Environmental and Natural Resource Economics

Ecosystems Economic Valuation

Kostas Dellis kdellis@aueb.gr

November 2022

Msc Law & Economics in Energy Markets

Ecosystems Valuation

Environmental Degradation has immense Social Costs
 →↓ Social Welfare

- Environmental Degradation has immense Social Costs
 →↓ Social Welfare
- ↓ Recreation Services, Health Issues, ↓ Labor Productivity, ↓ Biodiversity

- Environmental Degradation has immense Social Costs
 →↓ Social Welfare
- ↓ Recreation Services, Health Issues, ↓ Labor Productivity, ↓ Biodiversity
- Need to assess Environmental Benefits and Costs of Degradation

- Environmental Degradation has immense Social Costs
 →↓ Social Welfare
- ↓ Recreation Services, Health Issues, ↓ Labor Productivity, ↓ Biodiversity
- Need to assess Environmental Benefits and Costs of Degradation
- Consider *Monetary & Non-Monetary Ecosystem Services* Market-based measures **undervalue** Environmental Benefits

- Environmental Degradation has immense Social Costs
 →↓ Social Welfare
- ↓ Recreation Services, Health Issues, ↓ Labor Productivity, ↓ Biodiversity
- Need to assess Environmental Benefits and Costs of Degradation
- Consider *Monetary & Non-Monetary Ecosystem Services* Market-based measures **undervalue** Environmental Benefits
- Valuation necessary for Environmental Managers → Economic and Environmental Policies

Deloitte Net Zero Report (Link)

Definitions

Ecosystem Services

Ecosystem services are the beneficial outcomes, for the natural environment or people, that result from ecosystem functions. Some examples of ecosystem services are support of the food chain, harvesting of animals or plants, and the provision of clean water or scenic views

Definitions

Ecosystem Services

Ecosystem services are the beneficial outcomes, for the natural environment or people, that result from ecosystem functions. Some examples of ecosystem services are support of the food chain, harvesting of animals or plants, and the provision of clean water or scenic views

Ecosystem Functions

Ecosystem functions are the physical, chemical, and biological processes or attributes that contribute to the self-maintenance of an ecosystem; in other words, what the ecosystem does. Some examples of ecosystem functions are provision of wildlife habitat, carbon cycling, or the trapping of nutrients

• Ecosystem Services Valuation shape Policy

- Ecosystem Services Valuation shape Policy
 - Allocation of public spending on conservation, preservation, or restoration activities

- Ecosystem Services Valuation shape Policy
 - Allocation of public spending on conservation, preservation, or restoration activities
 - 2 Identification of *Public's Values*

- Ecosystem Services Valuation shape Policy
 - Allocation of public spending on conservation, preservation, or restoration activities
 - 2 Identification of *Public's Values*
 - **6** Comparing Benefits of different projects/programs

- Ecosystem Services Valuation shape Policy
 - Allocation of public spending on conservation, preservation, or restoration activities
 - 2 Identification of *Public's Values*
 - **Output Comparing** Benefits of different projects/programs
 - In Prioritization Conservation or Restoration projects

- Ecosystem Services Valuation shape Policy
 - Allocation of public spending on conservation, preservation, or restoration activities
 - 2 Identification of *Public's Values*
 - **Output Comparing** Benefits of different projects/programs
 - Operation Prioritization Conservation or Restoration projects
 - ^⑤ Maximize *Efficiency* of environmental benefits (per €spent)

Classification

Total Economic Value

• Total Economic Value (TEV) provides an *all-encompassing* measure of the economic value of any environmental asset. It decomposes into use and non-use (or passive use) values, and further sub-classifications can be provided

Total Economic Value

- Total Economic Value (TEV) provides an *all-encompassing measure of the economic value of any environmental asset*. It decomposes into use and non-use (or passive use) values, and further sub-classifications can be provided
- TEV does not encompass other kinds of values, such as intrinsic values which are usually defined as values residing "in" the asset and unrelated to human preferences or even human observation

Total Economic Value

- Total Economic Value (TEV) provides an *all-encompassing measure of the economic value of any environmental asset*. It decomposes into use and non-use (or passive use) values, and further sub-classifications can be provided
- TEV does not encompass other kinds of values, such as intrinsic values which are usually defined as values residing "in" the asset and unrelated to human preferences or even human observation
- Standard disaggregation
 - Use Value
 - Non-Use Value
 - Option Value

Valuation Classification

Source: Rolfe (2010)

Use Value

• Use Value (UV) includes use of ES in Production & Consumtion as well as Recreational Use (fishing, cycling, hiking etc.)

Use Value

- Use Value (UV) includes use of ES in Production & Consumtion as well as Recreational Use (fishing, cycling, hiking etc.)
- Direct Use Value (DUV)
 - Use of ES for *immediate* Consumption (e.g. Nutrition) and Production (e.g. Biomass)
 - Resources extracted from the ecosystem (e.g. food, timber) and non-consumptive use without extracting elements from ecosystem (e.g. recreation, landscape amenity)

Use Value

- Use Value (UV) includes use of ES in Production & Consumtion as well as Recreational Use (fishing, cycling, hiking etc.)
- Direct Use Value (DUV)
 - Use of ES for *immediate* Consumption (e.g. Nutrition) and Production (e.g. Biomass)
 - Resources extracted from the ecosystem (e.g. food, timber) and non-consumptive use without extracting elements from ecosystem (e.g. recreation, landscape amenity)

