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THE DATA SATISFY GARP,
i.e. 

THE STRICT REVEALED PREFERENCE RELATION is ACYCLIC,
i.e.

EITHER

1) THE REVEALED PREFERENCE RELATION is Acyclic 
                                       

                                       OR

2) EACH EDGE CONTAINED in A CYCLE of THE REVEALED 
PREFERENCE RELATION

HAS WEIGHT 0
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THE ECONOMIC THEORY of consumer demand is extremely simple. The basic 

behavioral hypothesis is that the consumer chooses a bundle of goods that is 

preferred to all other bundles that he can afford. Applied demand analysis 

typically addresses three sorts of issues concerning this behavioral hypothesis. 

(i) Consistency. When is observed behavior consistent with the preference 

maximization model? 

(ii) Recoverability. How can we recover preferences given observations on 

consumer behavior? 

(iii) Extrapolation. Given consumer behavior for some price configurations 

how can we forecast behavior for other price configurations? 

Identification problem
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Base case,T=2
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Induction step
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Garp implies Afriat matrices with a nonnegative row
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Satisfiability of Afriat's inequalities implies rationalizability by strictly increasing,concave,continuous 

utility function
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WARP and aggregation across consumers
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Weak axiom of revealed preference(WARP)
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Aggregate demand may fail WARP
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Rationalizability implies GARP

strong rationalizability implies SARP
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Lemma 5
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sarp implies Afriat matrices with a nonnegative row

SARP implies strong afriat's inequalities
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Strong afriat inequalities imply strong rationalizibility
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Nonexistence of the representative consumer

Representative consumer
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Revealed Preference and Afriat’s Theorem

This chapter concerns a consumer who, we hypothesize, is solving the CP for a
number of different prices and incomes. We observe the consumer’s choices and
ask, What can we say about this consumer? In particular, are her choices
consistent with the standard model of preference-driven, utility-maximizing
choice? What patterns can we expect to see in the choices she makes, as we
(say) vary one price only or her level of income? The emphasis here is on what
can be discerned from a finite number of actual choices; Chapter 11 concerns the
entire array of choices the consumer might make, for every possible level of
income and every possible set of prices.

4.1. An Example and Basic Ideas
The main point of this chapter is illustrated by the following example. Imagine
a consumer who lives in a three-commodity world and makes the following
three choices.

•   When prices are (10, 10, 10) and income is 300, the consumer chooses the
consumption bundle (10, 10, 10).

•   When prices are (10, 1, 2) and income is 130, she chooses the consumption
bundle (9, 25, 7.5).

•   When prices are (1, 1, 10) and income is 110, she chooses the consumption
bundle (15, 5, 9).

Are these choices consistent with the standard model of the CP, in which the
consumer has complete and transitive preferences and solves the CP for each set
of prices and income?

This question is somewhat artificial. The story of the CP is that the
consumer makes a single consumption choice, at one time, for all time. How
then could we observe three different choices that she makes? The best we can
do is to suppose that we have posed a set of hypothetical questions to the
consumer of the form, If prices were p and your income was y, what would you
purchase?1

Setting this artificiality to one side, a trivial affirmative answer to the
question is possible. Imagine a consumer who is indifferent among, say, all



bundles that give her less than 1000 units of each of the three goods. Since at
these three sets of prices, the incomes she has are insufficient to purchase any
bundle with 1000 units of each good, any choices—in particular, the choices she
has made—are consistent with utility maximization, as long as they respect her
budget constraint, which these do. This trivial answer may seem fanciful, but
the point is not. To falsify the standard model, we must be able to use the data
to conclude that some bundle is strictly preferred to some other(s). Otherwise,
complete indifference is consistent with any pattern of choice that satisfies
feasibility.

One way we might proceed is to ask whether the choices observed are
consistent with preference maximization for strictly convex preferences. If a
consumer with strictly convex preferences chooses the bundle x* when prices are
p and income is y, then the consumer strictly prefers x* to any other bundle x
such that p · x ≤ y, since we know that with strictly convex preferences and a
convex choice set, the chosen bundle is strictly preferred to all feasible
alternatives.

We take a slightly different path in this chapter, asking whether the observed
choices are consistent with preference maximization for locally insatiable
preferences. Local insatiability gives us cutting power according to the following
lemma.

Lemma 4.1. Suppose a consumer with complete, transitive, and locally
insatiable preferences  chooses the consumption bundle x* facing prices p
with income y. Then we know that x*  x for all bundles x such that p · x =
y. And we know that x*  x for all bundles x such that p · x < y.

Proof. The first part is obvious: If p · x = y, x is feasible. Since x* is chosen, it
must be at least as good as x. The second part uses local insatiability: If p · x <
y, local insatiability ensures that there is some bundle x′ near enough to x so
that p·x′ ≤ y, with x′  x. This means x′ is feasible; hence x*  x′. But then x*

 x′  x gives the desired conclusion.

Now back to the example. From the data given above, we calculate the cost



of each of the three selected bundles at each of the three sets of prices. This is
done for you in Table 4.1.

Table 4.1. Cost of three bundles at three sets of prices.

In each case, the bundle selected exhausts the income of the consumer. This
is required for these choices to be consistent with local insatiability: A locally
insatiable consumer always spends all of her income; if a consumer ever chooses
a bundle that costs strictly less than the income she has available, she cannot be
maximizing locally insatiable preferences.

Beyond this, the important things to note are:

•   When (10, 10, 10) was chosen (at prices (10, 10, 10) and income 300), the
bundle (15, 5, 9) could have been purchased with some money left over.
Apparently, this consumer strictly prefers (10, 10, 10) to (15, 5, 9).

•   At the second set of prices (10, 1, 2), since (10, 10, 10) and (9, 25, 7.5)
both cost 130 and (9, 25, 7.5) was selected, the latter must be at least as
good as (10, 10, 10).

•   At the third set of prices (1, 1, 10), the bundle (9, 25, 7.5) costs 109, while
(15, 5, 9) costs 110. And we are told that with income 110, the consumer
chose (15, 5, 9). Hence, (15, 5, 9)  (9, 25, 7.5).

