasticity of gasoline demand, for which they report
a range of 0.3 to 0.6 from other studies. Several CGE mod-
els use assumptions on the elasticity of substitution between
fossil fuels and nonfossil (in our sense “clean”) fuels within
the energy aggregate and report values obtained from fitting
calibrated models. Goulder and Schneider (1999) use a value
of 0.9 at the sectoral level, Popp (2004) a value of 1.6.

Since no more quantitative evidence is available, we also
discuss some speculative conjectures expressed in previ-
ous research. Thinking about substitution between clean
and dirty energy inputs from a macroeconomic perspective,
one might consider that the productivity of energy does not
depend much on its source or its intensity of pollution. As
AABH argue: “For example, renewable energy, provided it
can be stored and transported efficiently, would be highly
substitutable with energy derived from fossil fuels. This rea-
soning would suggest a (very) high degree of substitution
between dirty and clean inputs, since the same production
services can be obtained from alternative energy with less
pollution” (p. 135). The aspect of transportation and storage
is a critical one for renewable energy. In electricity genera-
tion, the difficulties in storing energy from renewable sources
lead to a misalignment in time and space with electricity
demand. Mattauch, Creutzig, and Edenhofer (2015) consider
that investments in better infrastructure (e.g., grid integration
across large areas) could increase the substitution possibil-
ities between clean and dirty energy production. Even in
cases where demand is adequate to supply, the fixed costs
are currently higher for clean energy plants than for dirty
energy plants. Meanwhile, the variable costs of clean energy
production are generally lower. One has to be careful not
to interpret these properties in any simple way as evidence
on the elasticity of substitution between clean and dirty
energy inputs within the energy aggregate, since substitution
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SUBSTITUTION BETWEEN CLEAN AND DIRTY ENERGY INPUTS 285

parameters are based not on levels of marginal productivity
but on changes in marginal productivity.

Still, there are aspects thought to limit the ease of sub-
stitution between clean and dirty energy: if clean electricity
generation involves both nuclear and renewable sources, the
marginal productivity of investment into clean capacity may
be declining. Capacity may be installed first in places where
the supply of wind or sun is advantageous and then in less
advantageous places. Moreover, fossil fuels with relatively
low fixed but higher variable cost better serve as peak load
fuels compared not only to renewables but also to nuclear
energy (IEA/OECD NEA, 2010). If the ratio of clean to dirty
energy inputs rises to high levels in the entire economy, clean
energy production has to serve both base and peak demand
and will experience declining efficiency.

In the energy-using sectors, a wide range of processes can
be run using electricity, but some industrial processes require
particular fossil fuels. And in transportation, the internal
combustion engine still represents the dominant technology
to which current infrastructure is mainly adapted (Mattauch
et al., 2015). On the other hand, structural change may reduce
the weight of dirty production processes in the economy. At
a macroeconomic level, it is therefore uncertain whether the
known cases of limited substitution lead to an overall low
substitution between clean and dirty energy inputs. The aim
of this paper is to provide first econometric evidence on this
issue using an aggregate production function approach.

IV. Estimation

A. Methodology

We estimate the substitution parameter between clean and
dirty energy inputs directly from aggregate production func-
tions following an established empirical literature.3 Specifi-
cally, we estimate nested CES specifications using nonlinear
estimation. Mindful of the challenges related with nonlinear
estimation (see, e.g., León-Ledesma, McAdam, & Willman,
2010), we also consider linear translog approximations as
robustness checks.

Contrary to most of the theoretical literature, we assume
technological change to be neutral. The nonlinear nature of
the CES function, the collinear nature of time and input
growth, and the limited number of observations in the energy
sector make the simultaneous identification of elasticities of
substitution and biased input-augmenting technical change
for more than two inputs of production difficult.

An alternative to our aggregate production approach used
quite extensively in the literature is estimation based on
first-order conditions (FOCs) that assume perfect markets
and equalize input prices with marginal products. While we
recognize the importance of this work and the numerous
methods developed to estimate marginal products from price

3 The CES aggregate production function estimation was revived from
earlier work traced back to the 1970s by Duffy and Papageorgiou (2000)
and Duffy et al. (2004).

accounting, we also want to flag that the underlying assump-
tion of undistorted markets is questionable. Especially in the
energy market, market distortions and measurement error
can be large enough to cast doubt on the equality between the
price of energy and its marginal productivity or any measure
derived from it including markups.