• Indirect Use Value (IUV)

- Functional Values associated ES with support for Human needs rather than directly using Resources
- E.g. Regulation of chemical composition of the atmosphere and ocean/ climate & water regulation/ soil retention and provision

Potential Use Value

- Option Value (OV)
 - having the option to use a resource *in the future*
 - Expressed as the Amount people are willing to pay to conserve certain Ecosystem attributes (e.g. a national park)

Potential Use Value

- Option Value (OV)
 - having the option to use a resource *in the future*
 - Expressed as the Amount people are willing to pay to conserve certain Ecosystem attributes (e.g. a national park)

• Quasi-Option Value (QOV)

- ↑ Scientific Knowledge of potential harnessing of Environmental Resources which could be of use in the future
- Value of information that can be secured by delaying a decision with uncertain outcomes
- ► E.g. Development of a piece of forested land for agricultural use → known benefits in terms of crops but *unknown* benefits of preserving the same piece of land . Delaying the decision → learn more about the benefits of preserving

• Non-Use Value (NUV) encompasses value attributed to *inherent characteristics* of Ecosystems not associated with present or future human use

- Non-Use Value (NUV) encompasses value attributed to *inherent characteristics* of Ecosystems not associated with present or future human use
- Bequest Value
 - Ecosystem resources will be passed on to future generations

- Non-Use Value (NUV) encompasses value attributed to *inherent characteristics* of Ecosystems not associated with present or future human use
- Bequest Value
 - Ecosystem resources will be passed on to future generations
- Altruistic Value
 - Availability of the ecosystem resource to others in the current generation

- Non-Use Value (NUV) encompasses value attributed to *inherent characteristics* of Ecosystems not associated with present or future human use
- Bequest Value
 - Ecosystem resources will be passed on to future generations

• Altruistic Value

• Availability of the ecosystem resource to others in the current generation

• Existence Value

- Existence of an ecosystem resource, even though an individual has no actual or planned use of it
 - E.g. Valuing existence of blue whales despite probably never seeing one

• Intrinsic value resides "in" environmental assets *independent of human preferences*

- Intrinsic value resides "in" environmental assets *independent of human preferences*
- But, by definition, TEV relates to human preferences

- Intrinsic value resides "in" environmental assets *independent of human preferences*
- But, by definition, TEV relates to human preferences
- Connecting Economic and Intrinsic value implies broader incentives

- Intrinsic value resides "in" environmental assets *independent of human preferences*
- But, by definition, TEV relates to human preferences
- Connecting Economic and Intrinsic value implies broader incentives
 - **Bequest:** Associated with future generations use
 - **Donating**: In the form of gifts \rightarrow Use Value
 - **Empathy**: Towards Nature and other Human Beings
 - Recognition of non-Human Rights

Critique on Valuation

Some Economists dismiss Existence Value as redundant (e.g. Weikard, 2000)
 Stemming directly from Use Value

Classification

Critique on Valuation

- Some Economists dismiss Existence Value as redundant (e.g. Weikard, 2000)
 Stemming directly from Use Value
- Existence Value cannot be viewed *separately* from Bequest Value

Critique on Valuation

- Some Economists dismiss Existence Value as redundant (e.g. Weikard, 2000)
 Stemming directly from Use Value
- Existence Value cannot be viewed *separately* from Bequest Value
- Existence Value is inherent in all living creatures → should not be included in Cost-Benefit Analysis (Rosenthal & Nelson, 1992)

Classification

Critique on Valuation

- Some Economists dismiss Existence Value as redundant (e.g. Weikard, 2000)
 Stemming directly from Use Value
- Existence Value cannot be viewed *separately* from Bequest Value
- Existence Value is inherent in all living creatures → should not be included in Cost-Benefit Analysis (Rosenthal & Nelson, 1992)
- **Option Value** is tied to Potential Use \rightarrow included in Use Value (Kolstad, 2000)
• Costs of Abatement measurement requires Firm and Industry specific information

- Costs of Abatement measurement requires Firm and Industry specific information
- Estimation of **Benefits** is more *challenging*

- Costs of Abatement measurement requires Firm and Industry specific information
- Estimation of **Benefits** is more *challenging*
- Economic valuation attempts to elicit public preferences for changes in the state of the environment in monetary terms

- Costs of Abatement measurement requires Firm and Industry specific information
- Estimation of **Benefits** is more *challenging*
- Economic valuation attempts to elicit public preferences for changes in the state of the environment in monetary terms

• Revealed Preferences Methods

Data individuals' preferences for a marketable good which includes environmental attributes

- Costs of Abatement measurement requires Firm and Industry specific information
- Estimation of **Benefits** is more *challenging*
- Economic valuation attempts to elicit public preferences for changes in the state of the environment in monetary terms

• Revealed Preferences Methods

Data individuals' preferences for a marketable good which includes environmental attributes

• Stated Preferences Methods

Questionnaires to evoke individuals' preferences for a given change in a natural resource or environmental attribute