The data tell us that (10, 10, 10)  (15, 5, 9), that (9, 25, 7.5)  (10, 10,
10), and that (15, 5, 9)  (9, 25, 7.5). We can string these three deductions
from the data together in the order (10, 10, 10)  (15, 5, 9)  (9.25, 7.5) 
(10, 10, 10), which by transitivity (if the consumer has complete and transitive



preferences) tells us that (10, 10, 10)  (10, 10, 10). These data are therefore
inconsistent with consumer behavior based on the standard preference-
maximization model with locally insatiable preferences. On the other hand,
suppose the third piece of data was instead:

•   At prices (1, 2, 10) and income 115, the bundle selected is (15, 5, 9).

Then we would have come to no negative conclusions. At the first set of prices
and income, the bundles (10, 10, 10) and (15, 5, 9) are affordable, and as the
first bundle is selected and the (15, 5, 9) does not exhaust the budget constraint,
(10, 10, 10) is revealed to be strictly preferred to (15, 5, 9). At the second set of
prices and income level, (10, 10, 10) and (9, 25, 7.5) are precisely affordable and
(9, 25, 7.5) is selected, so it is revealed to be weakly preferred to (10, 10, 10).
This is just as before. But now, at the third set of prices and income level, of
the three bundles only (15, 5, 9) is affordable. Knowing that it is selected tells
us nothing about how it ranks compared to the other two; it could well come at
the bottom of the heap. In fact, the other two choices tell us that (15, 5, 9) must
come bottom among these three; the data are consistent with preferences among
the three bundles that have (9, 25, 7.5)  (10, 10, 10)  (15, 5, 9), as well as
preferences where (9, 25, 7.5) ~ (10, 10, 10)  (15, 5, 9).

Of course, this argument doesn’t tell us for sure that these three pieces of
data are consistent with locally insatiable preference maximization; we need
locally insatiable preferences for all of R3

+ that support these three choices. But
it is not hard to imagine that we can fill in preferences consistent with these
data. The main result of this chapter, Afriat’s Theorem, shows that we can
construct preferences supporting these choices that are complete, transitive, and
locally insatiable, and, in addition, strictly increasing, convex, and continuous.

4.2. GARP and Afriat’s Theorem
To generalize the example, three definitions are needed. The setting throughout
is one with k commodities, so that consumption bundles lie in Rk

+, prices are
from Rk

++, and income levels come from R+.

Definition 4.2.



a.   Take any finite set of (feasible) demand data: x1 ≥ 0 chosen at (p1, y1), x2

≥ 0 chosen at (p2, y2), …, and xJ ≥ 0 chosen at (pJ, yJ), where, in addition,
pj · xj ≤ yj for each j. If pi · xj ≤ yi, the data reveal directly that xi is weakly
preferred to xj, written xi d xj. And the data reveal directly that xi is

strictly preferred to xj, written xi d xj, if pi · xj < yi. (The superscript d is
for directly.) Note that xi d xj implies xi d xj.

b.   Suppose that for some xi and xj, there is a chain of direct revelations of
weak preferences that start with xi and end with xj. That is, for some xi1,
…, xim, xi d xi1 d xi2 d … d xim – 1 d xim d xj. Then the

data indirectly reveal that xi is weakly preferred to xj, written xi r xj. If
some one or more of the steps in the chain is a direct relevation of strict
preference, the data indirectly reveal that xi is strictly preferred to xj,
written xi r xj. (The superscript r is for revealed.) In this definition, we
allow for the case in which no intervening steps are required; xi d xj

implies xi r xj, and xi d xj implies xi r xj.

c.   The data satisfy the Generalized Axiom of Revealed Preference,
abbreviated GARP, if no strict revealed preference cycles exist. That is, for
no xi is it the case that xi r xi.

Part c sometimes confuses students, so let me be explicit on two grounds. First,
suppose that for some xi, pi, and yi, pi · xi < yi. Then according to part a of the
definition, xi d xi; hence by part b, xi r xi, and hence GARP is violated. In
words, GARP is violated if any bundle chosen at given prices and income costs
less at those prices than the level of income. Second, suppose xi r xj and,

simultaneously, xj r xi, for some pair xi and xj. That is, there is a chain of
revealed weak preferences from xi to xj and a chain of revealed weak preferences,
at least one of which is also strict, from xj back to xi. Then according to part b of
the definition, xi r xi and xj r xj, and this is also true for any element in
either of the two chains of revealed preference. The two chains join together in a



cycle, so there is a chain going from any link in the chain back to that link,
with one of the links direct strict preference. Satisfaction of GARP is
equivalently stated as: No such cycle can be found in the data.

Proposition 4.3 (Afriat’s Theorem). If a finite set of demand data violates
GARP, these data are inconsistent with choice according to locally insatiable,
complete, and transitive preferences. Conversely, if a finite set of demand data
satisfies GARP, these data are consistent with choice according to complete,
transitive, strictly increasing (hence, locally insatiable), continuous, and
convex preferences.

Before giving the proof, two comments are in order.

1.  GARP concerns weak and strict revealed preferences among the finite
collection of bundles that are chosen. We need not compare chosen bundles
with those that never are chosen. No violations of GARP among the set of
chosen bundles is necessary and sufficient for standard (locally insatiable)
preferences for all of Rk

+.

2.  If the data contain a violation of GARP, then no locally insatiable,
complete, and transitive preferences can rationalize or explain the data. But
if the data satisfy GARP, then not only can we produce locally insatiable,
complete, and transitive preferences, but preferences which in addition are
strictly increasing, continuous, and convex. In other words, given a finite
collection of demand data, we cannot falsify the hypothesis that the
consumer’s preferences are strictly increasing or continuous or convex
without throwing away the entire model of choice by locally insatiable,
complete, and transitive preferences. The three extra properties add no
testable restrictions.
     Please be careful in interpreting this. This does not say that it is
impossible to falsify strictly increasing or convex preferences empirically.
(I’m unwilling to make a claim one way or the other about continuity;
whether continuity can be tested empirically depends on your definition of a
valid empirical test.) Suppose, for instance, I ask a consumer to rank order
the three distinct bundles x, x′, and 0.5x + 0.5x′, and she says the convex
combination is definitely the worst of the three. Then we know she doesn’t



have convex preferences. Suppose I ask her to rank order three distinct
bundles x, x′, and x″ where x′ and x″ are both ≥ x and neither x′ ≥ x″ nor x″ ≥
x′, and she says x′ is worst of the three. Then we can reject the hypothesis
that she has strictly increasing preferences (and even nondecreasing
preferences), without (yet) rejecting local insatiability. The point is, these
are not questions about market demand data. What is asserted here is that,
with a finite collection of market demand alone, I can’t reject the three
properties without simultaneously rejecting that her preferences are
complete, transitive, and locally insatiable.