Following the perspective of growth theory, it is not our
primary interest to explore how the use of energy inputs
reacts to changes in their prices. Rather, we are interested
in whether the aggregate technological capabilities of an
economy are such that it could replace dirty energy input
with clean energy input without inducing or accelerating a
decline of marginal productivity of clean energy. Against this
background, our main estimation strategy relies on input and
output quantities only.

B. Empirical Specifications for the Electricity Sector

For the electricity sector, we use the production func-
tion formulated in equation (3). Imposing neutral technical
change, we obtain the following regression equation:

ln Yit = ai + dt + 1

ψ
ln

(
ωKψ

Cit + (1 − ω)Kψ

Dit

)
+ εit ,

(4)

where i denotes the country, t denotes the year, and ε is the
error term.4 As discussed in section IIB, our parameter of
interest is ψ, the substitution parameter between clean and
dirty production capacity, σ = 1/1 − ψ representing the
corresponding elasticity of substitution.

We conduct a robustness check assuming a unitary elastic-
ity of substitution between capital and fuel within electricity
generation from dirty sources. The resulting Cobb-Douglas-
in-CES specification is

ln Yit = ai + dt + 1

ψ
ln

(
ωKψ

Cit + (1 − ω)(Kα
DitE

1−α
Dit )ψ

)

+ εit , (5)

where EDit represents fuel input used in dirty electricity
generation.

As a robustness check to the nonlinear regression, we
estimate a variant of the translog function, the so-called
Kmenta approximation, which represents a linear first-order
approximation of equation (4) around ψ = 0 (Kmenta,
1967):

ln Yit = ai + dt + ω ln KCit + (1 − ω) ln KDit

+ (1 − ω)
ψ

2
(ln KCit − ln KDit)

2. (6)

This expression can then be rewritten in per dirty capi-
tal units (indicated by lowercase variables) by subtracting
ln KDit from both sides of the equation:

4 The subscript E for the electricity-generating sector is dropped in this
section and section VIA, since both sections deal with the electricity sector
only.
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286 THE REVIEW OF ECONOMICS AND STATISTICS

ln yit = ai + dt + β1 ln kit − β2(ln kit)
2 + εit . (7)

The CES parameters are computed as σ = β1(1−β1)/(β1(1−
β1) − 2β2) and ω = β1.

The disadvantage of the translog function is that its two-
input elasticity of substitution converges to one for large
input ratios and it satisfies the conditions of a neoclassical
production function only locally.

C. Empirical Specifications in the Nonenergy Sector

We choose a baseline specification that allows identifying
the substitution parameter between clean and dirty energy
inputs within the energy aggregate ψ and assumes a value
of 0 for the other substitution parameters specified in equa-
tion (1). This parsimonious strategy is close to the one that
Hassler, Krusell, and Olovsson (2012) used, with the dif-
ference that they estimate substitution between energy and
nonenergy inputs. In addition, we impose neutral technical
change and include other material and service inputs besides
energy in some variants estimated. Ideally, we would observe
gross output and all relevant inputs with the reliability of
national accounts data. Since our data allow for only a more
approximate split of intermediate input into energy, on the
one hand, and materials and services, on the other hand, we
use two alternative dependent variables: value added plus
energy cost (as used by, e.g., Van der Werf, 2008) and gross
output. Written down for gross output, our baseline CES-in-
Cobb-Douglas specification with constant returns to scale
and neutral technical change is

ln Yijt = ai + aj + dt + (1 − α − γ − θ) ln Lijt + α ln Kijt

+ θ ln MSijt + γ

[
1

ψ
ln

(
Eψ

Cijt + Eψ

Dijt

)]
+ εijt ,

(8)

where Yijt represents gross output in country i and indus-
try j, t is a time trend, Lijt denotes labor input, Kijt denotes
capital input, MSijt denotes intermediate materials and ser-
vices input, and ECijt and EDijt the clean and dirty energy
inputs.5 Note that contrary to the standard CES function, our
specification for the energy subaggregate does not include
multiplicative weights for the two input terms. The reason
becomes intuitive when considering the case of infinite sub-
stitution: energy inputs are measured in homogeneous units
of terajoules (TJ), and in the case of infinite substitution, we
would expect the total productive services of energy inputs
to be the unweighted sum of these inputs.

