- Two goods, A and x, written in this order.
- Two consumers, 1 and 2.
- One firm

Consumer 1

- Consumption set $X_{1}=\left\{\left(A_{1}, x_{1}\right) \in \mathbb{R}^{2}: A_{1} \geq 0, x_{1} \geq 0\right\}$
- Endowment vector $\omega_{1}=[0,4]$, Profit share $1 / 2$
- Utility function $u_{1}=\frac{1}{2} \log x_{1}+\frac{1}{2} \log A_{1}+\theta \log \left(A_{2}\right)$

Consumer 2

- Consumption set $X_{2}=\left\{\left(A_{2}, x_{2}\right) \in \mathbb{R}^{2}: A_{2} \geq 0, x_{2} \geq 0\right\}$
- Endowment vector $\omega_{2}=[0,4]$, Profit share $1 / 2$
- Utility function $u_{2}=\frac{1}{2} \log x_{2}+\frac{1}{2} \log A_{2}+\theta \log \left(A_{1}\right)$

The firm produces good A out of good x with technology described by the production function $A=\frac{x}{2}$

Policy measures

The firm receives a subsidy s per unit of output. Each consumer pays a lump-sum tax T

Parameters θ and s.For consumers and the firm, T is also a parameter. Its value will be determined in equilibrium.

Conditions on parameters $\theta>0, T \geq 0, s \geq 0$

QUESTIONS

Answer the following questions for all allowed values of the parameters.

- Compute all competitive equilibria as functions of the parameters (θ, s)
- Compute all efficient allocations.
- For which values of the parameters (θ, s), if any, are competitive equilibria efficient?

SOLUTION

EFFICIENT ALLOCATIONS

The set of feasible allocations

$$
\begin{equation*}
F A=\left\{\left(A_{1}, X_{1}, A_{2}, X_{2}, A\right) \in R_{+}^{5}: A_{1}+A_{2} \leq A, X_{1}+X_{2}+2 A \leq 8\right\} \tag{1}
\end{equation*}
$$

is convex, and the objective functions u_{1}, u_{2} are concave. Hence the utility possibility set is convex, the method of the linear SWF is complete, and we can try to compute efficient points by solving, for all values of the parameter $\beta \in[0,1]$,the following max problem

$$
\begin{align*}
& \max W_{\beta}=\beta u_{1}+(1-\beta) u_{2} \\
& \text { subject to }\left(A_{1}, X_{1}, A_{2}, X_{2}, A\right) \in F A \tag{2}\\
& \frac{\text { global maxima } G(\beta) \text { of }\left(W_{\beta}, F A\right)}{A=\frac{4 \theta+2}{\theta+1}} \tag{3}\\
& A_{1}=\frac{4(1-\beta) \theta+2 \beta}{\theta+1}, X_{1}=\frac{4 \beta}{\theta+1} \\
& A_{2}=\frac{4 \theta \beta-2 \beta+2}{\theta+1}, X_{2}=\frac{4(1-\beta)}{\theta+1}
\end{align*}
$$

Since $G(\beta)$ is a singleton for all $\beta \in[0,1]$, the method of the linear SWF is sound. Hence the set of efficient points is $\bigcup_{0 \leq \beta \leq 1} G(\beta)$

$$
\begin{align*}
& \begin{array}{l}
\text { efficient allocations } \\
A=\frac{4 \theta+2}{\theta+1} \\
A_{1}=\frac{4(1-\beta) \theta+2 \beta}{\theta+1}, X_{1}=\frac{4 \beta}{\theta+1} \\
A_{2}=\frac{4 \theta \beta-2 \beta+2}{\theta+1}, X_{2}=\frac{4(1-\beta)}{\theta+1} \\
0 \leq \beta \leq 1
\end{array}
\end{align*}
$$