The proof of Afriat’s Theorem
The first “ half” of the proposition is easy. If the data are generated from locally
insatiable, complete, and transitive preferences , then xi d xj implies xi 

xj, and xi d xj implies xi  xj. The argument is the one given in Lemma 4.1.

Therefore, by standard transitivity properties of strict and weak preferences, xi 
r xi implies xi  xi, which violates the asymmetry of strict preference.

The proof of the second half of the proposition is long and very technical.
The proof I am about to give is due to Varian (1982). I am unaware of any other
use for these proof techniques in economics; to my knowledge, they give you no
technique that can be usefully transferred to any other situation you will
enounter. Therefore, I think you can almost surely skip this proof without risk
of missing something later on. On the other hand, if you are an aficionado of
very elegant proofs, this is one to see. Assume throughout that we have J
demand choices—xj ≥ 0 chosen at prices pj with income yj, such that pj · xj ≤ yj,
for j = 1, …, J—that collectively satisfy GARP.

As we remarked informally a page ago, for each j, pj · xj = yj; if pj · xj < yj,
then xj d xj according to the definition, which is a violation of GARP.

Lemma 4.4. For each i, let n(i) be the number of indices j such that xi r xj.

a.   If n(i) < n(j), then pi · xi < pi · xj.

b.   If n(i) = n(j), then pi · xi ≤ pi · xj.
c.   At least one i satisfies n(i) = 0.



Proof. For both a and b, we prove the contrapositives. (a) If pi · xi ≥ pi · xj = yj,
then xi d xj by definition. But then if xj r xk for any k, it follows that xi r

xk, and hence the set of indices k such that xj r xk is a subset of the indices
such that xi r xk; n(j) ≤ n(i) follows immediately.

(b) And if pi · xi > pi · xj, then xi d xj. We know that every k such that xj r

xk also satisfies xi r xk, and there is at least one k, namely j itself, such that xi 
r xj but not xj r xj. (If xj r xj, GARP is violated.) Hence n(i) > n(j). The

contrapositive to this that n(i) ≤ n(j) implies pi ·xi ≤ pi ·xj, and b then follows as
a special case.

(c) If n(i) ≥ 1 for every i, then for each i we can produce another index j such that
xi r xj. Starting from any i, this gives us a chain xi = xi1  r xi2  r xi3  r

…. Since there are only J possible values for the bundles, this chain must
eventually cycle, which would violate GARP.

Lemma 4.5. Real numbers vi and αi > 0 for i = 1, …, J can be found such
that, for all i and j,

Proof. We use induction on J. The result is trivially true for J = 1. Suppose it
is true for all sets of data of size J – 1 or less. Take a set of data of size J (with
no violations of GARP), and (renumbering if necessary) let 1 through I be the
indices with n(i) = 0. By Lemma 4.4c we know that I ≥ 1. Therefore, the set of
indices I + 1, …, J gives us J – 1 or fewer pieces of data (with no violations of
GARP). (The case where I = J is handled by an easy special argument.) Hence
we can produce vi and αi as needed for i from I + 1 to J, and inequality (4.1)
holds for i and j both from I + 1 to J.

We extend to a full set of vi and αi as follows. Set



By this definition, (4.1) will hold for i from 1 to I and j from I + 1 to J.
To get (4.1) for i from I + 1 to J and j from 1 to I, we use αj. Note that by

Lemma 4.4a, for such i and j, since n(i) > 0 and n(j) = 0, we know that pj · xi >
pj · xj. Therefore, we can select (for each j = 1, …, I) αj large enough so that
these strictly positive terms give us the desired inequalities.

Finally, Lemma 4.4b tells us that for i and j both from 1 to I, pj · xi ≥ pj ·
xj. Therefore, since vi = vj, no matter what (positive) values we chose for αj, we
have (4.1). This completes the induction step and the proof of Lemma 4.5.

The rest is easy. Define

Note that u is the minimum of a finite set of strictly increasing, affine functions;
hence u is strictly increasing, concave, and continuous. (Math facts: The (point-
wise) minimum of a finite set of strictly increasing functions is strictly
increasing. The minimum of a finite set of concave functions is concave. The
minimum of a finite set of continuous functions is continuous. If you did not
know these facts, prove them.)

From (4.1), u(xi) = vi. This is a simple matter of comparing (4.1) with the
definition of u.

We are done once we show that u rationalizes the data. To do this, take any
observation (xj, pj, yj). Because GARP is satisfied, pj · xj = yj. We know that xj

gives utility vj. And it is evident from the definition of u that for any x such that
pj · x ≤ yj = pj · xj,

That does it.

WARP: The Weak Axiom of Revealed Preference



In many economic textbooks, the so-called Weak Axiom of Revealed Preference,
or WARP, is discussed. It may be helpful to make (brief) connections with what
we have done here.

The Weak Axiom of Revealed Preference says that if x* is chosen at (p, y),
then x* is strictly preferred to any other bundle x such that p · x ≤ y. This is
almost a special case of GARP. It is a special case because it refers only to
direct revelation of preference. GARP, on the other hand, looks at chains of
revealed preference. But it is only almost a special case because it is a bit
stronger than local insatiability allows; following Lemma 4.1, we can conclude
only that when x* is chosen at (p, y), then x* is strictly preferred to any other
bundle x such that p · x < y, and is weakly preferred to x if p · x = y.

The difference comes about because we are augmenting the standard model of
preference maximization with local insatiability; WARP “ works” if we augment
the standard model with the maintained hypothesis that solutions to the CP are
always unique, for example, if preferences are strictly convex.