We use industry-level observations of the nonenergy
industries to estimate an aggregate production function for
the nonenergy (or final) sector. This approach implies that
substitution between clean and dirty energy inputs can occur

5 All specifications for value added plus energy cost follow in a straightfor-
ward way and are not written down here. The subscript F for the nonenergy
sector is dropped in this section and section VIB, since both deal with the
nonenergy sector only.

at three levels: industries can become cleaner over time, the
same industries may have different levels of clean energy
use in different countries, and a country’s production can
become cleaner by shifting resources toward sectors with a
higher share of clean energy inputs.

We again run a robustness check with a linear approxima-
tion of the baseline CES-in-Cobb-Douglas form:

ln
Yijt

Lijt
= ai + aj + dt + β1ln

Kijt

Lijt
+ β2ln

ECijt

Lijt
+ β3ln

EDijt

Lijt

+ β4

(
ln

EDijt

ECijt

)2

+ β5 ln
MSijt

Lijt
+ εijt , (9)

where β2 = β3. The CES-in-Cobb-Douglas parameters can
then be derived as α = β1, γ = 2β2, θ = β5, and σ =
1/(1 − β4/8β3).

V. Data

A. Electricity Sector

As output measure in the electricity sector, we choose
physical output since real value added in this highly regu-
lated sector may be influenced by many factors not related
to productivity. Information on the electricity generated by
technology is taken from the IEA Electricity Information
Statistics. The main input measures, clean and dirty capital,
are also approximated by a physical measure: net installed
technology-specific generation capacity in megawatt (MW),
a measure that has been used frequently as a capital
input proxy in the electricity sector (see, e.g., Atkinson &
Halvorsen, 1976; Söderholm, 2001; Färe et al., 2005).6 We
classify installed capacities of nuclear, hydro, geothermal,
solar, ocean, and wind power plants as clean capacities and
the remaining ones as dirty capacities.

It is expected that clean technologies have higher capi-
tal costs than dirty technologies, which in turn incur higher
fuel costs. Since we have only limited information about
clean and dirty installation cost per megawatt and, more-
over, lose some data points in adding this information, we
present estimations with capacity data as baseline results but
provide robustness checks using approximated real capital
stocks. They are derived by valuing installed capacities with
technology-specific investment cost estimates published by
the U.S. Energy Information Agency.7 These estimates offer
temporal variation since they are updated every year. But we
need to assume that they are equal across countries since we
do not have similar information for other countries. Table 1

6 The IEA defines the net installed generation capacity as “the maximum
active power that can be supplied, continuously, with all plants running,
at the point of outlet to the network” (IEA/OECD, 2013). This measure is
not tautological to physical output since an equivalence holds only under
uninterrupted production and ideal conditions, as, for example, discussed
by Söderholm (2001).

7 These values represent assumptions used in the Electricity Market Mod-
ule of the Annual Energy Outlook: http://www.eia.gov/oiaf/archive.html.
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Table 1.—Variable Description of the Electricity Sector Data

Variable Description and Unit of Measurement

Real fixed capital stock assigned to clean technologies (EIA based)
Real fixed capital stock assigned to dirty technologies (EIA based)
Electricity generation by all technologies (in GWh)
Net installed capacity of clean technologies (in MW)
Net installed capacity of dirty technologies (in MW)
Fuel input into dirty technologies (in TJ)

TJ = terajoule; GWh = gigawatt-hour; MW = megawatt.

summarizes the variables available. The data set exhibits up
to 390 observations (26 countries for the period 1995 to
2009).8