Ecosystem Valuation Methods

Msc Law & Economics in Energy Markets

Appropriate Valuation Methods

Valuation method	Element of TEV captured	Ecosystem service(s) valued	Benefits of approach	Limitations of approach
Market prices	Direct and indirect use	Those that contribute to marketed products e.g. timber, fish, genetic information	Market data readily available and robust	Limited to those ecosystem services for which a market exists.
Cost-based approaches	Direct and indirect use	Depends on the existence of relevant markets for the ecosystem service in question. Examples include man-made defences being used as proxy for wetlands storm protection; expenditure on water filtration as proxy for value of water pollution damages.	Market data readily available and robust	Can potentially overestimate actual value
Production function approach	Indirect use	Environmental services that serve as input to market products e.g. effects of air or water quality on agricultural production and forestry output	Market data readily available and robust	Data-intensive and data on changes in services and the impact on production often missing
Hedonic pricing	Direct and indirect use	Ecosystem services that contribute to air quality, visual amenity, landscape, quiet i.e. attributes that can be appreciated by potential buyers	Based on market data, so relatively robust figures	Very data-intensive and limited mainly to services related to property
Travel cost	Direct and indirect use	All ecosystems services that contribute to recreational activities	Based on observed behaviour	Generally limited to recreational benefits. Difficulties arise when trips are made to multiple destinations.
Random utility	Direct and indirect use	All ecosystems services that contribute to recreational activities	Based on observed behaviour	Limited to use values
Contingent valuation	Use and non- use	All ecosystem services	Able to capture use and non-use values	Bias in responses, resource-intensive method, hypothetical nature of the market
Choice modelling	Use and non- use	All ecosystem services	Able to capture use and non-use values	Similar to contingent valuation above

Source: Based on eftec (2006) Valuing our Natural Environment

• Many impacts of projects and policies are of an *intangible nature* not traded in actual markets

- Many impacts of projects and policies are of an *intangible nature* not traded in actual markets
- **Revealed Preferences Methods**can be used to "tease out" their values embedded in observed prices

- Many impacts of projects and policies are of an *intangible nature* not traded in actual markets
- **Revealed Preferences Methods**can be used to "tease out" their values embedded in observed prices
- Different methods share using market information and/or behaviour → Economic Value of non-market

- Many impacts of projects and policies are of an *intangible nature* not traded in actual markets
- **Revealed Preferences Methods**can be used to "tease out" their values embedded in observed prices
- Different methods share using market information and/or behaviour → Economic Value of non-market
 - Travel Cost Method
 - 2 Hedonic Price Method
 - Osts of Illness Method
 - 4 Averting Behaviour & Defensive Expenditures

Method	Revealed behaviour	Conceptual framework	Types of application
Hedonic pricing	Property purchased; choice of job	Demand for differentiated products	Property value and wage determinants
Travel cost	Participation in recreation activity at chosen site	Household production; complementary goods	Recreational demand
Averting behaviour/defensive expenditure	Time costs; purchases to avoid harm	Household production; substitute goods	Health: mortality and morbidity
Costs of illness	Expenditures to treat illness	Treatment costs	Health: morbidity

Source: Boyle (2003).

• Estimates economic values for ES that directly affect market prices of some other good

- Estimates economic values for ES that directly affect market prices of some other good
- Most commonly applied to variations in housing prices that reflect the value of local environmental attributes

- Estimates economic values for ES that directly affect market prices of some other good
- Most commonly applied to variations in housing prices that reflect the value of local environmental attributes
- Estimate economic benefits or costs associated with
 - Environmental quality (air pollution, water pollution, noise)
 - Environmental amenities (aesthetic views, proximity to recreational sites)

- Estimates economic values for ES that directly affect market prices of some other good
- Most commonly applied to variations in housing prices that reflect the value of local environmental attributes
- Estimate economic benefits or costs associated with
 - Environmental quality (air pollution, water pollution, noise)
 - Environmental amenities (aesthetic views, proximity to recreational sites)
- Price of a marketed good is related to its characteristics, or the services it provides

• How does the price people are willing to pay for it change when the characteristics change? → Value of individual characteristics

- How does the price people are willing to pay for it change when the characteristics change? → Value of individual characteristics
- Focus on the Effect of Environmental Attributes

- How does the price people are willing to pay for it change when the characteristics change? → Value of individual characteristics
- Focus on the Effect of Environmental Attributes
- Use Cross-Sectional Empirical Data on Prices and Characteristics

- How does the price people are willing to pay for it change when the characteristics change? → Value of individual characteristics
- Focus on the Effect of Environmental Attributes
- Use Cross-Sectional Empirical Data on Prices and Characteristics

$$P_i = f(A_i, L_i, E_i) \tag{1}$$

- ▶ *P_i*: Price (e.g. House Price)
- ► *A_i*: Structural Characteristics (e.g. Rooms, Area)
- ► *L_i*: Location Characteristics (e.g. Public Transport, Schools)
- ► *E_i*: Environmental Characteristics (e.g. CO2 concentration)

Ecosystems Valuation

• How does the price people are willing to pay for it change when the characteristics change? → Value of individual characteristics

- How does the price people are willing to pay for it change when the characteristics change? → Value of individual characteristics
- Focus on the Effect of Environmental Attributes

- How does the price people are willing to pay for it change when the characteristics change? → Value of individual characteristics
- Focus on the Effect of Environmental Attributes
- Use Cross-Sectional Empirical Data on Prices and Characteristics

- How does the price people are willing to pay for it change when the characteristics change? → Value of individual characteristics
- Focus on the Effect of Environmental Attributes
- Use Cross-Sectional Empirical Data on Prices and Characteristics

$$P_i = f(A_i, L_i, E_i) \tag{2}$$

- ▶ *P_i*: Price (e.g. House Price)
- ► *A_i*: Structural Characteristics (e.g. Rooms, Area)
- ► *L_i*: Location Characteristics (e.g. Public Transport, Schools)
- ► *E_i*: Environmental Characteristics (e.g. CO2 concentration)

