Environmental and Natural Resource Economics

Externalities & Economic Policy

Kostas Dellis kdellis@aueb.gr

October 2022

Msc Law & Economics in Energy Markets

Externalities & Economic Policy

October 2022

1/71

• Industrial era has severely contributed to *Climate Change* through GHG Emissions (Graph) and Wetlands Pollution

- Industrial era has severely contributed to *Climate Change* through GHG Emissions (Graph) and Wetlands Pollution
- Associated with the Inefficiency of Market Mechanisms in the presence of Negative Externalities

- Industrial era has severely contributed to *Climate Change* through GHG Emissions (Graph) and Wetlands Pollution
- Associated with the Inefficiency of Market Mechanisms in the presence of Negative Externalities
- What are the Economics of Externalities?

- Industrial era has severely contributed to *Climate Change* through GHG Emissions (Graph) and Wetlands Pollution
- Associated with the Inefficiency of Market Mechanisms in the presence of Negative Externalities
- What are the Economics of Externalities?
- What is the role of *Public Policy*?

- Industrial era has severely contributed to *Climate Change* through GHG Emissions (Graph) and Wetlands Pollution
- Associated with the Inefficiency of Market Mechanisms in the presence of Negative Externalities
- What are the Economics of Externalities?
- What is the role of *Public Policy*?
- Importance of *Trade-offs & (dis)Incentives*

Bar Chart

CO2 Emissions

Source: Global Carbon Project

OurWorldInData.org/co2-and-other-greenhouse-gas-emissions/ • CC BY

Msc Law & Economics in Energy Markets

• The Market Equilibrium produces a *Pareto Efficient* outcome in Perfectly Competitive Markets (1st Welfare Economics Theorem)

- The Market Equilibrium produces a *Pareto Efficient* outcome in Perfectly Competitive Markets (1st Welfare Economics Theorem)
- This is **not** the case where there is Market Failure

- The Market Equilibrium produces a *Pareto Efficient* outcome in Perfectly Competitive Markets (1st Welfare Economics Theorem)
- This is **not** the case where there is Market Failure
 - Monopoly Power

- The Market Equilibrium produces a *Pareto Efficient* outcome in Perfectly Competitive Markets (1st Welfare Economics Theorem)
- This is **not** the case where there is Market Failure
 - Monopoly Power
 - 2 Externalities

- The Market Equilibrium produces a *Pareto Efficient* outcome in Perfectly Competitive Markets (1st Welfare Economics Theorem)
- This is **not** the case where there is Market Failure
 - Monopoly Power
 - 2 Externalities
 - Information Asymmetries

- The Market Equilibrium produces a *Pareto Efficient* outcome in Perfectly Competitive Markets (1st Welfare Economics Theorem)
- This is **not** the case where there is Market Failure
 - Monopoly Power
 - 2 Externalities
 - Information Asymmetries
 - Public Goods

- The Market Equilibrium produces a *Pareto Efficient* outcome in Perfectly Competitive Markets (1st Welfare Economics Theorem)
- This is **not** the case where there is Market Failure
 - Monopoly Power
 - 2 Externalities
 - Information Asymmetries
 - Public Goods
 - Market Absence

- The Market Equilibrium produces a *Pareto Efficient* outcome in Perfectly Competitive Markets (1st Welfare Economics Theorem)
- This is **not** the case where there is Market Failure
 - Monopoly Power
 - 2 Externalities
 - **Information Asymmetries**
 - Public Goods
 - Market Absence
- Inefficient Outcome \rightarrow (*the right*) Government Intervention

• Market Failure is the rule, not the exception

- Market Failure is the *rule*, not the exception
- Government Intervention warranted to achieve Pareto Efficiency

- Market Failure is the *rule*, not the exception
- Government Intervention warranted to achieve Pareto Efficiency
- Caveats
 - ▶ Information Asymmetries Government is not Omniscient

- Market Failure is the *rule*, *not the exception*
- Government Intervention warranted to achieve Pareto Efficiency
- Caveats
 - ▶ Information Asymmetries Government is not *Omniscient*
 - Government is not *Omnipotent* \rightarrow Second Best Solutions

- Market Failure is the *rule*, *not the exception*
- Government Intervention warranted to achieve Pareto Efficiency
- Caveats
 - ▶ Information Asymmetries Government is not *Omniscient*
 - ► Government is not *Omnipotent* → Second Best Solutions
 - Regulatory Capture & Rent Seeking

- Market Failure is the *rule*, *not the exception*
- Government Intervention warranted to achieve Pareto Efficiency
- Caveats
 - ▶ Information Asymmetries Government is not Omniscient
 - ► Government is not *Omnipotent* → Second Best Solutions
 - Regulatory Capture & Rent Seeking
 - Need for compliance with Macroeconomic Stability (e.g. Fiscal Adjustment)

- Market Failure is the *rule*, *not the exception*
- Government Intervention warranted to achieve Pareto Efficiency
- Caveats
 - ▶ Information Asymmetries Government is not Omniscient
 - ► Government is not *Omnipotent* → Second Best Solutions
 - Regulatory Capture & Rent Seeking
 - Need for compliance with Macroeconomic Stability (e.g. Fiscal Adjustment)
 - Distortion of Economic Freedom

• Million \$ Question: A sound Economic Policy is ...