B. Nonenergy Industries

Three steps are undertaken to construct input and output
data for the nonenergy sector using information from the
World Input-Output Database (WIOD) and the GGDC Pro-
ductivity Level Database. First, emission-relevant energy use
by fuel type is aggregated into a clean and a dirty aggregate.
In doing so, we are adding up biogasoline, biodiesel, bio-
gas, other renewables, electricity, heat production, hydro,
geothermal, solar, wind, other sources, nuclear, and waste
into the clean aggregate. All other types of energy-generating
technologies sum up to the dirty aggregate. The second step
deals with the construction of intermediate energy, service,
and material input aggregates. These are not given in WIOD
directly but can be derived from its use tables. Following the
EU KLEMS methodology (O’Mahony & Timmer, 2009),
energy intermediate inputs (IIE) are defined as all energy
mining products (produced by sectors 10–12), oil refining
products (23), as well as electricity and gas products (40)
that are used as intermediate production inputs. Intermedi-
ate service inputs (IIS) are defined as all service products
used (50–99), whereas all remaining products are classified
as intermediate material inputs (IIM). This classification can
be applied one to one to the WIOD use tables at purchasers’
prices. In a third step, the nominal values in local cur-
rency are transformed into real values of a common currency
(real 1997 $US) using the PPPs from the GGDC Productiv-
ity Level Database in combination with price indices from
WIOD.

Table 2 summarizes the variables observed in the non-
energy sector. The data set contains observations for nineteen
countries (Australia, Austria, Belgium, Czech Republic,
Germany, Denmark, Spain, Finland, France, Great Britain,
Hungary, Ireland, Italy, Japan, Netherlands, Portugal, Slove-
nia, Sweden, and the United States), 28 industries, and the
years 1995 to 2007 (see online appendix section II for details
on coverage and PPPs).

8 A limitation of our approach is the way our data account for trade in
energy inputs and for private energy consumption; see online appendix
section II.

Table 2.—Variable Description of the Nonenergy Sector Data

Variable Description and Unit of Measurement

Gross output at real 1997 U.S. dollars (PPP)
Gross value added at real 1997 U.S. dollars (PPP)
Intermediate energy input at real 1997 U.S. dollars (PPP)
Intermediate materials and service input at real 1997 U.S. dollars (PPP)
Real fixed capital stock at real 1997 U.S. dollars (PPP)
Total hours worked by persons engaged
Energy use of clean sources (in TJ)
Energy use of dirty sources (in TJ)

TJ = terajoule.

VI. Results

A. Electricity Sector

We start by estimating the CES function in equation (4)
for the electricity-generating sector. Output is measured as
electricity generation in gigawatt-hours (GWh), and inputs
are measured as clean and dirty installed generation capacity
in megawatts (MW). We first employ nonlinear least squares
estimation that relies on nonlinear optimization methods to
search for the parameter values that minimize the residual
sum of squares and estimate the confidence intervals of these
estimates. The production function is nonlinear in ψ, which
appears as an exponent, and the elasticity of substitution
within the energy aggregate σ is in turn nonlinear in ψ.9

In addition to nonlinear least squares, we also run OLS
regressions after linearizing the CES function with the
Kmenta approximation. We do that to confirm that nonlinear
and linear estimation do not obtain drastically different esti-
mates of the key parameters. Results from both estimation
methods are reported in table 3. With both variants, we run a
regression with country fixed effects (columns 1 and 3) and
in first differences (columns 2 and 4).

For the electricity-generating sector, we obtain estimates
of the substitution parameter ψ between clean and dirty
capacity of around 0.46. The estimates using nonlinear and
linear least squares are very similar. They imply an elasticity
of substitution between clean and dirty generation capacity
of about 1.8 (a ψ value of 0 would imply a unitary elastic-
ity of substitution). In the perspective of growth theory, this
value of the estimate of ψ would place us in the case where
an important condition for long-term clean growth of the
electricity sector is fulfilled, even in the absence of technical
change.

In table 4, we use approximated real capital stocks, instead
of capacities in MW, as input measures. The estimates of the
elasticity of substitution change only marginally under both
nonlinear and linear least squares. It is important to note

9 To reduce the extent of nonlinearity, we perform estimation and tests of
ψ instead of σ. Standard errors are bootstrapped with clusters at the country
and, if applicable, the industry level. A parameter space that often exhibits
multimodality and flat regions for the CES function is known to compli-
cate estimation (León-Ledesma, McAdam, & Willman, 2015). Degenerate
results where the numerical search either does not converge or finds a ψ
larger than one are discarded from the bootstrap.