4.3. Comparative Statics and the Own-Price Effect
Comparative statics is a term used by economists for questions (and answers to
those questions) of the form, How does some economic quantity change as we
change underlying parameters of the situation that generates it? Much of the
empirical content of economics lies in the comparative statics predictions it
generates. If within a model we can show that quantity x must rise if parameter z
falls, and if the data show a falling z accompanied by a falling x, then we reject
the original model.

In terms of consumer demand, the natural comparative statics questions are:
How does demand for a particular good change with changes in income, holding
prices fixed? How does demand for a good change with changes in the price of
some other good, holding all other prices and income fixed? And—the so-called
own-price effect—how does the demand for one good change with changes in
the price of that good, holding other things fixed?

Everyday experience indicates that the theory on its own will not have much
to say about income effects. There are goods the consumption of which declines
as the consumer’s wealth increases, at least over some ranges—public
transportation is a commonly cited example. And there are goods the
consumption of which rises with the consumer’s wealth—taxicab rides, or



skiing trips to the Alps. Goods whose consumption falls with wealth are called
inferior goods, while those whose consumption rises with wealth are called
superior. Moreover, when the percentage of income expended on a good rises as
wealth rises, the good is called a luxury good; nonluxury goods are called
necessities.

Of course, most goods do not fall neatly into a single one of these
categories. Demand for public transportation by a given consumer rises as the
consumer moves away from improverishment, and then falls as the consumer
moves toward being rich. Indeed, since demand for all goods must be zero when
y = 0, only a good that is never consumed in positive levels could qualify for
always being inferior. Hence while a superior good is one the consumption of
which never falls with rising income, an inferior good is one where the level of
consumption sometimes falls with rising income.

As for the effect on the consumption of commodity i of a change in the price
of commodity j, there is (again) little the bare theory of preference maximization
can tell us. Demand for nails falls as the price of lumber rises, and the demand
for corn rises with increases in the price of wheat. Roughly speaking, nails and
lumber are complementary goods, while corn and wheat are substitutes. (This is
rough for reasons that are discussed in later chapters, when precise definitions
will be given.)

The best hope for a strong comparative statics prediction from the standard
theory concerns own-price effects; everyday experience suggests that a consumer
will demand less of a good as its own price rises. This is so strongly suggested
by most people’s experiences that goods for which this is true are called
normal, while goods that are not normal—the demand for which sometimes
rises as the price of the good rises—are called Giffen goods (named for Scottish
economist Sir Robert Giffen, to whom the notion is attributed by Alfred
Marshall).

The question is, if we look at demand by a preference-maximizing
consumer, will demand for a good inevitably fall as the price of that good rises,
holding everything else fixed? The answer, which you probably know from
intermediate microeconomics, is no. One can draw pictures of indifference curves
that support an increase in the consumption of a good as its own price rises.

With Afriat’s Theorem, we can rigorize these pictorial demonstrations. Fix
prices p, income y, and demand x at these prices and income. Choose some



commodity (index i), and let p′ be a price vector where all the prices except for
good i are the same as in p, and p′i > pi. Let x′ be demand at p′ and y. Since
(assuming local insatiability) p · x = y and p′ is greater than p, as long as xi > 0,
p′·x > y. As long as p′·x′ = y, it doesn’t matter what x′ is—in particular, it
doesn’t matter whether x′ i ≤ xi or x′i > xi—GARP will not be violated by these
two data points. Afriat’s Theorem tells us that convex, strictly increasing, and
continuous preferences can be found to support the existence of a Giffen good.
Indeed, if we have any finite sequence of demand data for a fixed income level y
and a succession of prices that involve (successive) rises in the price of good i
only, as long as the demanded bundles satisfy the budget constraint with
equality, GARP will not be violated.

A positive result
Consider the following alternative comparative statics exercise. Ask the
consumer for her choice at prices p and income y. Suppose x is her choice. Now
replace p with p′, where p′ is the same as p, except that the price of good i has
been strictly increased, and simultaneously replace y by y′ = p′ · x. Let x′ be the
chosen bundle at p′ and y′. Suppose x′i > xi.

Since x is feasible at (p′, y′) by construction, we know that x′ must be
weakly preferred to x. But at the same time,

Rewrite the inner two terms as

invoking the fact that p′j = pj for j ≠ i. Since p′i > pi and x′i > xi, we know that
(p′i – pi)x′i > (p′i – pi)xi; subtract the larger left-hand term from the left-hand side



of the previous display, and the smaller right-hand term from the right-hand side
of the display, and we see that p · x′ < p · x. Therefore, for locally insatiable
preferences, x is strictly preferred to x′. Oops. This demonstrates the following
formal result.

Proposition 4.6. Suppose x is chosen by the consumer facing prices p and
income y, and x′ is chosen at prices p′ and income p′ · x, where p′ is p except
for an increase in the price of good i. If these choices are made according to
the standard model with locally insatiable preferences, then x′i ≤ xi.

In other words, if we ask this pair of questions of a consumer and find the
consumption of good i rising, we have refuted (for this consumer) the standard
model, augmented with local insatiability.

Giffen goods must be inferior
Before commenting on the result just derived, let me gather up one more “ fact.”

Proposition 4.7. Suppose i is a Giffen good for some preference-maxiziming
consumer with locally insatiable preferences. That is, for some income level y,
price vectors p and p′ such that p is identical to p′ except that pi < p′i, and
consumption bundles x and x′ such that x is chosen at (p, y), x′ is chosen at (p′,
y), x′i > xi. Then good i must be (sometimes) inferior for this consumer. More
specifically, y′ = p · x′ < y, and if x″ is a choice by the consumer facing  (p, y′),
then x″i > xi.

Proof. Since p′ · x′ = y and x′i > xi ≥ 0, we know that y′ = p · x′ < y. Now
suppose x″ is a bundle chosen at (p, y′). (To be completely rigorous about this,
we ought to have insisted on augmenting the standard model of complete and
transitive preferences with local insatiability and continuity, the latter to ensure
that some bundle is chosen at every price and income combination.) Comparing
x′ and x″, we have that x′ is chosen at (p′, y), and x″ is chosen at (p, p · x′),
where p is p′ except for a reduction in the price of good i. By an argument
similar to that in the proof of Proposition 4.6, we conclude that x″i ≥ x′i. But x′i
> xi by assumption; therefore x″i > xi.