- Million \$ Question: A sound Economic Policy is ...
- Common Ground: Wellbeing (Aristotelian eudaimonia)

- Million \$ Question: A sound Economic Policy is ...
- Common Ground: Wellbeing (Aristotelian eudaimonia)
- How is it measured? → Economic Variables (*means*)

- Million \$ Question: A sound Economic Policy is ...
- Common Ground: Wellbeing (Aristotelian eudaimonia)
- How is it measured? → Economic Variables (*means*)

- Million \$ Question: A sound Economic Policy is ...
- Common Ground: Wellbeing (Aristotelian eudaimonia)
- How is it measured? → Economic Variables (*means*)
- Each Economic Policy (& System) is evaluated in terms of
 - Efficiency
 - Justice
 - Freedom

Definitions

Externalities

Definition

Externalities arise whenever the actions of one economic agent directly affect another economic agent outside the market mechanism

Externalities

Definition

Externalities arise whenever the actions of one economic agent directly affect another economic agent outside the market mechanism

• Directly means that the effect is not transmitted through prices - *Non-Pecuniary*

Externalities

Definition

Externalities arise whenever the actions of one economic agent directly affect another economic agent outside the market mechanism

- Directly means that the effect is not transmitted through prices *Non-Pecuniary*
- Example: a steel plant that pollutes a river used for recreation

Externalities

Definition

Externalities arise whenever the actions of one economic agent directly affect another economic agent outside the market mechanism

- Directly means that the effect is not transmitted through prices *Non-Pecuniary*
- Example: a steel plant that pollutes a river used for recreation
- Externalities are one important case of *market failure*

Externalities Classification

Externalities Fundamentals

• Externalities create a *Wedge* between Private and Social Outcomes (Benefits & Costs)

Externalities Fundamentals

- Externalities create a *Wedge* between Private and Social Outcomes (Benefits & Costs)
- Production Externalities: Private vs Social Cost
 - ▶ Positive Externalities: *MSC* < *MPC*
 - ► Negative Externalities *MSC* > *MPC*
- Consumption Externalities: Private vs Social Benefit
 - Positive Externalities: MSB > MPB
 - ► Negative Externalities *MSB* < *MPB*

Pollution as an Externality

• Industrial Production causes Environmental Degradation

Pollution as an Externality

- Industrial Production causes Environmental Degradation
- Polluting Units (factories, oil refineries etc.) impose *Additional Cost (Marginal Damage MD)* through Pollution not reflected on Price Mechanism
Pollution as an Externality

- Industrial Production causes Environmental Degradation
- Polluting Units (factories, oil refineries etc.) impose *Additional Cost (Marginal Damage MD)* through Pollution not reflected on Price Mechanism
- This Cost does **not entail** advesre impate on recreational and cultural Ecosystem Services

Pollution as an Externality

- Industrial Production causes *Environmental Degradation*
- Polluting Units (factories, oil refineries etc.) impose *Additional Cost (Marginal Damage MD)* through Pollution not reflected on Price Mechanism
- This Cost does **not entail** advesre impate on recreational and cultural Ecosystem Services
- E.g. Chemical Plant dumping waste in the sea \rightarrow hinders Jet-ski Rental Business

Pollution as an Externality

- Industrial Production causes Environmental Degradation
- Polluting Units (factories, oil refineries etc.) impose *Additional Cost (Marginal Damage MD)* through Pollution not reflected on Price Mechanism
- This Cost does **not entail** advesre impate on recreational and cultural Ecosystem Services
- E.g. Chemical Plant dumping waste in the sea \rightarrow hinders Jet-ski Rental Business

$$MSC = MPC + MD$$

Market Equilibrium

Consumer Surplus

Producer Surplus

Welfare Analysis

Total Welfare

Negative Production Externality

Market (Private) Equilibrium

Socially Optimal Equilibrium

Maximum Welfare

Msc Law & Economics in Energy Markets

Externalities & Economic Policy

Society's View

Msc Law & Economics in Energy Markets

Externalities & Economic Policy

Welfare Loss

Government Intervention

• In the presence of *Externalities* there is room for *Government Intervention - Public Policy*

Government Intervention

- In the presence of *Externalities* there is room for *Government Intervention - Public Policy*
- Economic Policies trigger Incentives and Disincentives for the Private Sector (Firms & Consumers)

Government Intervention

- In the presence of *Externalities* there is room for *Government Intervention - Public Policy*
- Economic Policies trigger Incentives and Disincentives for the Private Sector (Firms & Consumers)

Taxes

Subsidies

- Production Permits (e.g. Carbon Permits)
- Definition of Property Rights
- Market Regulations and Regulatory Bodies

• Under a *Negative Externality* (e.g. Pollution) the Market Equilibrium yields a level of Output > Social Optimum

- Under a *Negative Externality* (e.g. Pollution) the Market Equilibrium yields a level of Output > Social Optimum
- A Tax per Unit of Output t is a disincentives on production by increasing the Marginal Private Cost

- Under a *Negative Externality* (e.g. Pollution) the Market Equilibrium yields a level of Output > Social Optimum
- A Tax per Unit of Output t is a disincentives on production by increasing the Marginal Private Cost
- Profit Maximization requires MB = MPC + t