This content downloaded from 
�����������195.251.255.75 on Sun, 01 Oct 2023 17:04:01 +00:00����������� 

All use subject to https://about.jstor.org/terms



288 THE REVIEW OF ECONOMICS AND STATISTICS

Table 3.—Nonlinear Estimation and Kmenta Approximation of CES:

Electricity Sector

CES Kmenta

NLS FD NLS OLS FD OLS

d −0.001 −0.003 −0.001 −0.003
(−0.67) (−1.57) (−0.50) (−1.18)

ω 0.220∗∗ 0.442∗∗∗ 0.245∗∗∗ 0.451∗∗∗
(2.44) (5.80) (6.02) (7.87)

ψ 0.457∗∗ 0.487∗∗∗ 0.446∗∗∗ 0.455∗∗∗
(2.09) (3.65) (3.39) (9.87)

Country DV Yes No Yes No
Adjusted R2 0.997 0.187 0.968 0.546
ψ = 0 0.037 0.000 0.002 0.000
σ 1.840 1.948 1.806 1.833
N 390 364 390 364

z-statistics in parentheses. Significantly different from 0 at ***1%, **5%, *10%. Columns 1 and 2 pro-
vide bootstrapped standard errors based on 400 replications with country as cluster variable. Specification 1
applies the nonlinear least squares (NLS) estimator and includes country dummies. Specification 2 applies
the NLS estimator to a first-differenced version of the model. Specification 3 applies the OLS estimator
and includes country dummies. Specification 4 applies the OLS estimator to a first-differenced version of
the model. ψ = 0 reports the significance level of a Wald test with H0 : ψ = 0.

Table 4.—Nonlinear Estimation and Kmenta Approximation of CES

with an Alternative Capital Proxy: Electricity Sector

CES Kmenta

NLS FD NLS OLS FD OLS

d −0.010∗∗∗ −0.009∗∗∗ −0.009∗∗∗ −0.009∗∗∗
(−3.67) (−3.92) (−3.97) (−3.35)

ω 0.193∗ 0.388∗∗∗ 0.203∗∗∗ 0.401∗∗∗
(1.68) (3.57) (4.01) (6.39)

ψ 0.423∗ 0.460∗∗∗ 0.535∗∗ 0.441∗∗∗
(1.70) (2.59) (2.74) (5.17)

Country DV Yes No Yes No
Adjusted R2 0.997 0.053 0.965 0.555
ψ = 0 0.090 0.010 0.011 0.000
σ 1.734 1.852 2.152 1.789
N 338 312 338 312

z-statistics in parentheses. Significantly different from 0 at ***1%, **5%, *10%. Columns 1 and 2 pro-
vide bootstrapped standard errors based on 400 replications with country as cluster variable. Specification 1
applies the nonlinear least squares (NLS) estimator and includes country dummies. Specification 2 applies
the NLS estimator to a first-differenced version of the model. Specification 3 applies the OLS estimator
and includes country dummies. Specification 4 applies the OLS estimator to a first-differenced version of
the model. ψ = 0 reports the significance level of a Wald test with H0 : ψ = 0.

here, though, that the scope of this sensitivity analysis is
limited by the lack of plant cost data across fuels used.

In the last specification, we consider the Cobb-Douglas-
in-CES function introduced in equation (5) that allows
substitution between dirty capacity and dirty fuels assuming
a unitary elasticity. With this specification, the estimate of
the elasticity of substitution between clean and dirty electric-
ity generation rises to values above 2 as reported in table 5.
However, it also turns out that the estimate of the distribution
parameter ω becomes more unstable across specifications.