Ecosystems Valuation

• Use Multiple Regression Methods

- Use Multiple Regression Methods
- Partial Derivative with respect to Environmental Characteristic

 $rac{\partial P}{\partial E}$

- Use Multiple Regression Methods
- Partial Derivative with respect to Environmental Characteristic

$\frac{\partial \boldsymbol{P}}{\partial \boldsymbol{E}}$

• Estimate the **Demand Function** - **Willingness to Pay** for an Environmental Characteristic

- Use Multiple Regression Methods
- Partial Derivative with respect to Environmental Characteristic

 $rac{\partial P}{\partial E}$

- Estimate the **Demand Function Willingness to Pay** for an Environmental Characteristic
- Extra Amount of Money the consumer is willing to Pay for the Good for a marginal increase of an Environmental Resource or Amenity *ceteris paribus*

• Data on (median) **House Prices**, Rooms, Crimes per capita, Property Tax and Nitrous Oxide Concentration in a community (Wooldridge, 2002)

- Data on (median) **House Prices**, Rooms, Crimes per capita, Property Tax and Nitrous Oxide Concentration in a community (Wooldridge, 2002)
- Linear Regression

 $log(P)_{i} = \beta_{0} + \beta_{1} log(NOx)_{i} + \beta_{2} Rooms_{i} + \beta_{2} Crimes_{i} + \beta_{4} log(Tax)_{i} + u_{i}$ (3)

- Data on (median) **House Prices**, Rooms, Crimes per capita, Property Tax and Nitrous Oxide Concentration in a community (Wooldridge, 2002)
- Linear Regression

 $log(P)_{i} = \beta_{0} + \beta_{1} log(NOx)_{i} + \beta_{2} Rooms_{i} + \beta_{2} Crimes_{i} + \beta_{4} log(Tax)_{i} + u_{i}$ (3)

• Parameter of interest: $\hat{\beta}_1 = \frac{\partial log(Price)_i}{\partial log(NOx)_i} = \frac{\% \Delta Price_i}{\% \Delta NOx_i}$

- Data on (median) **House Prices**, Rooms, Crimes per capita, Property Tax and Nitrous Oxide Concentration in a community (Wooldridge, 2002)
- Linear Regression

 $log(P)_{i} = \beta_{0} + \beta_{1} log(NOx)_{i} + \beta_{2} Rooms_{i} + \beta_{2} Crimes_{i} + \beta_{4} log(Tax)_{i} + u_{i}$ (3)

- Parameter of interest: $\hat{\beta}_1 = \frac{\partial log(Price)_i}{\partial log(NOx)_i} = \frac{\% \Delta Price_i}{\% \Delta NOx_i}$
- Estimated Partial Elasticity: What is the $\% \uparrow P$ for a $1\% \downarrow$ in Pollution?

House Prices and NOx Concentration

Msc Law & Economics in Energy Markets

Regression Results

Average Housing Prices and NOx						
	(1)	(2)	(3)			
VARIABLES	log(Price)	log(Price)	log(Price)			
log (NOx)	-1.04***	-0.45***	-0.28***			
0	(0.078)	(0.066)	(0.077)			
Avg number of rooms		0.29^{***}	0.28***			
C		(0.017)	(0.017)			
Crimes committed per capita		-0.02***	-0.01***			
1 1		(0.002)	(0.002)			
log(Property Tax)			-0.18***			
			(0.042)			
Constant	11.71***	8.96***	9.75***			
	(0.132)	(0.173)	(0.253)			
Observations	506	506	506			
R-squared	0.264	0.598	0.612			
Estimation Method	OLS	OLS	OLS			
Standard errors in parentheses						
*** p<0.01, ** p<0.05, * p<0.1						
1	*	-				

Msc Law & Economics in Energy Markets

Results Interpretation

• Negative Effect of Pollution on House Prices

Results Interpretation

- Negative Effect of Pollution on House Prices
- Statistically Significant at 1% level
Results Interpretation

- Negative Effect of Pollution on House Prices
- Statistically Significant at 1% level
- Potential Buyers willing to pay 0.3 − 1% more for a 1% ↓ in NOx concentration *other things constant*

Results Interpretation

- Negative Effect of Pollution on House Prices
- Statistically Significant at 1% level
- Potential Buyers willing to pay 0.3 − 1% more for a 1% ↓ in NOx concentration *other things constant*
- Including control variables magnitude but still Negative & Significant

Results Interpretation

- Negative Effect of Pollution on House Prices
- Statistically Significant at 1% level
- Potential Buyers willing to pay 0.3 − 1% more for a 1% ↓ in NOx concentration *other things constant*
- Including control variables magnitude but still Negative & Significant
- People Value Ecosystem Quality \rightarrow reflected in House Prices

Critical Assessment of HPM

- **(**+): Simple & Easily applied Method
- **2** (+): Straightforward Interpretation

Critical Assessment of HPM

- **(**+): Simple & Easily applied Method
- (+): Straightforward Interpretation
- (-): Quality Data Requirements
- ❷ (−): Public misconception of ES
- (-): Linear Relationship Identification (*tricky*)

Travel Cost Method

• The Travel Cost Method(TCM) is used to estimate economic use values for Ecosystems or sites that used for recreation

Travel Cost Method

- The Travel Cost Method(TCM) is used to estimate economic use values for Ecosystems or sites that used for recreation
- **Premise**: Travel Cost *reflects Use Value* of Recreational Site (e.g. lake for fishing, mountain for hiking etc.)