- Under a *Negative Externality* (e.g. Pollution) the Market Equilibrium yields a level of Output > Social Optimum
- A Tax per Unit of Output t is a disincentives on production by increasing the Marginal Private Cost
- Profit Maximization requires MB = MPC + t
- The *correct* tax rate is equal to the **Marginal Damage** (MSC-MPC) at the socially optimal output ensures Profit Maximization at the Pareto Optimal Equilibrium

$$t = MD(Q*)$$

Msc Law & Economics in Energy Markets

Msc Law & Economics in Energy Markets

Externalities & Economic Policy

Msc Law & Economics in Energy Markets

Msc Law & Economics in Energy Markets

Externalities & Economic Policy

Msc Law & Economics in Energy Markets

Externalities & Economic Policy

Coase's Theorem

• According to R. Coase (1973) the issues associated with Externalities actually reflect the issue of Market Absence

- According to R. Coase (1973) the issues associated with Externalities actually reflect the issue of Market Absence
- A Steel Plant polluting a lake adversely affects local Fishermen because of the lack of *Property Rights* for the lake

- According to R. Coase (1973) the issues associated with Externalities actually reflect the issue of Market Absence
- A Steel Plant polluting a lake adversely affects local Fishermen because of the lack of *Property Rights* for the lake
- Defining Property Rights leads to the Socially Optimal Output through the Market *without* Government Intervention pause
 - **Irrespective** of the Party they are awarded to!

- According to R. Coase (1973) the issues associated with Externalities actually reflect the issue of Market Absence
- A Steel Plant polluting a lake adversely affects local Fishermen because of the lack of *Property Rights* for the lake
- Defining Property Rights leads to the Socially Optimal Output through the Market without Government Intervention pause
 - Irrespective of the Party they are awarded to!
- Conditional on **Zero Transaction Costs** (*plausible?*)

Coase's Theorem Functioning

Awarding Property Rights to the Fishermen

• Production initially at Q = 0 with No Pollution

- Production initially at Q = 0 with No Pollution
- Steel Plant willing to pay x < MB MPC to produce

- Production initially at Q = 0 with No Pollution
- Steel Plant willing to pay x < MB MPC to produce
- Fishermen accept x > MSC MPC to allow production

- Production initially at Q = 0 with No Pollution
- Steel Plant willing to pay x < MB MPC to produce
- Fishermen accept x > MSC MPC to allow production
- ▶ Production continues up to $MB - MPC = MSC - MPC \rightarrow MB = MSC$

- Production initially at Q = 0 with No Pollution
- Steel Plant willing to pay x < MB MPC to produce
- Fishermen accept x > MSC MPC to allow production
- ▶ Production continues up to $MB - MPC = MSC - MPC \rightarrow MB = MSC$
- Awarding Property Rights to the Steel Plant

- Production initially at Q = 0 with No Pollution
- Steel Plant willing to pay x < MB MPC to produce
- Fishermen accept x > MSC MPC to allow production
- ▶ Production continues up to $MB - MPC = MSC - MPC \rightarrow MB = MSC$
- Awarding Property Rights to the Steel Plant
 - ▶ Production initially at Q = Q' at the Private Optimum
Coase's Theorem Functioning

Awarding Property Rights to the Fishermen

- Production initially at Q = 0 with No Pollution
- Steel Plant willing to pay x < MB MPC to produce
- Fishermen accept x > MSC MPC to allow production
- ▶ Production continues up to $MB - MPC = MSC - MPC \rightarrow MB = MSC$
- Awarding Property Rights to the Steel Plant
 - ▶ Production initially at Q = Q' at the Private Optimum
 - ▶ Fishermen willing to pay *x* < *MSC* − *MPC* to avert production

Coase's Theorem Functioning

Awarding Property Rights to the Fishermen

- Production initially at Q = 0 with No Pollution
- Steel Plant willing to pay x < MB MPC to produce
- Fishermen accept x > MSC MPC to allow production
- ▶ Production continues up to $MB - MPC = MSC - MPC \rightarrow MB = MSC$
- Awarding Property Rights to the Steel Plant
 - ▶ Production initially at Q = Q' at the Private Optimum
 - Fishermen willing to pay x < MSC MPC to avert production
 - Steel Plant accepts x > MB MPC to sacrifice production

Coase's Theorem Functioning

Awarding Property Rights to the Fishermen

- Production initially at Q = 0 with No Pollution
- Steel Plant willing to pay x < MB MPC to produce
- Fishermen accept x > MSC MPC to allow production
- ▶ Production continues up to $MB - MPC = MSC - MPC \rightarrow MB = MSC$
- Awarding Property Rights to the Steel Plant
 - ▶ Production initially at Q = Q' at the Private Optimum
 - ▶ Fishermen willing to pay *x* < *MSC* − *MPC* to avert production
 - Steel Plant accepts x > MB MPC to sacrifice production
 - ▶ Production continues up to $MB - MPC = MSC - MPC \rightarrow MB = MSC$

Property Rights awarded to the "Victim"

30/71

Firm View

Victim View

Q1 is Produced

Property Rights awarded to the Polluter

Msc Law & Economics in Energy Markets

Externalities & Economic Policy

Coase's Theorem

Firm View

Victim View

Q2 is Averted

1 The Assignment Problem

Where externalities affect many agents (e.g. global warming) assigning property rights is difficult

1 The Assignment Problem

Where externalities affect many agents (e.g. global warming) assigning property rights is difficult

② The Holdout Problem Shared ownership of property rights → Power of one owner over all the others

The Assignment Problem

Where externalities affect many agents (e.g. global warming) assigning property rights is difficult

