Micro exam

Consider the following economy
Consumers: 1 and 2
Goods: A, B, C.

Technology

There is one firm, producing good A out of good C with production function

$$
A=\theta \sqrt{2 C}, 0<\theta<1
$$

Preferences

$$
\begin{aligned}
& u_{1}=\ln \left(B_{1}^{2456}+1\right) \\
& u_{2}=\left(\min \left(A_{2}^{3456}, B_{2}^{3456}\right)\right)^{23 / 57}
\end{aligned}
$$

Consumption sets

$$
X_{A}=X_{B}=\mathbb{R}_{+}^{2}
$$

Endowments

$$
e_{1}=\left[\begin{array}{c}
0 \\
0 \\
1 / 2
\end{array}\right], e_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

where goods are written in the order A, B, C. Consumer 2 is the owner of the firm.

1. Compute all competitive equilibria for all values of the parameters.

Hint: replace the utility functions with simpler ones that represent the same preferences
2. Suppose that the productivity θ of consumer 1 increases. Who benefits and who loses?

Answers

The utility function $u_{1}=\ln \left(B_{1}^{2456}+1\right)$ represents the same preferences as the utility function $v_{1}=B_{1}$,because u_{1} is a monotonic increasing transformation of v_{1}.

The utility function $u_{2}=\left(\min \left(A_{2}^{3456}, B_{2}^{3456}\right)\right)^{23 / 57}$ represents the same preferences as the utility function $v_{2}=\min \left(A_{2}, B_{2}\right)$,for the same reason.

Computation of competitive equilibria

1. NAME the price of each good
$p_{A}=$ price of $A, p_{B}=$ price of $B, p_{C}=$ price of C
Normalize $p_{C}=1$
2.DEFINE consumer incomes

$$
\begin{align*}
& m_{1}=1 / 2 \tag{1}\\
& m_{2}=p_{B}+\Pi
\end{align*}
$$

3. SOLVE the optimization problems of firms
profit $\Pi=p_{A} A-p_{C} C=p_{A} A-\frac{A^{2}}{2 \theta^{2}}$ is maximized at

$$
\left[\begin{array}{l}
A \tag{2}\\
C \\
\Pi
\end{array}\right]=\left[\begin{array}{c}
\theta^{2} p_{A} \\
\frac{\theta^{2} p_{A}^{2}}{2} \\
\frac{\theta^{2} p_{A}^{2}}{2}
\end{array}\right]
$$

4. SOLVE the optimization problems of consumers $\max \mathrm{v}_{1}=B_{1}$, subject to
$p_{A} A_{1}+p_{B} B_{1}+p_{C} C_{1} \leq m_{1}, A_{1} \geq 0, B_{1} \geq 0, C_{1} \geq 0$
variables: A_{1}, B_{1}, C_{1}
$\max \mathrm{v}_{2}=\min \left(A_{2}, B_{2}\right)$, subject to
$p_{A} A_{2}+p_{B} B_{2}+p_{C} C_{2} \leq m_{2}, A_{2} \geq 0, B_{2} \geq 0, C_{2} \geq 0$
variables: A_{2}, B_{2}, C_{2}
The solutions are

$$
\left[\begin{array}{l}
A_{1} \tag{3}\\
B_{1} \\
C_{1}
\end{array}\right]=\left[\begin{array}{c}
0 \\
m_{1} / p_{B} \\
0
\end{array}\right]
$$

$$
\left[\begin{array}{l}
A_{2} \tag{4}\\
B_{2} \\
C_{2}
\end{array}\right]=\left[\begin{array}{c}
m_{2} /\left(p_{A}+p_{B}\right) \\
m_{2} /\left(p_{A}+p_{B}\right) \\
0
\end{array}\right]
$$

5. SOLVE the equilibrium conditions

$$
\begin{align*}
& A_{1}+A_{2}=A \\
& B_{1}+B_{2}=1 \tag{5}\\
& C_{1}+C_{2}+C=1 / 2
\end{align*}
$$

There is a unique solution, described by

$$
\begin{align*}
& p_{A}=1 / \theta, p_{B}=\frac{1}{2(1-\theta)} \tag{6}\\
& m_{1}=1 / 2, m_{2}=\frac{2-\theta}{2-2 \theta} \\
& {\left[\begin{array}{l}
A_{1} \\
B_{1} \\
C_{1}
\end{array}\right]=\left[\begin{array}{c}
0 \\
1-\theta \\
0
\end{array}\right],\left[\begin{array}{l}
A_{2} \\
B_{2} \\
C_{2}
\end{array}\right]=\left[\begin{array}{l}
\theta \\
\theta \\
0
\end{array}\right]} \\
& v_{1}=1-\theta, v_{2}=\theta \\
& \Pi=1 / 2, A=\theta, C=1 / 2
\end{align*}
$$

Consumer 1 becomes worse off the more productive he gets; all productivity gains go to consumer 2 .