Travel Cost Method

- The Travel Cost Method(TCM) is used to estimate economic use values for Ecosystems or sites that used for recreation
- **Premise**: Travel Cost *reflects Use Value* of Recreational Site (e.g. lake for fishing, mountain for hiking etc.)
- Estimate Economic Benefits or Costs resulting from:
 - Changes in access costs for a recreational site
 - Elimination of an existing recreational site
 - ► + of a new recreational site
 - Changes in environmental quality at a recreational site

Travel Cost Method (cont.)

• Total Travel Cost (K) for person i visiting site j is

$$K_{ij} = f(D_{ij}, T_{ij}, E_{ij})$$
(4)

- ► *D*_{*ij*}: Distance (fuel, tolls)
- ▶ *T_{ij}*: Time
- ► *E*_{*ij*}: Entry Ticket

Travel Cost Method (cont.)

• Total Travel Cost (K) for person i visiting site j is

$$K_{ij} = f(D_{ij}, T_{ij}, E_{ij})$$
(4)

- ► *D*_{*ij*}: Distance (fuel, tolls)
- T_{ij} : Time
- ▶ *E_{ij}*: Entry Ticket
- Complement with **Demographic Variables** (age, education, income, domicile) and **Travel-specific Variables** (reason to travel, alternative options)

Travel Cost Method (cont.)

• Total Travel Cost (K) for person i visiting site j is

$$K_{ij} = f(D_{ij}, T_{ij}, E_{ij})$$
(4)

- ► *D*_{*ij*}: Distance (fuel, tolls)
- ► *T*_{*ij*}: Time
- ▶ *E_{ij}*: Entry Ticket
- Complement with **Demographic Variables** (age, education, income, domicile) and **Travel-specific Variables** (reason to travel, alternative options)
- Integrate Information with Number of Travels (N)
 → Estimate Demand Curve for Environmental Good (site)

Demand Curve with TCM

Msc Law & Economics in Energy Markets

TCM Options

O Zonal Travel Cost Approach

TCM Options

Sonal Travel Cost Approach

- Simple Method based on Secondary data for visitors' travels from different Zones
- ► Travel Cost ↑ with Distance (Zones)
- ► Estimate Demand Curve → Consumer Surplus
- Cannot value a change in quality for a site

TCM Options

Sonal Travel Cost Approach

- Simple Method based on Secondary data for visitors' travels from different Zones
- ► Travel Cost ↑ with Distance (Zones)
- ► Estimate Demand Curve → Consumer Surplus
- Cannot value a change in quality for a site

Individual Travel Cost Approach

- Similar to the zonal approach, but uses survey data from visitors ≠ data from each zone
- ↑ Data Requirements, ↑ Precise Results

Critical Assessment of TCM

- (+): Easy to Implement and to Interpret
- (+): Based on actual behavior ≠ what people *say they would do* in a hypothetical situation

Critical Assessment of TCM

- (+): Easy to Implement and to Interpret
- (+): Based on actual behavior ≠ what people *say they would do* in a hypothetical situation
- (-): Assuming single purpose trip (visit the site) *overestimates* value if > 1 purpose
- **2** (–): Availability of Substitute Sites distorts results
- (-): Those who value certain sites may choose to live nearby!
 (*Endogeneity*)
- (-): Those who live nearby certain sites tend to value them more! (*Endogeneity vol. 2*)

Msc Law & Economics in Energy Markets

• Tourkolias *et al.* (2015) apply the Zonal TCM to estimate value attributed to the **Poseidon temple in Sounio**, **Greece**

- Tourkolias *et al.* (2015) apply the Zonal TCM to estimate value attributed to the **Poseidon temple in Sounio**, **Greece**
- 6 Travel Zones \rightarrow Visits per 1000 inhabitants

- Tourkolias *et al.* (2015) apply the Zonal TCM to estimate value attributed to the **Poseidon temple in Sounio**, **Greece**
- 6 Travel Zones \rightarrow Visits per 1000 inhabitants
- Travel Costs under *different scenarios*

- Tourkolias *et al.* (2015) apply the Zonal TCM to estimate value attributed to the **Poseidon temple in Sounio**, **Greece**
- 6 Travel Zones \rightarrow Visits per 1000 inhabitants
- Travel Costs under *different scenarios*
- Linear Regression (OLS) Baseline Model

*VisitsperPopulation*_{*i*} = $\beta_0 + \beta_1 TravelCost_i + u_i$

- Tourkolias *et al.* (2015) apply the Zonal TCM to estimate value attributed to the **Poseidon temple in Sounio**, **Greece**
- 6 Travel Zones \rightarrow Visits per 1000 inhabitants
- Travel Costs under *different scenarios*
- Linear Regression (OLS) Baseline Model

*VisitsperPopulation*_{*i*} = $\beta_0 + \beta_1 TravelCost_i + u_i$

• Consumer Surplus 2.3 − 19.3 €mil/year

- Tourkolias *et al.* (2015) apply the Zonal TCM to estimate value attributed to the **Poseidon temple in Sounio**, **Greece**
- 6 Travel Zones \rightarrow Visits per 1000 inhabitants
- Travel Costs under *different scenarios*
- Linear Regression (OLS) Baseline Model