B. Nonenergy Industries

The main specification we employ for nonenergy indus-
tries is a production function that is CES in clean and dirty
fuel input and Cobb-Douglas in the energy aggregate and
other inputs based on equation (8). Consistent with the pre-
vious analysis in the electricity sector, we use both nonlinear
and linear estimation methods. As discussed in section IVC,

Table 5.—Nonlinear Estimation of Cobb-Douglas in CES:

Electricity Sector

Main Capital Proxy Alternative Capital Proxy

NLS FD NLS NLS FD NLS

d 0.003 0.003 −0.000 −0.000
(1.47) (1.34) (−0.19) (−0.10)

α 0.437∗∗∗ 0.379∗∗∗ 0.347∗∗∗ 0.311∗∗∗
(6.33) (4.03) (5.72) (3.60)

ω 0.488∗∗∗ 0.707∗∗∗ 0.010 0.005
(4.83) (10.08) (0.14) (0.37)

ψ 0.508∗∗∗ 0.651∗∗∗ 0.508∗∗∗ 0.644∗∗∗
(3.30) (4.53) (3.31) (4.83)

Country DV Yes No Yes No
Adjusted R2 0.999 0.525 0.999 0.500
ψ = 0 0.001 0.000 0.001 0.000
σ 2.031 2.867 2.032 2.810
N 390 364 338 312

z-statistics in parentheses. Significantly different from 0 at ***1%, **5%, *10%. All columns provide
bootstrapped standard errors based on 400 replications with country as cluster variable. Specifications 1
and 3 apply the nonlinear least squares (NLS) estimator and include country dummies. Specifications 2
and 4 apply the NLS estimator to a first-differenced version of the model. ψ = 0 reports the significance
level of a Wald test with H0 : ψ = 0.

Table 6.—Nonlinear Estimation and Kmenta Approximation of CES in

Cobb-Douglas: Nonenergy Industries

CES in Cobb-Douglas Kmenta

VA + IIE GO VA + IIE GO

d 0.010∗∗∗ 0.003∗ 0.010∗∗∗ 0.002∗
(4.66) (1.82) (4.79) (1.73)

α 0.359∗∗∗ 0.186∗∗∗ 0.360∗∗∗ 0.187∗∗∗
(7.43) (6.63) (7.78) (7.04)

γ 0.260∗∗∗ 0.121∗∗∗ 0.258∗∗∗ 0.121∗∗∗
(6.22) (5.05) (6.15) (4.88)

θ 0.565∗∗∗ 0.566∗∗∗
(15.46) (16.54)

ψ 0.651∗∗∗ 0.654∗∗ 0.394∗∗∗ 0.276
(3.29) (2.26) (2.97) (1.41)

Country DV Yes Yes Yes Yes
Industry DV Yes Yes Yes Yes
ψ = 0 0.001 0.024 0.003 0.159
σ 2.868 2.888 1.651 1.382
Adjusted R2 0.948 0.982 0.739 0.907
N 6,914 6,914 6,914 6,914

z-statistics in parentheses. Significantly different from 0 at ***1%, **5%, *10%. Columns 1 and 2 pro-
vide bootstrapped standard errors based on 400 replications with country and industry as cluster variables.
Specifications 1 and 2 apply the nonlinear least squares (NLS) estimator and include country and industry
dummy variables. Specifications 3 and 4 apply the OLS estimator and include country and industry dummy
variables. ψ = 0 reports the significance level of a Wald test with H0 : ψ = 0.

we use two alternative dependent variables: gross output and
value added plus intermediate energy input.

Results are presented in table 6 (columns 1 and 2 report
nonlinear estimation results; columns 3 and 4 report OLS
estimation results). The estimates for the substitution param-
eter ψ are significantly positive in all specifications except
for the linear model for gross output.10 They imply elastic-
ities of substitution between clean and dirty energy inputs
within the energy aggregate up to a value of 3. One reason
that we observe a larger difference in the estimates between

10 As an approximation around ψ = 0, the Kmenta approximation is
known to bias elasticity parameters of CES functions toward 1.
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nonlinear and linear estimation than we did for the electric-
ity sector may be that the data for different industries exhibit
higher dispersion.11

C. Discussion

In the theoretical discussion, we have highlighted that an
elasticity of substitution larger than 1 within a CES energy
aggregate in both the electricity sector and the final sector
is a necessary condition for green long-run growth in the
absence of technical change in the framework of neoclassi-
cal growth models. Even if neutral or endogenous directed
technical change is assumed, the sign of the corresponding
substitution parameters fundamentally affects the conditions
for long-run green growth. Our empirical results support the
view that the elasticity of substitution between clean and
dirty energy inputs exceeds the value of 1 significantly in
both the electricity-generating sector, where we measure pro-
duction capacities as inputs, and the energy aggregate of
nonenergy industries. We thus offer a first piece of econo-
metric evidence on a parameter that was previously inferred
from partial elasticities at a lower level of aggregation of
energy, model calibration or conjectures.