Discussion
Why are Giffen goods possible? How could the consumption of good i rise with
increases in its price? Roughly, the reason is that when the price of good i rises,
two things happen. The relative price of good i, relative to the prices of other
goods, is increased. Our expectations that the consumption of good i will fall
(or, at least, not rise) stems from this; as the relative price of good i rises, the
consumer ought to substitute other goods for it. But also the “ level of real
wealth” of the consumer falls; her income y is no longer sufficient to purchase
the bundle x that she chose before the rise in pi. A poorer consumer may choose
more of good i because good i is inferior, and this implicit income effect may
overcome the effect of the increased relative price of good i.

Indeed, the first alleged instance of a Giffen good concerned potatoes in
Ireland during the great potato famine: The shortage of potatoes caused the price
of potatoes, the staple crop of the working class, to rise precipitously. This so
impoverished the working class that their diet came to consist almost entirely of
… potatoes; they could no longer afford to supplement potatoes with other
goods. The effect was so strong, it was claimed, that they purchased more
potatoes. (Careful empirical evidence has been offered to refute that this did in
fact happen.)

Proposition 4.7 supports this intuitive explanation, by showing that if a
good is Giffen, it must be inferior. Or, to put it the other way around, if the
good is superior—if there is no chance that reduced income leads to an increase
in its consumption—then it cannot be Giffen; a rise in its price cannot lead to a
rise in its level of consumption.

And Proposition 4.6 pretty much clinches the argument. Recall how the
comparative statics exercise worked. We began with prices p, income level y,
and a choice x by the consumer. The price of good i was increased, giving new
prices p′. This makes the consumer worse off in real terms—she can no longer
afford x (if xi > 0)—so to compensate her, we increase her wealth to y′ = p′ · x,
just enough so that she could purchase x if she wanted to. Now the income effect
of lower real wealth is controlled for, leaving only the relative price effect, and
the consumer must choose a bundle x′ with no more of good i than before.

Compensating the consumer in this fashion—giving her enough income so



that at the new prices she can purchase the bundle at the original prices—is
called Slutsky compensation. We pick up the story of compensated demand in
Chapter 10, but for now we conclude with a final proposition, which is left for
you to prove.

Proposition 4.8. For a consumer with locally insatiable, complete, and
transitive preferences, suppose that x is chosen at prices (p, y), and x′ is chosen
at prices p′ and income p′ · x, for any other price vector p′. Then (p′ – p) · (x′ –
x) ≤ 0.

Coming attractions
We are far from finished with the classic theory of consumer demand, but we are
going to take a break from it for a while. My personal prejudices are to
undertake further foundations of models of choice—under uncertainty, dynamic,
and social—before finishing the story. You (or your instructor) may feel
differently about this, in which case you may wish to move to Chapters 10 and
11, concerning the dual consumer’s problem, Roy’s identity, the Slutsky
equations, and integrability. But if you do this, a warning: The mathematical
developments in Chapters 10 and 11 build on methods first employed in the
theory of the profit-maximizing firm, in Chapter 9. So you should probably
tackle Chapter 9 before Chapters 10 and 11.

Bibliographic Notes
Afriat’s Theorem is given in Afriat (1967). The proof given here is taken
directly from Varian (1982). The axioms of revealed preference discussed here are
applied as well in the literature to demand functions, full specifications of
consumer demand for all strictly positive prices and income levels; this part of
the literature will be discussed in Chapter 11.

Problems

 *4.1. In a three-good world, a consumer has the Marshallian demands given
in Table 4.2 . Are these choices consistent with the usual model of a locally
insatiable, utility-maximizing consumer?



Table 4.2. Four values of Marshallian demand.

 4.2. There are a few details to clean up in the proof of Afriat’s theorem. First,
show that the minimum over a finite set of concave functions is concave, the
minimum over a finite set of strictly increasing functions is strictly increasing,
and the minimum over a finite set of continuous functions is continuous.
Second, show how to proceed if, in the proof of Lemma 4.5, you find that n(i) =
0 for all i, and (hence) I = J.

 4.3. For a two-good world, create an indifference curve diagram that shows
the (theoretical) possibility of a Giffen good.

 *4.4. Prove Proposition 4.8.

 

1 A different way to try to make the story realistic is to suppose (1) that the
consumer shops, say, each week, (2) has a fixed budget for each week, and (3)
has preferences that are weakly separable from one week to the next and that are
unchanging from week to week. Then our three pieces of data could be the
results of three weeks of shopping. But suppositions 2 and 3 are rather
incredible.
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THE NONPARAMETRIC APPROACH TO DEMAND ANALYSIS 

BY HAL R. VARIAN1 

This paper shows how to test data for consistency with utility maximization, recover the 
underlying preferences, and forecast demand behavior without making any assumptions 
concerning the parametric form of the underlying utility or demand functions. 

THE ECONOMIC THEORY of consumer demand is extremely simple. The basic 
behavioral hypothesis is that the consumer chooses a bundle of goods that is 
preferred to all other bundles that he can afford. Applied demand analysis 
typically addresses three sorts of issues concerning this behavioral hypothesis. 

(i) Consistency. When is observed behavior consistent with the preference 
maximization model? 

(ii) Recoverability. How can we recover preferences given observations on 
consumer behavior? 

(iii) Extrapolation. Given consumer behavior for some price configurations 
how can we forecast behavior for other price configurations? 

The standard approach to these questions proceeds by postulating parametric 
forms for the demand functions and fitting them to observed data. The estimated 
demand functions can then be tested for consistency with the maximization 
hypothesis, used to make welfare judgements, or used to forecast demand for 
other price configurations. This procedure will be satisfactory only when the 
postulated parametric forms are good approximations to the "true" demand 
functions. Since this hypothesis is not directly testable, it must be taken on faith. 