- ② The Holdout Problem Shared ownership of property rights → Power of one owner over all the others
- Transaction Costs and Negotiating Problems Hard to negotiate with large numbers of individuals on one or both sides

1 The Assignment Problem

Where externalities affect many agents (e.g. global warming) assigning property rights is difficult

- ② The Holdout Problem Shared ownership of property rights → Power of one owner over all the others
- Transaction Costs and Negotiating Problems Hard to negotiate with large numbers of individuals on one or both sides
 - Insightful analysis lacking applicability to **large scale** Environmental Issues

roncy Rules & Regulations

Public Regulatory Policy

• Apart form **market-based solutions** the authorities can conduct environmental policy through **Rules**, **Standards and Quotas**

Public Regulatory Policy

- Apart form **market-based solutions** the authorities can conduct environmental policy through **Rules**, **Standards and Quotas**
- Most common Regulation form: **Command And Control (CAC)** Authorities *Command* Emissions \downarrow and *Control* the Outcome

Public Regulatory Policy

- Apart form **market-based solutions** the authorities can conduct environmental policy through **Rules**, **Standards and Quotas**
- Most common Regulation form: **Command And Control (CAC)** Authorities *Command* Emissions \downarrow and *Control* the Outcome
- Effective with **Point Source Pollution** Factories, Power Plants, Municipal wastewater treatment plants

Public Regulatory Policy

- Apart form **market-based solutions** the authorities can conduct environmental policy through **Rules**, **Standards and Quotas**
- Most common Regulation form: **Command And Control (CAC)** Authorities *Command* Emissions \downarrow and *Control* the Outcome
- Effective with **Point Source Pollution** Factories, Power Plants, Municipal wastewater treatment plants
- Drawbacks in addressing **Diffusion non-Point Source Pollution** Overflow of fluids in a city (*run-off*)

Environmental Standards

- Ambient quality standards
- Emission or discharge standards
- Process standards
- Product standards
- **1 Technical standards**

Ambient quality standards

• Establishment of Quality Indicators → Maximum Concentration levels of pollutants for a given Space and Time period

Ambient quality standards

- Establishment of Quality Indicators → Maximum Concentration levels of pollutants for a given Space and Time period
- Based on scientific **dose-response** relationships Projected health deterioration due to exposition

Ambient quality standards

- Establishment of Quality Indicators → Maximum Concentration levels of pollutants for a given Space and Time period
- Based on scientific **dose-response** relationships Projected health deterioration due to exposition

• Definition of Critical Loads

Concentration levels above which there is significant deterioration for the ecosystem - also used for international problems (e.g. acid rain)

Ambient quality standards

- Establishment of Quality Indicators → Maximum Concentration levels of pollutants for a given Space and Time period
- Based on scientific **dose-response** relationships Projected health deterioration due to exposition
- Definition of **Critical Loads** Concentration levels above which there is significant deterioration for the ecosystem - also used for international problems (e.g. acid rain)
- The Ambient Air Quality Directives set EU air quality standards for 12 air pollutants: sulphur dioxide, nitrogen dioxide / nitrogen oxides, particulate matter (PM10, PM2.5), ozone, benzene, lead, carbon monoxide, arsenic, cadmium, nickel, and benzo(a)pyrene (Link)

• Establishment of Maximum amount of Pollutants *emitted form a specific unit* (e.g. industrial plant)

- Establishment of Maximum amount of Pollutants *emitted form a specific unit* (e.g. industrial plant)
- Used widely for Air & Water Pollution

- Establishment of Maximum amount of Pollutants *emitted form a specific unit* (e.g. industrial plant)
- Used widely for Air & Water Pollution
- Setting Caps per Pollutant and per Source

- Establishment of Maximum amount of Pollutants *emitted form a specific unit* (e.g. industrial plant)
- Used widely for Air & Water Pollution
- Setting Caps per Pollutant and per Source
- Standards designed based on
 - What can be achieved through available emissions control infrastructure
 - The environmental effects of pollution

• Standards pertaining to

- Standards pertaining to
 - Production Process

- Standards pertaining to
 - Production Process
 - Pollution Abatement Equipment (technology) for industrial or other units

- Standards pertaining to
 - Production Process
 - Pollution Abatement Equipment (technology) for industrial or other units
 - Best Available Technology (BAT)
 - Best Practicable Technology (BPT)
 - Best Available Technology not Entailing Excessive Costs (BATNEEC)

Production & Technical standards

• **Production standards** shape the attributes of potential pollutant products (fertilizers, detergents, chemicals, automobiles)

Production & Technical standards

- **Production standards** shape the attributes of potential pollutant products (fertilizers, detergents, chemicals, automobiles)
- **Technical standards** are directives regarding the *specifications* for the operation of polluting sources e.g. standards for furnaces

Production & Technical standards

- **Production standards** shape the attributes of potential pollutant products (fertilizers, detergents, chemicals, automobiles)
- **Technical standards** are directives regarding the *specifications* for the operation of polluting sources e.g. standards for furnaces
- Standards on use of Fossil Fuels in almost all OECD economies

Production & Technical standards

- **Production standards** shape the attributes of potential pollutant products (fertilizers, detergents, chemicals, automobiles)
- **Technical standards** are directives regarding the *specifications* for the operation of polluting sources e.g. standards for furnaces
- Standards on use of Fossil Fuels in almost all OECD economies
- e.g. 0.2 % Sulfur content for light and medium fuel oil and 0.3 % for gas diesel oil

