PROBLEM 1

Let [a,b] be a basis of R^2 , and let $\alpha \in R, \beta \in R$ be two real numbers. For which values of α, β is $[a+b,\alpha a]$ a basis of R^2 ? For which values of α, β is $[\alpha a, \beta b]$ a basis of R^2 ?

PROBLEM 2

Consider the following subset of R^5

$$W = \left\{ x \in \mathbb{R}^5 : x_1 - x_3 - x_5 = 0 \right\}$$
(1)

1.show that W is closed under linear combinations, hence a subspace of R^5

2.Find a linear map $R^5 \xrightarrow{T} R^5$ such that W = nullspace(T).Can this linear map T be one-to-one? onto?

3. Find a linear map $R^5 \xrightarrow{T} R^5$ such that W = Range(T). Can this linear map T be one-to-one? onto?

4. Find a basis of W

PROBLEM 3

Consider the following subset of R^5

$$A = \left\{ x \in \mathbb{R}^5 : x_2 - x_5 = 4 \right\}$$
(2)

1. show that A is closed under affine combinations, hence a flat in R^5 . Is it a hyperplane?

2.Find an affine map $R^5 \xrightarrow{T} R^5$ such that A = nullspace(T).Can this affine map T be one-to-one? onto?

3. Find an affine map $R^5 \xrightarrow{T} R^5$ such that A = Range(T). Can this affine map T be one-to-one? onto?

PROBLEM 4

Consider the following subset of R^5

$$C = \left\{ x \in \mathbb{R}^5 : x_2 - x_5 \ge 0, x_1 - x_2 \le 0, x_3 \ge 0 \right\}$$
(3)

1.show that C is closed under nonnegative linear combinations, hence a convex cone in R^5

2. Find a linear map $R^5 \xrightarrow{T} R^5$ such that $C = \{x \in R^5 : T(x) \ge 0\}$. Can this linear map T be one-to-one? onto?

3. show that C is an intersection of half-spaces through the origin. Describe these half-spaces explicitly

PROBLEM 5

Consider the following subset of R^4

$$C = \left\{ x \in \mathbb{R}^4 : x_2 - x_4 \ge 6, x_1 - x_2 - x_3 \le 7, x_3 \ge 0 \right\}$$
(4)

1. show that C is closed under convex combinations, hence a convex set in R^5

2. Find an affine map $R^4 \xrightarrow{T} R^4$ such that $C = \{x \in R^4 : T(x) \ge 0\}$. Can this affine map T be one-to-one? onto?

3. show that C is an intersection of half-spaces. Describe these half-spaces explicitly

PROBLEM 6

For each one of the following functions f, and for each value of the real parameter c, compute and draw their better-than sets $B_c^f = \{(x, y) \in R_+^2 : f(x, y) \ge c\}$; state whether they are quasi-concave functions on R_+^2 , or concave functions on R_+^2

- $f(x, y) = x + \sqrt{y}, c = 4$
- $f(x, y) = x + y^2, c = 4$
- $f(x, y) = x \frac{1}{y}, c = 4$
- $f(x, y) = \min(x, y), c = 1$
- $f(x, y) = \max(x, y), c = 1$
- $f(x, y) = \min(x/4+1, y+2), c = 3$
- $f(x, y) = \max(2x/3, 3y/2), c = 1$
- $f(x, y) = \min(x/4 + y 1, x + y 2, x, y), c = 1/2, 2, 4$
- $f(x, y) = \min(x, y, \frac{x^2 + y^2}{8}), c = 1$
- $f(x, y) = \min(\max(x, y), \max(2x/3, 3y/2)), c = 1$
- $f(x, y) = -(x-3)^2 (y-3)^2, c = -4$

PROBLEM 7

Find all global maxima of the following maximization problem, or show that none exist

Objective function $f(x) = 3(2\sqrt{x+1}-2)-9x$

constraints $x \ge 0$

variables x

PROBLEM 8

For all allowed values of the parameters, find all global maxima of the following maximization problem, or show that none exist

Objective function $f(x_1, x_2, x_3) = x_1 x_2 x_3 - w_1 x_1 - w_2 x_2 - w_3 x_3$

constraints $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$

variables x_1, x_2, x_3

parameters w_1, w_2, w_3

conditions on parameters $w_1 > 0, w_2 > 0, w_3 > 0$

PROBLEM 9

For all allowed values of the parameters, find all global maxima of the following maximization problem, or show that none exist

Objective function $f(x_1, x_2) = \min(\frac{x_1}{4} + 1, x_2 + 2)$

constraints $x_1 + px_2 \le 4, x_1 \ge 0, x_2 \ge 0$

variables x_1, x_2

parameters p

conditions on parameters p > 0