Please answer all questions. Omitting calculations is OK.

PROBLEM 1

THE ECONOMY

Consider a three-period economy with

- •two consumers, namely Ψ and Ω
- •three goods, namely A, L, B
- Two firms, namely α and β

firm α produces good A out of good L with production function

$$A_{\alpha} = cL_{\alpha}, c > 0 \tag{1}$$

where L_{α} is the quantity of good L used as an input in the first period, and A_{α} is the quantity of good A produced in the second period, and c is a parameter.

firm β produces good B out of good A with production function

$$B_{\beta} = 4\sqrt{A_{\beta}} \tag{2}$$

where A_{β} is the quantity of good A used as an input in the second period, and B_{β} is the quantity of good B produced in the third period.

$\text{Consumer}\,\Psi$

- consumption set: all variables ≥ 0
- utility function

$$u_{\Psi} = A_2^{\Psi} B_3^{\Psi} \tag{3}$$

where A_2^{Ψ} is the quantity of good A consumed by Ψ in the second period, and B_3^{Ψ} is the quantity of good B consumed by Ψ in the third period.

•endowment: $\overline{L} > 0$ units of good *L* in the first period only. No endowment of any other good in any period.

• profit shares: sole owner of firm α ,no share in firm β

consumer $oldsymbol{\Omega}$

- consumption set: all variables ≥ 0
- utility function

$$u_{\Omega} = L_{1}^{\Omega} \tag{4}$$

where L_{l}^{Ω} is the quantity of good L consumed by Ω in the first period.

•endowment: no endowment of any good in any period.

• profit shares: sole owner of firm β ,no share in firm α

Policy

Firm α pays a tax $t_{\alpha} \ge 0$ per unit of input used.

Firm β receives a subsidy $s_{\beta} \ge 0$ per unit of input used.

Firm β pays a tax τ , $0 \le \tau < 1$ per unit of profit earned.

QUESTIONS

Answer the following questions for all allowed parameter values

- 1.Compute all efficient points.
- 2.Compute all competitive equilibria.

3.For which parameter values are competitive equilibria efficient?

PROBLEM 2

THE ECONOMY

- Two goods, α and χ , written in this order. Good α is a public good; good χ is a private good.
- Two consumers,1 and 2.
- One firm.

Consumer 1

- Consumption set $R_{\scriptscriptstyle +}^2$
- Endowment vector $\omega_{l} = [0,1]$
- Profit share $\theta_1 \ge 0$ •
- Utility function $u_1 = X_1 + \log(A)$

Consumer 2

- Consumption set R_{+}^{2}
- Endowment vector $\omega_2 = \overbrace{[0,\kappa]}^{\alpha,\chi}, \kappa > 1$ •
- Profit share $\theta_2 = 1 \theta_1 \ge 0$ •
- Utility function $u_2 = X_2 + \rho \log(A), \rho > 1$ •

The firm produces good α out of good χ with technology described by the production function

$$\hat{A} = 2\hat{X}$$

QUESTIONS

Answer the following questions for all allowed parameter values

- Compute all efficient allocations. Compute and draw the Pareto frontier and the utility possibility • set.
- Compute all competitive equilibria. •
- For which values of the parameters, if any, are competitive equilibria efficient? •

PROBLEM 3

THE ECONOMY

- Four goods, A, B, L, K
- One consumer
- Two firms, α and β

Consumer

- Consumption set R_+^4
- A,B,L,K
- Endowment vector $\omega = [0, 0, \overline{L}, \overline{K}]$
- Utility function $u = \alpha \log(A) + (1 \alpha) \log(B), 0 < \alpha < 1$

Firm α produces good A out of goods K, L with production function

$$\hat{A} = \min\{K_A, \rho L_A\}, \rho > 0$$

where K_A , L_A are the quantities of goods K, L, respectively, used as inputs in the production of good A, and \hat{A} is the quantity produced of good A.

Firm β produces good B out of goods K, L with technology described by the production function

$$\hat{B} = 2\sqrt{K_B L_B}$$

where K_B, L_B are the quantities of goods K, L, respectively, used as inputs in the production of good B, and \hat{B} is the quantity produced of good B.

QUESTIONS

Answer the following questions for all allowed parameter values

- Compute all competitive equilibria.
- For which values of the parameters, if any, do competitive equilibria exist?
- Plot equilibrium prices as a function of α , keeping all other parameters fixed
- Plot equilibrium prices as a function of \overline{K} , keeping all other parameters fixed

PROBLEM 4

THE ECONOMY

- Two goods,1 and 2, written in this order.
- Two consumers, A and B.

Consumer A

- Consumption set $X_A = \{ (A_1, A_2) : A_1 + A_2 \ge 2, A_1 \ge 0, A_2 \ge 0 \}$
- Endowment vector $\omega_A = [0, 2]$
- Utility function $u_A = A_1 A_2$

Consumer B

- Consumption set $X_B = R_+^2$
- Endowment vector $\omega_{B} = [\kappa, 0], \kappa > 0$
- Utility function $u_B = B_1 B_2$

QUESTIONS

Answer the following questions for all allowed parameter values

- Compute all competitive equilibria.
- For which values of the parameters, if any, do competitive equilibria exist?

PROBLEM 5

THE ECONOMY

Consider a five-period economy with

- •one consumer
- •two goods, namely A and K
- Two firms, namely γ and δ

firm γ produces good A out of good K with technology described by

$$\hat{A}_2 = 2\hat{K}_1, \hat{A}_3 = \hat{K}_1 \tag{5}$$

where \hat{K}_1 is the quantity of good K used by firm γ as an input in the first period, and \hat{A}_2 , \hat{A}_3 are the quantities of good A produced by firm γ in the second and third periods.

firm δ produces good A out of good K with technology described by

$$\hat{A}_4 = 2\hat{K}_3, \hat{A}_5 = \hat{K}_3 \tag{6}$$

where \hat{K}_3 is the quantity of good K used by firm δ as an input in the third period, and \hat{A}_4 , \hat{A}_5 are the quantities of good A produced by firm δ in the fourth and fifth periods.

Consumer

- consumption set: all variables ≥ 0
- utility function

$$u = \sum_{t=1}^{5} \log(A_t) + \sum_{t=1}^{5} \log(K_t)$$
(7)

where A_t is the quantity of good A consumed by the consumer in period t, and K_t is the quantity of good K consumed by the consumer in period t

•endowment: one unit of good A in the first period only, and one unit of good K in each period.

QUESTIONS

Answer the following questions

- Compute all competitive equilibria.
- Plot equilibrium prices and quantities as functions of *t*

PROBLEM 6

THE ECONOMY

- Two goods, A and X, written in this order.
- One consumer
- One firm.

The Consumer

- Consumption set R_{+}^{2}
- Endowment vector $\omega = [0, \overline{X}]$
- Profit share $\theta = 1$
- Utility function $u = \log A + \log X$

The firm produces good *A* out of good *X* with technology described by the production function

$$\hat{A} = \begin{cases} \hat{X}^2 & \text{if } 0 \le \hat{X} \le F \\ F^2 & \text{if } \hat{X} \ge F \end{cases}$$

Parameters: F, \overline{X} .Conditions on parameters: $0 \le F < \overline{X}$

QUESTIONS

Answer the following questions for all allowed parameter values

- Compute all competitive equilibrium allocations *E*
- Compute all efficient allocations P
- First welfare theorem: For which parameter values, if any, is it true that $E \subset P$?
- Compute the set of decentralizable efficient allocations $P \cap E$
- Second welfare theorem: For which parameter values, if any, is it true that all efficient allocations are decentralizable, i.e., that P = E?