Revision Matrices

Let A be a nxk Matrix with elements $a_{i j}$ for $i=1,2, \ldots, n$ and $j=1,2, \ldots, k$, and B a matrix of the same order, i.e. $n x k$, and elements $b_{i j}$ for $i=1,2, \ldots, n$ and $j=1,2, \ldots, k$.
If $n=k$, i.e. the number of rows is equal to the number of columns, the matrix is called square.
We define the sum of the two matrices as a nxk matrix C with elements $c_{i j}$ for $i=1,2, \ldots, n$ and $j=1,2, \ldots, k$ such that

$$
c_{i j}=a_{i j}+b_{i j} \text { for } i=1,2, \ldots, n \text { and } j=1,2, . . k
$$

Notice that the orders of A and B must be the same.
Let D be a kxq matrix with elements $d_{i j}$ for $i=1,2, \ldots, k$ and $j=1,2, \ldots, q$. Then the product of A and D is a matrix, say $A D=F$, of order $n x q$ with elements $f_{i j}$ for $i=1,2, \ldots, n$ and $j=1,2, \ldots, q$ such that

$$
f_{i j}=\sum_{m=1}^{k} a_{i m} d_{m j}+\quad \text { for } i=1,2, \ldots, n \text { and } j=1,2, . . q
$$

Notice that the f_{ij} is the inner product of the $\mathrm{i}^{\text {th }}$ row of A and the $\mathrm{j}^{\text {th }}$ column of D. Further, the product is define only for matrices that the left term of the product has the same number of columns as the number of rows of the right term. It follows that DA is not equal to AD.

1. $A(B+C)=A B+A C$
2. $(A+B) C=A C+B C$
3. $(A B) C=A(B C)=A B C$
4. $\lambda(A B)=(\lambda A) B=A(\lambda B)$
for appropriate order matrices A, B and C and scalar λ (a real number).
Let A be a square $n x n$ matrix. Then the I, j minor ($\varepsilon \lambda \alpha \alpha^{\sigma} \omega v$) is the $(n-1) x(n-1)$ resulting matrix after excluding the $\mathrm{i}^{\text {th }}$ row and the $\mathrm{j}^{\text {th }}$ column of A , e.g. for

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \vdots & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right)
$$

the 2,2 minor M_{22} is

$$
M_{22}=\left(\begin{array}{cccc}
a_{11} & a_{13} & \ldots & a_{1 n} \\
a_{31} & a_{32} & \ldots & a_{2 n} \\
\vdots & \vdots & \vdots & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right)
$$

The Determinant (Opí̧ou α) of a square nxn matrix $A,|A|$ or $\operatorname{det}(A)$, is defined as

$$
A=\sum_{i=1}^{n} a_{i j}\left|C_{i j}\right|, \text { for } j=1,2, \ldots, \text { n or } \sum_{j=1}^{n} a_{i j}\left|C_{i j}\right|, \text { for } i=1,2, \ldots, \mathrm{n}
$$

$$
\left|C_{i j}\right|=(-1)^{i+j}\left|M_{i j}\right|,
$$

and $\left|M_{i j}\right|$ is the determinant of the I, j minor $M_{i j}$.
If $|\mathrm{A}|=0$ then A is called singular. Otherwise it is called non-singular.

$$
A^{k}=A \text { for } k=1,2, \ldots
$$

It suffices that

$$
A^{2}=A .
$$

We find the Transpose (Aváवтро甲ף) of an nxk matrix A , say A^{\prime} or A^{\top}, by interchanging the row and columns of the matrix. Hence the order of matrix A^{\prime} is $k x n$. If for a square matrix A we have $A=A^{\prime}$ then A is called symmetric.

The Trace ('Ixvos) of a square matrix nxn matrix A, tr(A), is the sum of the elements of the main diagonal, i.e.

$$
\operatorname{tr}(A)=\sum_{i=1}^{n} a_{i i}
$$

Trace Properties

$$
\begin{gathered}
\text { 1. } \operatorname{tr}\left(I_{n}\right)=n, \\
\text { 2. } \operatorname{tr}\left(A^{\prime}\right)=\operatorname{tr}(A), \\
\text { 3. } \operatorname{tr}\left(A A^{\prime}\right)=\operatorname{tr}\left(A^{\prime} A\right)=\sum_{j=1}^{n} \sum_{i=1}^{n} a_{i j}^{2}, \\
\text { 4. } \operatorname{tr}(\lambda A)=\lambda \operatorname{tr}(A), \\
\text { 5. } \operatorname{tr}(A+B)=\operatorname{tr}(A)+\operatorname{tr}(B),
\end{gathered}
$$