In this paper I describe an alternative approach to the above problems in 
consumer demand analysis. The proposed approach is nonparametric in that it 
requires no ad hoc specifications of functional forms for demand equations. 
Rather, the nonparametric approach deals with the raw demand data itself using 
techniques of finite mathematics. In particular I will show how one can directly 
and simply test a finite body of data for consistency with preference maximiza- 
tion, recover the underlying preferences in a variety of formats, and use them to 
extrapolate demand behavior to new price configurations. Thus each of the issues 
of concern to demand analysis mentioned above is amenable to the nonparamet- 
ric approach.2 

1. TESTING FOR CONSISTENCY WITH THE MAXIMIZATION HYPOTHESIS 

Let p' = (p , .. , p') denote the ith observation of the prices of some k goods 
and let x' = (x, . . ., Xk) be the associated quantities. Suppose that we have n 

'This work was financed by grants from the National Science Foundation and the Guggenheim 
Memorial Foundation. I wish to thank Erwin Diewert, Avinash Dixit, Joseph Farrell, Angus Deaton, 
and Sydney Afriat for comments on an earlier draft. 

2Another concern of applied demand analysis is the issue of testing for restrictions on the form of 
the utility function or budget constraint such as homotheticity, separability, etc. I address these 
questions in Varian [29, 30]. 
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observations on these prices and quantities, (pi, x'), i = 1, ... , n. How can we 
tell if these observations could have been generated by a neoclassical, utility 
maximizing consumer? 

DEFINITION: A utility function u(x) rationalizes a set of observations (p',x'), 
= 1,... , n, if u(x') ? u(x) for all x such that p'x'i= px. 

At the most general level there is a very simple answer to the above question: 
any finite number of observations can be rationalized by the trivial constant 
utility function u(x) = 1 for all x. The real question is when can the observations 
be rationalized by a sufficiently well behaved nondegenerate utility function? The 
best results in this direction are due to Sydney Afriat [1,2,3,4,5]. 

AFRIAT's THEOREM: The following conditions are equivalent: 
(1) There exists a nonsatiated utility function that rationalizes the data. 
(2) The data satisfies "cyclical consistency"; that is, 

pr r zpr> sp zpS t pqXq >.PqXr prx psx psx . . .p 

implies 

prxr =prxs pSX =psX . . . , pqXq =pqxr. 

(3) There exist numbers U', X' > 0, i = 1, . .. , n, such that 

U' Ui + XJpI(x'-xi) for i,j =1,...,n. 

(4) There exists a nonsatiated, continuous, concave, monotonic utility function 
that rationalizes the data. 

PROOF: See Appendix 1. 

There are several remarkable features of Afriat's theorem. First, the equiva- 
lence of (1) and (4) shows that if some data can be rationalized by any nontrivial 
utility function at all it can in fact be rationalized by a very nice utility function. 
Or put another way, violations of continuity, concavity, or monotonicity cannot 
be detected with only a finite number of demand observations. Secondly, the 
numbers U' and X' referred to in part (3) of Afriat's theorem can be used to 
actually construct a utility function that rationalizes the data. The numbers ui 
and X' can be interpreted as measures of the utility level and marginal utility of 
income at the observed demands. This is described in more detail in Appendix 1. 

Thirdly, parts (2) and (3) of Afriat's theorem give directly testable conditions 
that the data must satisfy if it is to be consistent with the maximization model. 
Condition (3) for example simply asks whether there exists a nonnegative 
solution to a set of linear inequalities. The existence of such a solution can be 
checked by solving a linear program with 2n variables and n2 constraints. 
Diewert and Parkan [10] describe some of their computational experience with 
this technique using actual demand data. Unfortunately the fact that the number 
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of constraints rises as the square of the number of observations makes this 
condition difficult to verify in practice for computational reasons.3 

Condition (2) seems rather more promising from the computational perspec- 
tive. As it turns out, there is an equivalent formulation of condition (2) which is 
quite easy to test. In addition this equivalent formulation is much more closely 
related to the traditional literature on the revealed preference approach to 
demand theory of Samuelson [24], Houthakker [12], Richter [21], and others. In 
order to describe this formulation we must first consider the following defini- 
tions: 

DEFINITIONS: Given an observation xi and a bundle x: 
(1) x' is directly revealed preferred to x, written x'R Ox, if px'x i_ p'x. 
(2) xi is strictly directly revealed preferred to x, written x iP x, if pixi > p ix. 
(3) x' is revealed preferred to x, written x'Rx, if p'x' ?p'xJ, pJxi 

-p'x1 ... , p "x m_p lx for some sequence of observations (xi, xl, . .. , x m) 
In this case we say that the relation R is the transitive closure of the relation R O. 

(4) xi is strictly revealed preferred to x, written x 'Px, if there exist observations 
xi and xI such that x'Rx', xjP xO, x'Rx. 

Note that in the above definitions we do not require x', xJ, x I, etc. to be 
distinct observations. We also adopt the convention that xRx for all bundles x. 

DEFINITIONS: A set of data satisfies the: 
(1) Strong Axiom of Revealed Preference, version 1 (SARP 1) if x'Rxl and 

xJRx' implies x' = xi; 
(2) Strong Axiom of Revealed Preference, version 2 (SARP 2) if x'Rx' and 

x' 7& xi implies not xJRx'; 
(3) Strong Axiom of Revealed Preference, version 3 (SARP 3) if x'Rx' and 

x i 7& xJ implies not xR?xl'; 
(4) Generalized Axiom of Revealed Preference (GARP) if x'Rx' implies not 

xjp Ox i. 

The most common statement of the Strong Axiom is probably SARP 2.4 It is 
clear that SARP 1 is equivalent to SARP 2. It is not quite so clear that SARP 3 is 
equivalent to SARP 2, but nevertheless they are equivalent. One can easily show 
that SARP 1, SARP 2, and SARP 3 imply GARP, but not vice versa. Basically 
SARP (in any of its formulations) requires single valued demand functions while 
GARP is compatible with multivalued demand functions. For example, the data 
in Figure 1 violate SARP but are quite compatible with GARP. 

3One can always use the duality theorem of linear programming to construct an equivalent 
problem with n2 variables and 2n constraints, but this problem may also be computationally difficult. 

4See Richter [22] for several variations on revealed preference axioms. Note that Richter considers 
a framework where the entire demand correspondence is given, rather than only a finite number of 
observations. This leads to a number of differences in the analysis. 
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This is why we refer to GARP as the Generalized Axiom of Revealed 
Preference. It turns out to be a necessary and sufficient condition for data to be 
consistent with utility maximization, and is in fact equivalent to Afriat's cyclical 
consistency condition. 