44/71
Efficiency of Environmental Standards

• Standards can lead to Asymmetric Cost Distribution

- Standards can lead to Asymmetric Cost Distribution
- Firms A and B have different **Marginal Costs of Control** when ↓ pollution (see Graph)

- Standards can lead to Asymmetric Cost Distribution
- Firms A and B have different **Marginal Costs of Control** when ↓ pollution (see Graph)
- Requiring the same level of control OQ $\rightarrow MAC_A = OA > OB = MAC_B$

- Standards can lead to Asymmetric Cost Distribution
- Firms A and B have different **Marginal Costs of Control** when ↓ pollution (see Graph)
- Requiring the same level of control OQ $\rightarrow MAC_A = OA > OB = MAC_B$
 - Firm A can \downarrow pollution and incur *MAC* = *OA*
 - Firm B can \uparrow pollution and save MAC = OB

Efficiency of Environmental Standards

- Standards can lead to Asymmetric Cost Distribution
- Firms A and B have different **Marginal Costs of Control** when ↓ pollution (see Graph)
- Requiring the same level of control OQ $\rightarrow MAC_A = OA > OB = MAC_B$
 - Firm A can \downarrow pollution and incur *MAC* = *OA*
 - Firm B can \uparrow pollution and save MAC = OB
- Inefficiency: Same level of Pollution with less Industry Cost

45/71

- Standards can lead to Asymmetric Cost Distribution
- Firms A and B have different **Marginal Costs of Control** when ↓ pollution (see Graph)
- Requiring the same level of control OQ $\rightarrow MAC_A = OA > OB = MAC_B$
 - Firm A can \downarrow pollution and incur *MAC* = *OA*
 - Firm B can \uparrow pollution and save MAC = OB
- Inefficiency: Same level of Pollution with less Industry Cost
- Optimal Standard: $MAC_A = OA = MAC_B$

- Standards can lead to Asymmetric Cost Distribution
- Firms A and B have different **Marginal Costs of Control** when ↓ pollution (see Graph)
- Requiring the same level of control OQ $\rightarrow MAC_A = OA > OB = MAC_B$
 - Firm A can \downarrow pollution and incur *MAC* = *OA*
 - Firm B can \uparrow pollution and save MAC = OB
- Inefficiency: Same level of Pollution with less Industry Cost
- Optimal Standard: $MAC_A = OA = MAC_B$
- Pollution Abatement = $OQ + OQ_0$

Standards Efficiency

Msc Law & Economics in Energy Markets

Externalities & Economic Policy

October 2022

Negotiations

• Voluntary Arrangements among Stakeholders referring to the establishment of Environmental Rules and Standards

Negotiations

- Voluntary Arrangements among Stakeholders referring to the establishment of Environmental Rules and Standards
- Small number of involved parties \rightarrow Mutually Benfitial Solutions

Negotiations

- Voluntary Arrangements among Stakeholders referring to the establishment of Environmental Rules and Standards
- Small number of involved parties \rightarrow Mutually Benfitial Solutions
- Avoiding Administrative costs and Rigidity of formal regulations

• Proportional Taxation per unit of Pollution → *Internalize* Pollution Externality

- Proportional Taxation per unit of Pollution → *Internalize* Pollution Externality
- Firm Incentive: \downarrow Pollution as long as MAC < t

- Proportional Taxation per unit of Pollution → *Internalize* Pollution Externality
- Firm Incentive: \downarrow Pollution as long as MAC < t
- Optimal Pollution Control: *MAC* = *t*

- Proportional Taxation per unit of Pollution → *Internalize* Pollution Externality
- Firm Incentive: \downarrow Pollution as long as MAC < t
- Optimal Pollution Control: MAC = t
- Firm A: Controls Q units saving AtB

- Proportional Taxation per unit of Pollution → *Internalize* Pollution Externality
- Firm Incentive: \downarrow Pollution as long as MAC < t
- Optimal Pollution Control: *MAC* = *t*
- Firm A: Controls Q units saving AtB
- Firm B: Controls Q_0 units saving DtC

- Proportional Taxation per unit of Pollution → *Internalize* Pollution Externality
- Firm Incentive: \downarrow Pollution as long as MAC < t
- Optimal Pollution Control: *MAC* = *t*
- Firm A: Controls Q units saving AtB
- Firm B: Controls Q_0 units saving DtC
- Emissions Tax \rightarrow Incentive for Abatement Operations

Environmental Tax

Environmental Taxes

Taxing Taxation

• Emissions Tax \rightarrow Emissions \downarrow as long as t > MAC

Environmental Taxes

- Emissions Tax \rightarrow Emissions \downarrow as long as t > MAC
- Tax of t euros/unit with a maximum Emissions \downarrow target of OD

- Emissions Tax \rightarrow Emissions \downarrow as long as t > MAC
- Tax of t euros/unit with a maximum Emissions \downarrow target of OD
 - Firm Controls OC units (MAC = t) incurring Total Cost of Control OABC

- Emissions Tax \rightarrow Emissions \downarrow as long as t > MAC
- Tax of t euros/unit with a maximum Emissions \downarrow target of OD
 - Firm Controls OC units (MAC = t) incurring Total Cost of Control OABC
 - Pays the Tax for the remaining CD units incurring Taxation Cost BCED