6. For appropriate matrices A, B and $\mathrm{C} \operatorname{tr}(A B C)=\operatorname{tr}(C A B)=\operatorname{tr}(B C A)$

Determinant Properties

> 1. $\left|I_{n}\right|=1$, and $\left|0_{n}\right|=0$, 2. $|A|=\left|A^{\prime}\right|, \quad$ and $|\lambda A|=\lambda^{n}|A|$
3. If every element of a row (or column) of a matrix is multiplied by λ then the determinant is multiplied by λ.
4. If two rows (or columns) of a matrix are equal or proportional then the determinant of this matrix is 0 . Further, if a row (or column) of a matrix is 0 then the determinant is 0 .
5. If B comes from the permutation of two rows (or columns) of A then $|B|=-|A|$
6. If A and B square matrices of the say order, say n , then

$$
|A B|=|A\|B|=|B \| A|=|B A|
$$

7. The determinant of a matrix does not change if in any row (or column) of the matrix we add any row (or column) multiplied by any real number.
8. If A diagonal, i.e. $A=\left(\begin{array}{cccc}a_{11} & 0 & \ldots & 0 \\ 0 & a_{22} & \ddots & 0 \\ \vdots & \ddots & \ddots & 0 \\ 0 & \ldots & 0 & a_{n n}\end{array}\right)$ then $|A|=a_{11} a_{22} \ldots a_{n n}$ The
9. A square nxn matrix A is called orthogonal (op θ ovévia) iff $A^{\prime} A=A A^{\prime}=I_{n}$. Further for A orthogonal we have that $|A|= \pm 1$.

The rank ($\beta \alpha \theta \mu$ ós) of an $n x k$ matrix A, say $r(A)$, is the maximum number of rows or columns that are linearly independent. If all rows (columns) are linearly independent then the matrix has full row (column) rank. Equivalently, the rank of a matrix is the order of the biggest non-singular submatrix of A .

Rank Properties

1. For an nxk matrix $\mathrm{A} 0 \leq r(A) \leq \min (\mathrm{n}, k)$

$$
\text { 2. } r\left(I_{n}\right)=n, \quad r\left(0_{n}\right)=0
$$

3. $r(A)=r\left(A^{\prime}\right)=r\left(A A^{\prime}\right)=r\left(A^{\prime} A\right)$
4. If A and B matrices of the same order $r(A+B) \leq r(A)+r(B)$, and $r(A B) \leq \min [r(A), r(B)]$
5. If A diagonal $r(A)=n u m b e r$ of non-zero elements
6. If A idempotent, i.e. $\mathrm{A}^{2}=\mathrm{A} r(A)=\operatorname{tr}(A)$.
7. If A square nxn matrix then

$$
|A| \neq 0 \Leftrightarrow r(A)=n \text { and further }|A|=0 \Leftrightarrow r(A)<n .
$$

8. If A square nxk and B kxl with $\mathrm{r}(\mathrm{B})=\mathrm{k}$ then $r(A B)=r(A)$.

If A square non-singular matrix then there exist unique matrix B such that $B A=A B=I_{n}$. The matrix B is called the inverse of A and we write $B=A^{-1} . A^{-1}$ is evaluated as $A^{-1}=\frac{1}{|A|} \operatorname{adj} A$ where $\operatorname{adj} A=C^{\prime}$ and C is the matrix of cofactors of A.

Properties of Inverse

$$
\text { 1. } I_{n}^{-1}=I_{n}
$$

2. $\left(A^{-1}\right)^{-1}=A$ and $\left(A^{\prime}\right)^{-1}=\left(A^{-1}\right)^{\prime}$
3. $\left|A^{-1}\right|=|A|^{-1}=\frac{1}{|A|}$
4. $(A B)^{-1}=B^{-1} A^{-1}$ and $(A B C)^{-1}=C^{-1} B^{-1} A^{-1}$
5. If A orthogonal $A^{-1}=A^{\prime}$
6. If A non-singular and symmetric then A^{-1} non-singular symmetric.
7. If D diagonal non-singular with elements $d_{i j}$, then D^{-1} diagonal with elements $1 / d_{i i}$ Two square nxn matrices A and B are called Similar (Oんoו\&s) if there exist non-singular matrix M such that $B=M^{-1} A M$

Properties of Similar matrices

1. $\operatorname{tr}(A)=\operatorname{tr}(B)$
2. $|A|=|B|$
3. $r(A)=r(B)$