*VisitsperPopulation*_{*i*} = $\beta_0 + \beta_1 TravelCost_i + u_i$

- Consumer Surplus 2.3 19.3 €mil/year
- Total Value = CS + Total Expenditures = 17 60 €mil./year

Travel Zones

Msc Law & Economics in Energy Markets

Ecosystems Valuation

Visitation Rates

Zones	Visitors	Population	Visitation rate (VR)
1	10,000	63,350	157,853
2	5000	316,913	15,777
3	48,000	3,381,547	14,195
4	5000	7,202,210	694
5	50,000	629,190,543	79
6	32,000	6,228,032,545	5

Travel Costs per Visitor

Zones	Scenario 1	Scenario 2	Scenario 3
1	4.8	4.1	8.5
2	7.1	6.4	9.6
3	12.1	9.0	18.2
4	43.1	31.9	49.8
5	141.2	418.8	154.1
6	213.6	461.7	228.6

Regression Results

Model	Scenario	Regression function	Adj. R ²	Predicted number of visitors
Semi-log 2 - TC model	1	$\ln(\text{VR}) = 10.2^* - 0.04 (\text{travel cost})^*$	87.2%	168,348
	2	$\ln(\text{VR}) = 9.7^* - 0.02 (\text{travel cost})^{**}$	75.0%	219,830
	3	$ln(VR) = 10.4^{\circ} - 0.04 (travel \ cost)^{\circ}$	87.4%	163,600
Semi-log 2 - full model	1	$ln(VR) = -25.5^{**} - 0.04(travel cost)" + 15.7(freelancer)^{**} + 3.7(visit)" ***$	99.2%	154,923
	2	$ln(VR) = 14.8^{**} - 0.02 (travel cost)^* \pm 5.5 (gender)^* - 2.7 (education)^{**}$	99. 4%	174,561
	3	$\ln(VR) = -26.4^{**} - 0.05 (Travel Cost)^* + 17.8 (Freelancer)^{**} + 0.6 (Income)^{***}$	99.3%	167,646
Double-log -	1	$\ln(VR) = 15.2^* - 2.4 \ln(\text{travel cost})^*$	95.4%	158,849
TC model	2	$\ln(VR) = 13.5^* - 1.8 \ln(travel cost)^*$	90.9%	177,592
	3	$ln(VR) = 16.9^{\circ} - 2.7 \cdot ln(travel \ cost)^{\circ}$	93.8%	153,265
Double-log -	1	$\ln(\text{VR}) = -15.7^{**} - 2.6 \ln(\text{travel cost})^* + 8.6 \ln(\text{age})^*$	99.1%	205,503
full model	2	ln(VR) = 24.0** – 1.8·ln(travel cost)* – 15.6·ln(visitation reason)***	98.0%	238,495
	3	ln(VR) = -21.2** - 3.1·ln(travel cost)* + 3.0·ln(attractiveness)**** + 9.7·ln(age)*	99.9%	178,722

Demand Curves

• Stated Preference Methods use carefully structured questionnaires to elicit individuals' preferences for change in a natural resource or environmental attribute

- Stated Preference Methods use carefully structured questionnaires to elicit individuals' preferences for change in a natural resource or environmental attribute
- Contingent Valuation Method (CVM)

- Stated Preference Methods use carefully structured questionnaires to elicit individuals' preferences for change in a natural resource or environmental attribute
- Contingent Valuation Method (CVM)
- Choice Modeling (CM)

- Stated Preference Methods use carefully structured questionnaires to elicit individuals' preferences for change in a natural resource or environmental attribute
- Contingent Valuation Method (CVM)
- Choice Modeling (CM)
- Apply to estimating *non-value Use* as well

- Stated Preference Methods use carefully structured questionnaires to elicit individuals' preferences for change in a natural resource or environmental attribute
- Contingent Valuation Method (CVM)
- Choice Modeling (CM)
- Apply to estimating *non-value Use* as well
- Create a Hypothetical (*Contingent*) Market for ES

- Stated Preference Methods use carefully structured questionnaires to elicit individuals' preferences for change in a natural resource or environmental attribute
- Contingent Valuation Method (CVM)
- Choice Modeling (CM)
- Apply to estimating *non-value Use* as well
- Create a Hypothetical (*Contingent*) Market for ES
- Based on **Random Utility Theory** Utility from alternative choices: *observed* + *random component*

Contingent Valuation Method (CVM)

• CVM involves **directly asking people** how much they would be willing to pay for specific environmental services

Contingent Valuation Method (CVM)

- CVM involves **directly asking people** how much they would be willing to pay for specific environmental services
 - ▶ Willingness to Pay for preservation/improvement/creation of ES
 - ► Willingness to Accept Compensation for loss/degradation of ES
Contingent Valuation Method (CVM)

- CVM involves **directly asking people** how much they would be willing to pay for specific environmental services
 - ▶ Willingness to Pay for preservation/improvement/creation of ES
 - ► Willingness to Accept Compensation for loss/degradation of ES
- Most common and most *controversial* evaluation method

Contingent Valuation Method (CVM)

- CVM involves **directly asking people** how much they would be willing to pay for specific environmental services
 - ▶ Willingness to Pay for preservation/improvement/creation of ES
 - ▶ Willingness to Accept Compensation for loss/degradation of ES
- Most common and most *controversial* evaluation method
- No actual market to estimate Use and Non-Use Value

Contingent Valuation Method (CVM)