FACT 1: A set of data satisfies cyclical consistency if and only if it satisfies 
GARP. 

PROOF: Suppose that we have some data containing a violation of cyclical 
consistency so thatprxr prxs, .. . ,pis >px i,.. ,pi x q p qxr. Then x'Rx' 
by going around the cycle, and xjP0x' directly. Hence we have a violation of 
GARP. 

On the other hand, suppose we have some data that has a violation of GARP. 
Then writing out the violation in the above form shows we have a violation of 
cyclical consistency also. 

The equivalency of GARP and cyclical consistency is trivial from the mathe- 
matical point of view, but is quite important from the computational point of 
view, since GARP is quite simple to check in practice, as we discuss below. 

First, let us note that GARP can be restated as: if x Rxi then p-'x' p'x' for 
i, j = 1, . .. , n. Hence verifying that some data satisfies GARP is trivial once we 
know the relation R-the transitive closure of the direct revealed preference 
relation R 0. 

It is clear that the computation of the transitive closure of a finite relation is a 
finite problem. The only issue is how one might compute it efficiently. This 
question has been addressed in the economics literature by Koo [14,15,16], 
Dobell [7], and Uebe [28], and in the computer science literature by Warshall [31] 
and Munroe [20], among others. 

Most of the algorithms in the economics literature compute the transitive 
closure of a relation in time proportional to n4. The computer scientists, utilizing 
the law of comparative advantage, do a bit better. Warshall's algorithm computes 
the transitive closure in n3 steps, and Munroe describes a process that does it in 
time proportional to n274. Warshall's algorithm is especially easy to implement 
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and quite ingenious. It seems fast enough for the problems encountered in 
economics, as well. We therefore describe Warshall's algorithm in Appendix 2. 

At this point it might be worthwhile to be rather explicit about how one 
represents the relations R? and R in a form suitable for computation and how 
one actually verifies GARP in a systematic way. 

Let us construct an n by n matrix M whose i -j entry is given by: 

m.=[ 1 if pix' ?i_ pxi, that is, x'IR 0xi; 
O otherwise. 

M is constructed directly from the data; it summarizes the relation R O. Warsh- 
all's algorithm, described in Appendix 2, operates on M to create a matrix MT 
where 

m,= 1 if x'Rxi, 
{ 0 otherwise. 

MT can be used to check GARP in the following way. 

ALGORITHM 1: Checking data for consistency with GARP. 
Inputs: (p', xi), i = 1, . . . , n, and the matrix MT representing the relation R. 
Outputs: whether the data satisfies GARP or not. 
1. Is mt. = 1 and pixi > plx' for some i andj? If so, we have a violation of 

GARP. 

Algorithm 1 is easily implemented on a computer. According to Afriat's 
theorem and Fact 1 we can use Algorithm 1 to simply and directly test a finite 
amount of data with the utility maximization model. If some data satisfies 
GARP then there is a nice utility function that will rationalize the observed 
behavior. If the data contains a violation of GARP then there does not exist a 
nonsatiated utility function that will rationalize the data. Hence we have a 
straightforward and efficient way to check a finite amount of data for consis- 
tency with the neoclassical model of consumer behavior. 

2. RECOVERABILITY-ORDINAL COMPARISONS OF 
CONSUMPTION BUNDLES 

Let us turn now to a somewhat different issue, namely the recoverability 
question described in the introduction. The revealed preference relation R which 
we discussed in the previous section summarizes all of the preference information 
contained in the demand observations. Any complete preference ordering that 
rationalizes the data must contain R, and every completion of R that rationalizes 
the data is a possible preference ordering that generated the data. 

However, economists typically assume certain regularity conditions on the 
allowable preference orderings. For example we might restrict ourselves to 
preference orderings representable by utility functions that are nonsatiated, 
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monotonic, and concave. Afriat's theorem implies that we can always impose 
such restrictions with no loss of generality; and conversely, that it is impossible 
to detect violations of these restrictions with a finite amount of demand data. 

Suppose then that we are given two new consumption bundles xo and x' that 
have not been previously observed. Suppose that every continuous, nonsatiated, 
concave, monotonic utility function u(x) that was consistent with (p i, xi), 
i = 1, .. ., n, implied that u(x?) > u(x'). Then we might well be justified in 
concluding that xo was in fact preferred to x'. 

Alternatively we could adopt the following viewpoint. Suppose that every price 
vector p0 at which xo could be demanded-and that was consistent with the data 
(p, Xi), i = 1, . .. , n-also implied that x? was revealed preferred to x'. Then 
certainly we could conclude xo would be preferred to x' by any consistent 
consumer. Let us consider this approach in a bit more detail. 

First it is clear that if xo has already been observed-so we know the price at 
which xo is demanded-there is no problem in verifying whether x?Rx'. Hence 
we concentrate on the case where xo has not previously been observed. In this 
case we do not know what price to associate with x? for purposes of the revealed 
preference comparison. However, we do know what the set of possible prices 
could be: 

DEFINITION: Given any bundle xo not previously observed we define the set of 
prices that support xo by: 

S(x?) = {po : (p',x'), i = O,.. ., n, satisfies GARP andpoxo = 1> 

This is simply the set of prices at which xo could be demanded and still be 
consistent with the previously observed behavior. (The requirement thatpoxo = 1 
is a convenient normalization.) We note that Afriat's theorem implies S(x?) is 
nonempty for all x?-just let p0 be the supporting price at xo of any concave 
utility function that rationalizes the data. 

We can use the definition of GARP to provide a convenient description of 
S (x?): 

FACT 2: A price vector p0 is in S(x?) if and only if it satisfies the following 
system of linear inequalities: 

(1) p0x0=1, 

(2) p?x? ?p?xi for all x' such that x'Rx0, 

p0x < pox for all x'such that x'Pxo. 

PROOF: Follows immediately from the definition of GARP. 
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According to Fact 2, S(x?) is simply the solution set to a certain system of 
linear inequalities constructed from the data (p, xI), i = 1, . . ., n, and the 
relations R and P. 

We can use S(x) to describe the set of observations "revealed worse" than xo 
and "revealed preferred" to x' in the following way. 