- Emissions Tax \rightarrow Emissions \downarrow as long as t > MAC
- Tax of t euros/unit with a maximum Emissions \downarrow target of OD
 - Firm Controls OC units (MAC = t) incurring Total Cost of Control OABC
 - Pays the Tax for the remaining CD units incurring Taxation Cost BCED
- First-Best Solution: T = MAC(D) difficult to estimate

- Emissions Tax \rightarrow Emissions \downarrow as long as t > MAC
- Tax of t euros/unit with a maximum Emissions \downarrow target of OD
 - Firm Controls OC units (MAC = t) incurring Total Cost of Control OABC
 - Pays the Tax for the remaining CD units incurring *Taxation Cost BCED*
- First-Best Solution: T = MAC(D) difficult to estimate
- Second-Best Solution: A substantially high Tax rate

Optimal Tax

Evaluation of Environmental Taxation

Advantages

- Incentive for Pollution Abatement
- **2** Incentive for introduction of Control Methods \rightarrow Innovation
- **3** Additional Source of Government Revenue $\rightarrow \downarrow$ other Taxes

Evaluation of Environmental Taxation

Advantages

- Incentive for Pollution Abatement
- **2** Incentive for introduction of Control Methods \rightarrow *Innovation*
- **③** Additional Source of Government Revenue $\rightarrow \downarrow$ other Taxes

Drawbacks

- Requires perfect information of Regulating Authority (demand & supply elasticities, technology level etc.)
- **2** Distortion \rightarrow Deadweight Loss

8 Regressive Taxation

Energy/Fuel tax disproportionately affecting low-income households with high income elasticity

Other Environmental Measures

Subsidies

- ▶ Pecuniary Incentives for Emissions ↓ and/or Green Innovation
- ► Encourages Firm Entry which could ↑ *overall* Industry Emissions

Other Environmental Measures

Subsidies

- ▶ Pecuniary Incentives for Emissions ↓ and/or Green Innovation
- Encourages Firm Entry which could *↑* overall Industry Emissions

② Environmental Liability

- Polluting Source Compensates "Victims"
- ▶ High Fines \rightarrow Environmental Insurance Market

Other Environmental Measures

O Subsidies

- Pecuniary Incentives for Emissions 1 and/or Green Innovation

2 Environmental Liability

- Polluting Source Compensates "Victims"
- High Fines \rightarrow Environmental Insurance Market

Opposit Refund Systems (DRS)

- Refundable Tariff on Price of Product associated with pollution
- Encourages Recycling and Re-using

• A Cap-and-Trade System creates a market for pollution permits

- A Cap-and-Trade System creates a market for pollution permits
 - Setting a maximum level of pollution (Cap)
 - ▶ Issuing *Tradable* Pollution (Carbon) Permits

- A Cap-and-Trade System creates a market for pollution permits
 - Setting a maximum level of pollution (Cap)
 - ► Issuing *Tradable* Pollution (Carbon) Permits
- Advantage: Authorities can set standards for a certain Region without requiring information of individual benefit and costs functions

- A Cap-and-Trade System creates a market for pollution permits
 - Setting a maximum level of pollution (Cap)
 - ► Issuing *Tradable* Pollution (Carbon) Permits
- Advantage: Authorities can set standards for a certain Region without requiring information of individual benefit and costs functions
- Price of Allownace *resembles* optimal Pigovean tax rate albeit in a *decentralized manner*!

- A Cap-and-Trade System creates a market for pollution permits
 - Setting a maximum level of pollution (Cap)
 - ► Issuing *Tradable* Pollution (Carbon) Permits
- Advantage: Authorities can set standards for a certain Region without requiring information of individual benefit and costs functions
- Price of Allownace *resembles* optimal Pigovean tax rate albeit in a *decentralized manner*!
- Different Marginal Costs of Control \rightarrow Incentive for Trade

Initial Allowance Allocation Mechanisms

O Grandfathering

- Considering historical pollution levels per Source
- Need for accurate data
Initial Allowance Allocation Mechanisms

Grandfathering

- Considering historical pollution levels per Source
- Need for accurate data

2 Key Performance Indicators (KPIs)

- Polluting Source Production, Employment, Productivity
- Macroeconomic Indicators at the national/regional level

Initial Allowance Allocation Mechanisms

Grandfathering

- Considering historical pollution levels per Source
- Need for accurate data

2 Key Performance Indicators (KPIs)

- Polluting Source Production, Employment, Productivity
- Macroeconomic Indicators at the national/regional level

3 Auction

Market mechanism expecting high polluters to bid high

• Authorities have perfect information on optimal CO2 level

- Authorities have perfect information on optimal CO2 level
- 2 Sources of Pollution
 - Source 1: Controlling Pollution \rightarrow
 - Source 2: Controlling Pollution \leftarrow

- Authorities have perfect information on optimal CO2 level
- 2 Sources of Pollution
 - Source 1: Controlling Pollution \rightarrow
 - Source 2: Controlling Pollution \leftarrow
- Sources need one Permit per unit of pollution

- Authorities have perfect information on optimal CO2 level
- 2 Sources of Pollution
 - Source 1: Controlling Pollution \rightarrow
 - Source 2: Controlling Pollution \leftarrow
- Sources need one Permit per unit of pollution
- Target: \downarrow Pollution from 200 to 100 units

- Authorities have perfect information on optimal CO2 level
- 2 Sources of Pollution
 - Source 1: Controlling Pollution \rightarrow
 - Source 2: Controlling Pollution \leftarrow
- Sources need one Permit per unit of pollution
- Target: \downarrow Pollution from 200 to 100 units
- Initial Endowment: 50 Permits each