EQUILIBRIA

1.NAME THE PRICE OF EACH GOOD
$p=$ price of good $\mathrm{A}, \mathrm{w}=$ price of $\operatorname{good} \mathrm{X}$. Normalize $p=1$
2. DEFINE CONSUMER INCOMES

$$
\begin{equation*}
M_{1}=4 w+\Pi / 2-T, M_{2}=4 w+\Pi / 2-T \tag{5}
\end{equation*}
$$

3. SOLVE THE OPTIMIZATION PROBLEMS OF CONSUMERS

$\max u_{1}$ subject to $A_{1}+w X_{1} \leq M_{1}, A_{1} \geq 0, X_{1} \geq 0$
$\max u_{2}$ subject to $A_{2}+w X_{2} \leq M_{2}, A_{2} \geq 0, X_{2} \geq 0$
The solutions are

$$
\begin{align*}
& \left(A_{1}, X_{1}\right)=\left(\frac{4 w+\Pi / 2-T}{2}, \frac{4 w+\Pi / 2-T}{2 w}\right) \tag{6}\\
& \left(A_{2}, X_{2}\right)=\left(\frac{4 w+\Pi / 2-T}{2}, \frac{4 w+\Pi / 2-T}{2 w}\right) \tag{7}
\end{align*}
$$

4. SOLVE THE OPTIMIZATION PROBLEM OF THE FIRM
$\max \Pi=(1+s) A-w X, X \geq 0, A=X / 2$
The solution is

$$
(X, A, \Pi)=\left\{\begin{array}{ccc}
\text { none } & \text { if } & w<\frac{1+s}{2} \tag{8}\\
(2 A, A, 0), A \geq 0 & \text { if } & w=\frac{1+s}{2} \\
(0,0,0) & \text { if } & w>\frac{1+s}{2}
\end{array}\right.
$$

5. SOLVE THE EQUILIBRIUM CONDITIONS

$$
\begin{equation*}
A=A_{1}+A_{2}, 8=X_{1}+X_{2}+X \tag{9}
\end{equation*}
$$

equilibrium with an output subsidy $w=\frac{1}{2}+\frac{s}{2}, T=\frac{2 s(1+s)}{s+2}, \Pi=0$ $\frac{\text { Equilibrium allocation } E(\theta, s)}{4(1+s)}$ $A=\frac{4(1+2}{s+2}, X=\frac{8(1+s)}{s+2}$ $A_{1}=\frac{2(1+s)}{s+2}, X_{1}=\frac{4}{s+2}$ $A_{2}=\frac{2(1+s)}{s+2}, X_{2}=\frac{4}{s+2}$

CORRECTION OF EQUILIBRIA TO ATTAIN EFFICIENCY.
Step 1. We substitute (10) into (4) and obtain

$$
\begin{align*}
& \frac{2+2 s}{s+2}=\frac{(4-4 \beta) \theta+2 \beta}{\theta+1} \tag{11}\\
& \frac{2+2 s}{s+2}=\frac{4 \theta \beta-2 \beta+2}{\theta+1} \\
& \frac{4+4 s}{s+2}=\frac{4 \theta+2}{\theta+1} \\
& \frac{4}{s+2}=\frac{4-4 \beta}{\theta+1} \\
& \frac{4}{s+2}=\frac{4 \beta}{\theta+1}
\end{align*}
$$

Step 2. we solve (11) with respect to $\{s, \theta\}$

$$
\begin{equation*}
\beta=\frac{1}{2}, s=2 \theta \tag{12}
\end{equation*}
$$

Step 3. we substitute (12) into (10)
optimal tax-subsidy policy
$s=2 \theta, T=\frac{4 \theta^{2}+2 \theta}{\theta+1}$
equilibrium allocation induced by the optimal tax-subsidy policy
$A=\frac{4 \theta+2}{\theta+1}, X=2 \frac{4 \theta+2}{\theta+1}$
$A_{1}=\frac{2 \theta+1}{\theta+1}, X_{1}=\frac{2}{\theta+1}$
$A_{2}=\frac{2 \theta+1}{\theta+1}, X_{2}=\frac{2}{\theta+1}$