- CVM involves **directly asking people** how much they would be willing to pay for specific environmental services
 - ▶ Willingness to Pay for preservation/improvement/creation of ES
 - ► Willingness to Accept Compensation for loss/degradation of ES
- Most common and most *controversial* evaluation method
- No actual market to estimate Use and Non-Use Value
- Mitchel & Carson (1989): The principal challenge facing the designer of a CV study is to make the scenario sufficiently understandable, plausible and meaningful to respondents so that they can and will give valid and reliable values despite their lack of experience with one or more of the scenario dimensions

Elicitation Formats

Format	Description
Open ended	What is the maximum amount that you would be prepared to pay every year, through a tax surcharge, to improve the landscape around Stonehenge in the ways I have just described?
Bidding game	Would you pay GBP 5 every year, through a tax surcharge, to improve the landscape around Stonehenge in the ways I have just described? If Yes: Interviewer keeps increasing the bid until the respondent answers No. Then maximum WTP is elicited. If No: Interviewer keeps decreasing the bid until respondent answers Yes. Then maximum WTP is elicited.
Payment card	Which of the amounts listed below best describes your maximum willingness to pay every year, through a tax surcharge, to improve the landscape around Stonehenge in the ways I have just described? 0 GBP 0.5 GBP 1. GBP 2 GBP 3 GBP 4 GBP 4 GBP 4 GBP 10 GBP 14.5 GBP 14.5 GBP 15 GBP 20 GBP 20 GBP 75 GBP 150 GBP 75 GBP 150 GBP 75 GBP 150 GBP 150 GBP 150 GBP 150 GBP 150 GBP 150 GBP 200
Single-bounded	Would you pay GBP 5 every year, through a tax surcharge, to improve the landscape around Stonehenge in the ways I have just described? (the price is varied randomly across the sample)
Double-bounded dichotomous choice	Vocid you pay GBP 5 every year, through a tax surcharge, to improve the landscape around Stonehenge in the ways I have just described? (the price is varied randomly across the sample) If Yes: And would you pay GBP 10? If No: And would you pay GBP 17?

Critical Assessment of CVM

- (+): Based on what people say they would do ≠ people are observed to do
- **2** (+): Very **flexible** \rightarrow can be used to estimate the economic value of virtually anything

Critical Assessment of CVM

- (+): Based on what people say they would do ≠ people are observed to do
- ② (+): Very flexible → can be used to estimate the economic value of virtually anything
- (−):Based on what people say they would do ≠ people are observed to do
- (-): Assumes people *understand the good in question* and will reveal their preferences as they would in a real market
- (-): Respondents may express a positive WTP to feel good about giving for a social good (*warm glow effect*)
- (-): Respondents may express zero WTP the good because they are protesting some aspect of the scenario (e.g. paying taxes)

Msc Law & Economics in Energy Markets

Ecosystems Valuation

• Ramajo-Hernandez and del Saz-Salazar (2012) employ CVM to estimate WTP regarding non-market benefits of water quality improvements in the Guadiana river basin in Spain

- Ramajo-Hernandez and del Saz-Salazar (2012) employ CVM to estimate WTP regarding non-market benefits of water quality improvements in the Guadiana river basin in Spain
- Juxtaposing Bad vs Good Ecological Status

- Ramajo-Hernandez and del Saz-Salazar (2012) employ CVM to estimate WTP regarding non-market benefits of water quality improvements in the Guadiana river basin in Spain
- Juxtaposing Bad vs Good Ecological Status
- 258 out of 505 respondents declare Zero WTP

- Ramajo-Hernandez and del Saz-Salazar (2012) employ CVM to estimate WTP regarding non-market benefits of water quality improvements in the Guadiana river basin in Spain
- Juxtaposing Bad vs Good Ecological Status
- 258 out of 505 respondents declare Zero WTP
- Average WTP for water status ↑ (under the European Water Directive) → 33 €per family per year

- Ramajo-Hernandez and del Saz-Salazar (2012) employ CVM to estimate WTP regarding non-market benefits of water quality improvements in the Guadiana river basin in Spain
- Juxtaposing Bad vs Good Ecological Status
- 258 out of 505 respondents declare Zero WTP
- Average WTP for water status ↑ (under the European Water Directive) → 33 €per family per year
- Multiplied by number of families in the region
 → 39 million €per year

Ecological Status Guidana River Basin

Bad ecological status

Good ecological status

• Very Enlightening Podcast on Freakonomics Radio - Link

- Very Enlightening Podcast on Freakonomics Radio Link
- Amount of carbon stored in the Amazon is over 70 times greater than the annual U.S. output of GHG

- Very Enlightening Podcast on Freakonomics Radio Link
- Amount of carbon stored in the Amazon is over 70 times greater than the annual U.S. output of GHG
- Almost one-fifth of the Brazilian Amazon deforested between 1970-2005 exacerbated by the Bolsonaro regime after 2018

- Very Enlightening Podcast on Freakonomics Radio Link
- Amount of carbon stored in the Amazon is over 70 times greater than the annual U.S. output of GHG
- Almost one-fifth of the Brazilian Amazon deforested between 1970-2005 exacerbated by the Bolsonaro regime after 2018
- Ending deforestation in the Amazon benefits industries and consumers throughout the world but *who bares the cost*?