Cap and Trade Example

• Controlling 50 units each requires:

▶
$$MC_1 = 850 \in$$

MC₁ = 2500 €

- Controlling 50 units each requires:
 - ► $MC_1 = 850 \in$
 - ► $MC_1 = 2500 \in$
- Gain of 1650 €if Source 1 bares the cost of Abatement

- Controlling 50 units each requires:
 - ► $MC_1 = 850 \in$
 - MC₁ = 2500 €
- Gain of 1650 €if Source 1 bares the cost of Abatement
- Source 2: Buys Permit as long as P<2500 €

- Controlling 50 units each requires:
 - ► $MC_1 = 850 \in$
 - ► $MC_1 = 2500 \in$
- Gain of 1650 €if Source 1 bares the cost of Abatement
- Source 2: Buys Permit as long as P<2500 €
- Source 1: Sells Permit as long as P>850 €

- Controlling 50 units each requires:
 - ► $MC_1 = 850 \in$
 - ► $MC_1 = 2500 \in$
- Gain of 1650 €if Source 1 bares the cost of Abatement
- Source 2: Buys Permit as long as P<2500 €
- Source 1: Sells Permit as long as P>850 €
- Equilibrium: $P = MAC_1 = MAC_2$

- Controlling 50 units each requires:
 - ► $MC_1 = 850 \in$
 - ► $MC_1 = 2500 \in$
- Gain of 1650 €if Source 1 bares the cost of Abatement
- Source 2: Buys Permit as long as P<2500 €
- Source 1: Sells Permit as long as P>850 €
- Equilibrium: $P = MAC_1 = MAC_2$
- At P=1500 €Source 1 has 30 Permits (controls 70 units) and Source 2 has 70 Permits (controls 30 units)

- The EU Emissions Trading System (ETS) is a *Cap-and-Trade System* for Carbon Permits established in 2005 (Link)
 - Phase I: 2005-2007, Phase II: 2008-2012, Phase III: 2013-2020, Phase IV: 2021-2030

- The EU Emissions Trading System (ETS) is a *Cap-and-Trade System* for Carbon Permits established in 2005 (Link)
 - Phase I: 2005-2007, Phase II: 2008-2012, Phase III: 2013-2020, Phase IV: 2021-2030
- Covering more than 11k manufacturing and power plants and about 45% of the EU's GHG emissions in 31 countries

- The EU Emissions Trading System (ETS) is a *Cap-and-Trade System* for Carbon Permits established in 2005 (Link)
 - Phase I: 2005-2007, Phase II: 2008-2012, Phase III: 2013-2020, Phase IV: 2021-2030
- Covering **more than 11k** manufacturing and power plants and about 45% of the EU's GHG emissions in 31 countries
- $2005 \rightarrow 2018 \downarrow$ of GHG emissions by 26% (target 21 %)

- The EU Emissions Trading System (ETS) is a *Cap-and-Trade System* for Carbon Permits established in 2005 (Link)
 - Phase I: 2005-2007, Phase II: 2008-2012, Phase III: 2013-2020, Phase IV: 2021-2030
- Covering more than 11k manufacturing and power plants and about 45% of the EU's GHG emissions in 31 countries
- 2005 \rightarrow 2018 \downarrow of GHG emissions by 26% (target 21 %)
- Phase IV Target: $\downarrow 43\%$ vs 2005

59/71

- The EU Emissions Trading System (ETS) is a *Cap-and-Trade System* for Carbon Permits established in 2005 (Link)
 - Phase I: 2005-2007, Phase II: 2008-2012, Phase III: 2013-2020, Phase IV: 2021-2030
- Covering **more than 11k** manufacturing and power plants and about 45% of the EU's GHG emissions in 31 countries
- $2005 \rightarrow 2018 \downarrow$ of GHG emissions by 26% (target 21 %)
- Phase IV Target: $\downarrow 43\%$ vs 2005
- Cornerstone of EU Climate Policy coupled with Caron Border Adjustment Mechanism (CBAM)

• A Cap is set on the total amount of GHG Emissions ↓ over time

- A Cap is set on the total amount of GHG Emissions ↓ over time
- Within the cap, installations *Buy or Receive emissions allowances*, which they can trade with one another

- A Cap is set on the total amount of GHG Emissions ↓ over time
- Within the cap, installations *Buy or Receive emissions allowances*, which they can trade with one another
- The **limit** on the total number of allowances available ensures that they have a **value**

- A Cap is set on the total amount of GHG Emissions ↓ over time
- Within the cap, installations *Buy or Receive emissions allowances*, which they can trade with one another
- The **limit** on the total number of allowances available ensures that they have a **value**
- Enterprises must surrender enough allowances each year to cover emissions, otherwise **heavy fines are imposed**

- A Cap is set on the total amount of GHG Emissions ↓ over time
- Within the cap, installations *Buy or Receive emissions allowances*, which they can trade with one another
- The **limit** on the total number of allowances available ensures that they have a **value**
- Enterprises must surrender enough allowances each year to cover emissions, otherwise **heavy fines are imposed**
- Trading flexibility \rightarrow Emissions \downarrow where it costs least to do so