Our empirical estimation is not without limitations. Issues
of endogeneity were challenging to tackle since test statistics
generally indicated that potential input instruments were not
exogenous. Therefore, our results can be interpreted as asso-
ciations, and claims of causation cannot be made. Moreover,
the implicit assumption of trend stationarity in the data series
used cannot be confirmed because for nonlinear panel data
models with nonstationary time series, asymptotic theory
and estimation methods do not yet exist (see, e.g., Wagner,
2008).12 We take comfort in the fact that the dimension of the
data for the nonenergy sector (13 years, 532 country-industry
cells) resembles that of micropanel data with a small time
series and a large cross-section dimension, for which issues
of nonstationarity are typically not a major concern and not
evaluated.

We started from the presumption that the use of first-
order conditions in empirical research on fuel substitution
may bias marginal products and thus might bias elasticity
parameters downward because of particularly severe market
distortions for energy. While fully exploiting the methods
that may be most appropriate in the hypothetical absence of
this bias lies beyond the scope of this paper, we run a first
check to exploit this comparison. Estimating a seemingly
unrelated regression (SUR) of FOCs, we obtain an elasticity
of substitution within the energy aggregate of at most 0.43

11 Section III in the online appendix contains sensitivity analysis with a
more general CES function, which is, however, difficult to identify, and
with different starting values for the nonlinear estimation, where we find
that our results are robust.

12 For the linear case of nonstationary panel data models, Phillips and
Moon (1999) developed an asymptotic theory and show that panel spuri-
ous regressions, contrary to pure time-series spurious regressions, give a
consistent estimate of the underlying parameter as both N and T tend to
infinity.

(see online appendix section III). Still more research may be
needed to contrast in a methodologically rigorous way esti-
mations with and without FOCs, in the presence of a bias to
FOCs that can be unknown and nonconstant.

VII. Conclusion

In the context of growth models with neoclassical pro-
duction functions, the elasticity of substitution between
clean and dirty energy inputs within the energy aggregate
represents a central parameter in assessing the conditions
necessary for long-run green growth. In this paper, we pro-
duce the first econometric evidence on this elasticity at the
macroeconomic level.

Our contribution is threefold. First, we review the role
of energy-related substitution parameters in variants of CES
production functions that are prototypical for growth mod-
els. This leads us to formulate parsimonious specifications of
production functions that can be used in econometric anal-
ysis. Second, using the World-Input-Output-Database as a
novel data source, we construct industry-level data for a
panel of up to 26 countries covering clean and dirty energy
inputs. Third, we present evidence that the elasticity of sub-
stitution between clean and dirty energy inputs within the
energy aggregate of the nonenergy sector and the elasticity of
substitution between clean and dirty capacity in the electric-
ity sector both exceed unity. More specifically, we find values
around 2 in the electricity-generating sector and values close
to 3 in nonenergy industries. This result contrasts with some
low elasticities found in calibrations or conjectures inferred
from the interfuel substitution literature.

While the analysis presented in this study is a useful first
attempt and a good point of reference to evaluate the elastic-
ity of substitution between clean and dirty energy inputs from
a macroeconomic perspective, we hope that it can also serve
as a launching pad for future work. A potential avenue for a
more detailed estimation of substitution possibilities in the
electricity-generating sector could be pursued by employ-
ing plant-level data. Instead of using a binary distinction
between clean and dirty fuels, future research on nonenergy
industries could also use fuel-specific data on actual emis-
sions to develop specifications of technology that account
for unwelcome by-products such as carbon emissions. This
could provide a more precise estimation by accounting for
the fact that not all energy inputs causing emissions are
equally dirty.
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