- Very Enlightening Podcast on Freakonomics Radio Link
- Amount of carbon stored in the Amazon is over 70 times greater than the annual U.S. output of GHG
- Almost one-fifth of the Brazilian Amazon deforested between 1970-2005 exacerbated by the Bolsonaro regime after 2018
- Ending deforestation in the Amazon benefits industries and consumers throughout the world but *who bares the cost*?
- Brazil's Minister of the Environment "The opportunity cost must be paid by someone, and ... someone means those who have the funds or the necessary sources of finance for that." Estimated the cost: \$12 billion a year

• The **social cost of carbon SCC** is the cost of the damages created by one extra ton of CO2

- The **social cost of carbon SCC** is the cost of the damages created by one extra ton of CO2
- Use IAMs to calculate how emissions affect economic outcomes,
 → agricultural productivity, damages caused by sea level rise, ↓
 human health and labor productivity

- The **social cost of carbon SCC** is the cost of the damages created by one extra ton of CO2
- Use IAMs to calculate how emissions affect economic outcomes,
 → agricultural productivity, damages caused by sea level rise, ↓
 human health and labor productivity
- Scientists at the Environmental Defence Fund (Link) estimate the social cost of CO2 at 50 \$ per tonne

- The **social cost of carbon SCC** is the cost of the damages created by one extra ton of CO2
- Use IAMs to calculate how emissions affect economic outcomes,
 → agricultural productivity, damages caused by sea level rise, ↓
 human health and labor productivity
- Scientists at the Environmental Defence Fund (Link) estimate the social cost of CO2 at 50 \$ per tonne
- Average Greek emits 5.6 tonnes of CO2 in 2019
 → 280 \$ per year

GHG Emissions per Inhabitant

GHG Emissions per capita 2019

Msc Law & Economics in Energy Markets

• Integrated Assessment Models (IAMs) are mathematical computer models activity that utilize tools from broad scientific fields to estimate GHG emissions and their resultant effect on climate and human welfare

- Integrated Assessment Models (IAMs) are mathematical computer models activity that utilize tools from broad scientific fields to estimate GHG emissions and their resultant effect on climate and human welfare
- Broad set of Information \rightarrow Researchers & Decision makers \rightarrow Policies

- Integrated Assessment Models (IAMs) are mathematical computer models activity that utilize tools from broad scientific fields to estimate GHG emissions and their resultant effect on climate and human welfare
- Broad set of Information \rightarrow Researchers & Decision makers \rightarrow Policies
- IAMs commingle three aspects of scientific thinking
 - Energy system/Technological progress models
 - **Economic System Models**
 - Climate Science Models

- Integrated Assessment Models (IAMs) are mathematical computer models activity that utilize tools from broad scientific fields to estimate GHG emissions and their resultant effect on climate and human welfare
- Broad set of Information \rightarrow Researchers & Decision makers \rightarrow **Policies**
- IAMs commingle three aspects of scientific thinking
 - Energy system/Technological progress models
 - **Economic System Models**
 - Climate Science Models
- Over twenty climate change IAMs summarized here

• The En-ROADS Climate Solutions Simulator is a fast, powerful climate simulation tool for understanding how we can achieve our climate goals through changes in energy, land use, consumption, agriculture, and other policies.

- The En-ROADS Climate Solutions Simulator is a fast, powerful climate simulation tool for understanding how we can achieve our climate goals through changes in energy, land use, consumption, agriculture, and other policies.
- Developed by: Climate Interactive, Ventana Systems, UML Climate Change Initiative, and MIT Sloan

- The En-ROADS Climate Solutions Simulator is a fast, powerful climate simulation tool for understanding how we can achieve our climate goals through changes in energy, land use, consumption, agriculture, and other policies.
- Developed by: Climate Interactive, Ventana Systems, UML Climate Change Initiative, and MIT Sloan
- The tool provides a synthesis on *Climate Solutions* based on the changes in Technological, Policy, Social and Economic variables

- The En-ROADS Climate Solutions Simulator is a fast, powerful climate simulation tool for understanding how we can achieve our climate goals through changes in energy, land use, consumption, agriculture, and other policies.
- Developed by: Climate Interactive, Ventana Systems, UML Climate Change Initiative, and MIT Sloan
- The tool provides a synthesis on *Climate Solutions* based on the changes in Technological, Policy, Social and Economic variables
- The En-ROADS Baseline scenario was created as a reasonable starting point of minimal climate action to test various changes in policies and assumptions to see the impacts on global climate

Real World ES Valuation IAMs

ENROADS Interface

Msc Law & Economics in Energy Markets

Ecosystems Valuation

IAMs

Carbon Price Simulation

• Setting a Global Carbon Price at 100 \$ per tn. Assessed as Very High

Carbon Price Simulation

- Setting a Global Carbon Price at 100 \$ per tn. Assessed as Very High
- Impact

Carbon Price Simulation

Setting a Global Carbon Price at 100 \$ per tn. • Assessed as Very High

Impact

- Pronounced

 Coal Primary Energy Demand
- Significant \downarrow in Net CO2 Emissions
- Sharp in \downarrow Carbon Intensity of final Energy starting in the 2020s
- Moderate \downarrow Population Exposed to Sea Level Rise
- Marked \downarrow Air Pollution from Energy

Carbon Price Simulation

Msc Law & Economics in Energy Markets

Ecosystems Valuation

IAMs

Net GHG Emissions

IAMs

Carbon Energy Intensity

IAMs

Renewables Primary Energy Demand

Population Exposed to Sea Level Rise

Coal Primary Energy Demand

Air Pollution from Energy