- A Cap is set on the total amount of GHG Emissions ↓ over time
- Within the cap, installations *Buy or Receive emissions allowances*, which they can trade with one another
- The **limit** on the total number of allowances available ensures that they have a **value**
- Enterprises must surrender enough allowances each year to cover emissions, otherwise **heavy fines are imposed**
- Trading flexibility \rightarrow Emissions \downarrow where it costs least to do so
- \uparrow Carbon Price \rightarrow Incentive for Green Innovation

Carbon Price - ETS

EU Carbon Permits

source: trandingeconomics.com

Verified & Allocated Emissions - ETS

Msc Law & Economics in Energy Markets

Externalities & Economic Policy

EU ETS

GHG Emissions Change - ETS

Msc Law & Economics in Energy Markets

Excess Emissions % of Allocated by Year

Msc Law & Economics in Energy Markets

Externalities & Economic Policy

GHG Emissions by Industry - ETS

Industries with >400 Installations

Msc Law & Economics in Energy Markets

GHG Emissions Greece - ETS

Greece

• Notable Emissions \downarrow driven largely by Power & Heat Industry

- Notable Emissions \downarrow driven largely by Power & Heat Industry
- Most distance covered in Phase III due to *Grandfathering* (over-supply if free allowances) during Phases I & II

- Notable Emissions \downarrow driven largely by **Power & Heat Industry**
- Most distance covered in Phase III due to *Grandfathering* (over-supply if free allowances) during Phases I & II
- Lack of *flexibility* against the 2008 Financial Crisis

- Notable Emissions \downarrow driven largely by **Power & Heat Industry**
- Most distance covered in Phase III due to *Grandfathering* (over-supply if free allowances) during Phases I & II
- Lack of *flexibility* against the 2008 Financial Crisis
- Modest Impact on Environmental Innovation due to initial lack of stringency greater expectations for Phase IV
 - Need to commingle ETS with R&D Subsidies and Institutional Support

- Notable Emissions \downarrow driven largely by **Power & Heat Industry**
- Most distance covered in Phase III due to *Grandfathering* (over-supply if free allowances) during Phases I & II
- Lack of *flexibility* against the 2008 Financial Crisis
- Modest Impact on Environmental Innovation due to initial lack of stringency greater expectations for Phase IV
 - Need to commingle ETS with R&D Subsidies and Institutional Support
- Challenging Balance between ETS targets & broadening and Energy Resilience for the EU
Comparison of Environmental Measures

Comparison of Environmental Measures

• Taxes reduce costs vs Standards \rightarrow Paying taxes instead of costly Abatement measures

- Taxes reduce costs vs Standards \rightarrow Paying taxes instead of costly Abatement measures
- 3 Polluting Sources → *MAC*₁, *MAC*₂, *MAC*₃

- **Taxes** reduce costs vs **Standards** → Paying taxes instead of costly Abatement measures
- 3 Polluting Sources → *MAC*₁, *MAC*₂, *MAC*₃
- Abatement Standard S_2 Each \rightarrow Total Abatement = $3S_2$

- **Taxes** reduce costs vs **Standards** → Paying taxes instead of costly Abatement measures
- 3 Polluting Sources → *MAC*₁, *MAC*₂, *MAC*₃
- Abatement Standard S_2 Each \rightarrow Total Abatement = $3S_2$
- Tax t \rightarrow Total Abatement = $OS_1 + S_1S_2 + S_2S_3 = 3S_2$

- **Taxes** reduce costs vs **Standards** → Paying taxes instead of costly Abatement measures
- 3 Polluting Sources → *MAC*₁, *MAC*₂, *MAC*₃
- Abatement Standard S_2 Each \rightarrow Total Abatement = $3S_2$
- Tax t \rightarrow Total Abatement = $OS_1 + S_1S_2 + S_2S_3 = 3S_2$
- Total Abatement Cost $(Tax) = OXS_1 + OBS_2 + OYS_3$

- **Taxes** reduce costs vs **Standards** → Paying taxes instead of costly Abatement measures
- 3 Polluting Sources → *MAC*₁, *MAC*₂, *MAC*₃
- Abatement Standard S_2 Each \rightarrow Total Abatement = $3S_2$
- Tax t \rightarrow Total Abatement = $OS_1 + S_1S_2 + S_2S_3 = 3S_2$
- Total Abatement Cost $(Tax) = OXS_1 + OBS_2 + OYS_3$
- Total Abatement Cost (Standard) = $OAS_1 + OBS_2 + OCS_3$

$$TAC_{standard} - TAC_{tax} = S_1 XAS_2 - S_2 CYS_3 > 0$$

• Innovation Incentives

► Taxes and Allowances encourage Innovation ≠ Standards

- Innovation Incentives
 - ► Taxes and Allowances encourage Innovation ≠ Standards
- Revenue Generation
 - ▶ Taxes and Allowances under Auction

- Innovation Incentives
 - ► Taxes and Allowances encourage Innovation ≠ Standards
- Revenue Generation
 - ► Taxes and Allowances under Auction
- Complexity
 - ► Taxes require constant monitoring ≠ Standards
 - ► Standards → Compliance Costs ≠ Allowances

- Innovation Incentives
 - ► Taxes and Allowances encourage Innovation ≠ Standards
- Revenue Generation
 - ► Taxes and Allowances under Auction
- Complexity
 - ► Taxes require constant monitoring ≠ Standards
 - ► Standards → Compliance Costs ≠ Allowances

• Popularity

- ► Taxes opposed by Business Sector
- Potentially Passed-through to consumers