PROBLEM 1

Let $[a, b]$ be a basis of R^{2},and let $\alpha \in R, \beta \in R$ be two real numbers. For which values of α, β is $[a+b, \alpha a]$ a basis of R^{2} ? For which values of α, β is $[\alpha a, \beta b]$ a basis of R^{2} ?

PROBLEM 2

Consider the following subset of R^{5}

$$
\begin{equation*}
W=\left\{x \in R^{5}: x_{1}-x_{3}-x_{5}=0\right\} \tag{1}
\end{equation*}
$$

1.show that W is closed under linear combinations, hence a subspace of R^{5}
2.Find a linear map $R^{5} \xrightarrow{T} R^{5}$ such that $W=$ nullspace (T).Can this linear map T be one-to-one? onto?
3.Find a linear map $R^{5} \xrightarrow{T} R^{5}$ such that $W=$ Range (T).Can this linear map T be one-to-one? onto?
4. Find a basis of W

PROBLEM 3

Consider the following subset of R^{5}

$$
\begin{equation*}
A=\left\{x \in R^{5}: x_{2}-x_{5}=4\right\} \tag{2}
\end{equation*}
$$

1.show that A is closed under affine combinations, hence a flat in R^{5}.Is it a hyperplane?
2.Find an affine map $R^{5} \xrightarrow{T} R^{5}$ such that $A=$ nullspace(T).Can this affine map T be one-to-one? onto?
3.Find an affine map $R^{5} \xrightarrow{T} R^{5}$ such that $A=\operatorname{Range}(T)$.Can this affine map T be one-to-one? onto?

PROBLEM 4

Consider the following subset of R^{5}

$$
\begin{equation*}
C=\left\{x \in R^{5}: x_{2}-x_{5} \geq 0, x_{1}-x_{2} \leq 0, x_{3} \geq 0\right\} \tag{3}
\end{equation*}
$$

1.show that C is closed under nonnegative linear combinations, hence a convex cone in R^{5}
2.Find a linear map $R^{5} \xrightarrow{T} R^{5}$ such that $C=\left\{x \in R^{5}: T(x) \geq 0\right\}$.Can this linear map T be one-to-one? onto?
3.show that C is an intersection of half-spaces through the origin. D escribe these halfspaces explicitly

PROBLEM 5

Consider the following subset of R^{4}

$$
\begin{equation*}
C=\left\{x \in R^{4}: x_{2}-x_{4} \geq 6, x_{1}-x_{2}-x_{3} \leq 7, x_{3} \geq 0\right\} \tag{4}
\end{equation*}
$$

1.show that C is closed under convex combinations, hence a convex set in R^{5}
2.Find an affine map $R^{4} \xrightarrow{T} R^{4}$ such that $C=\left\{x \in R^{4}: T(x) \geq 0\right\}$. Can this affine map T be one-to-one? onto?
3.show that C is an intersection of half-spaces. Describe these half-spaces explicitly

PROBLEM 6

For each one of the following functions f, and for each value of the real parameter c , compute and draw their better-than sets $B_{c}^{f}=\left\{(x, y) \in R_{+}^{2}: f(x, y) \geq c\right\}$; state whether they are quasi-concave functions on R_{+}^{2}, or concave functions on R_{+}^{2}

- $\quad f(x, y)=x+\sqrt{y}, c=4$
- $\quad f(x, y)=x+y^{2}, c=4$
- $f(x, y)=x-\frac{1}{y}, c=4$
- $f(x, y)=\min (x, y), c=1$
- $f(x, y)=\max (x, y), c=1$
- $f(x, y)=\min (x / 4+1, y+2), c=3$
- $f(x, y)=\max (2 x / 3,3 y / 2), c=1$
- $f(x, y)=\min (x / 4+y-1, x+y-2, x, y), c=1 / 2,2,4$
- $f(x, y)=\min \left(x, y, \frac{x^{2}+y^{2}}{8}\right), c=1$
- $f(x, y)=\min (\max (x, y), \max (2 x / 3,3 y / 2)), c=1$
- $f(x, y)=-(x-3)^{2}-(y-3)^{2}, c=-4$

PROBLEM 7

Find all global maxima of the following maximization problem, or show that none exist
Objective function $f(x)=3(2 \sqrt{x+1}-2)-9 x$
constraints $x \geq 0$
variables x

PROBLEM 8

For all allowed values of the parameters, find all global maxima of the following maximization problem, or show that none exist

Objective function $f\left(x_{1}, x_{2}, x_{3}\right)=x_{1} x_{2} x_{3}-w_{1} x_{1}-w_{2} x_{2}-w_{3} x_{3}$
constraints $x_{1} \geq 0, x_{2} \geq 0, x_{3} \geq 0$
variables x_{1}, x_{2}, x_{3}
parameters w_{1}, w_{2}, w_{3}
conditions on parameters $w_{1}>0, w_{2}>0, w_{3}>0$

PROBLEM 9

For all allowed values of the parameters, find all global maxima of the following maximization problem, or show that none exist

Objective function $f\left(x_{1}, x_{2}\right)=\min \left(\frac{x_{1}}{4}+1, x_{2}+2\right)$
constraints $x_{1}+p x_{2} \leq 4, x_{1} \geq 0, x_{2} \geq 0$
variables x_{1}, x_{2}
parameters p
conditions on parameters $p>0$