R W(x0) = {x for all po in S(x?), poxo _ pox' for 

somex'Pxorp0x >p0x' for some xRx 

RP(x') = {x: for allp in S(x), px ? px' for some 

x'Px' orpx > px' for some x'Rx'}. 

More succinctly, and with only a slight abuse of our earlier definitions, we 
might write: 

RW(x)= {x : for allpo in S(x?), xPx} 

RP(x')= {x :forallpinS(x),xPx'}. 

These definitions formalize the idea described earlier: if x' is in RW(x?), then 
whatever the price at which xo is demanded-as long as it is consistent with the 
previous data-that price will necessarily make xo revealed preferred to x'. Thus 
every concave monotonic utility function that rationalizes the data must rank xo 
ahead of x'. Of course RP(x') has a similar interpretation. In fact it is clear from 
the definitions that xo is "revealed preferred" to x' if and only if x' is "revealed 
worse" than xo. We record this fact for future reference. 

FACT 3: xo is in RP(x') if and only if x' is in RW(x?). 

RP(x?) and RW(x?) are extremely important to the rest of our discussion so it 
is worthwhile presenting a few two-dimensional examples. The simplest case- 
with one data point-is presented in Figure 2. Let us verify that Figure 2 is 
correct. 

First, we consider RP(x?). In this simple case, RP(x?) is simply the convex 
monotonic hull of all points revealed preferred to xo: namely xl and xo itself. To 
verify this, let x be any point in RP(x?), and let p be any (nonnegative) price 
vector at which x could be demanded. It is geometrically clear that, whatever 
budget line is chosen, x will be revealed preferred to x?-either directly, or 
indirectly through the observation xl. (The reader might check his understanding 
of this point by indicating the region where x will be directly revealed preferred 
to xo by all supporting prices, and the region where x will only be indirectly 
revealed preferred to xo for some supporting prices.) So much for RP(x?). 

In order to verify the construction of RW(x?), we have to consider all of the 
prices at which xo could be demanded and still be consistent with the previous 
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data point (p, x1). In this case GARP imposes an important restriction onpo: 
the budget line through xo can be no steeper than the indicated angle 9. If it were 
steeper we would create a violation of GARP: we would have x Rxo, and x0P ox'. 
RW(x?) is the set of points that lie below all budget lines consistent with GARP 
-exactly as illustrated in Figure 2. 

Figure 3 presents a more complex example. As before RP(x?) turns out to be 
the convex monotonic hull of all the points revealed preferred to xo. RW(x?) is a 
bit more interesting. For all budgets that support xo and satisfy GARP, xo is 
revealed preferred to xi, and a fortiori to all the points beneath x .'s budget 
set ... including X,2 X3and so on. 

Now Figure 3 presents us with quite a bit of information about the indiffer- 
ence curve passing through xo: it cannot intersect RP(x?) or RW(x?)-hence it 
must lie in between the two. Put another way, the set of bundles preferred to xo 
(using the true utility function) must always contain RP(x?), and must be 

VX 

K2~~~~~x 

RPx " 

K~~~~~~~~ 

FIGURE 3. 
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contained in the complement of RW(x?). This last set, the complement of RW(x?), 
will be useful later on; we will call it NRW(x?) for "not revealed worse" than x?. 

It is clear from Figure 3 that RP(x?) and NRW(x?) are not only "inner" and 
"outer" estimates of the set of bundles preferred to xo, they are also the tightest 
inner and outer estimates. If a point x' is not contained in either of these sets 
then there is a nice utility function that rationalizes the data for which u(x?) 
_ u(x') ... and there is a nice utility function that rationalizes the data for 
which u(x') - u(x?). 

These statements are obvious for the two dimensional example given in Figure 
3, but in fact they are true in general. In order to establish this we need the 
following criterion for membership in RW(x?). 

FACT 4: A bundle x' is in RW(x?) if and only if there does not exist a p0 _ 0 
that satisfies the following system of linear inequalities: 

(1) poX0= 1, 

p?x?-' p?x' i for all x' such that x'Rx0, 

(2) p?x0 < pox i for all x' such that x'Px0, 

p?x0 _ p?xi for all xi such that x'Rx', 
(3) p?x0 < p?xi for all xi such that x1Px'. 

PROOF: Suppose x' is in RW(x?). Then any p0 that satisfies the first set of 
inequalities is a supporting price for xo by Fact 2. By the definition of RW(x?) it 
must therefore violate one of the inequalities in the second set. 

Conversely suppose x' is not in RW(x?). Then there is some supporting price 
p0 at which xo is not revealed preferred to x' by any chain. That is, p0 satisfies (2) 
and (3). 

Fact 4 gives us an explicit way to check whether x' is revealed worse than x?. 
And by Fact 3 we can see whether x' is revealed preferred to xo just by checking 
whether xo is revealed worse than x'. Hence we can recover all of the ordinal 
information in the data by checking whether there exists a solution to a simple 
set of linear inequalities. This is easily accomplished by solving a simple linear 
program. Note that the number of constraints in this program will at most be 
2n + 1-and generally be considerably smaller than 2n + 1. 

We can now verify the intuitively plausible statements made earlier concerning 
the relationship between RP(x?), RW(x?), P(x?) = {x: u(x) > u(x?)}, and 
W(x0) = {x: u(x0) > u(x)}. 

FACT 5: Let u(x) be any utility function that rationalizes the data. Then for all 
x?, RP(x?) C P(x?) C NRW(x?). 

PROOF: Obvious from the fact that x?Px' implies u(x?) > u(x') for any utility 
function that rationalizes the data. 
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FACT 6: Suppose that x' is not in RW(x?); then there exists a nonsatiated, 
continuous, concave monotonic utility function that rationalizes the data for which 
u(x?) ' u(x'). An analogous statement holds if x' is not in RP(xO). 

PROOF: Suppose x' is not in RW(x?). Then by Fact 4 there exists a p0 
supporting xo such that not x?Px'. Hence by using Fact 16 in Appendix 1, there 
is a utility function with the stated properties. 

FACT 7: Let x?Rx'. Then RP(x?) C RP(x'). Assume further that x' is observed 
as a chosen bundle at some price p'. Then RW(x?) D RW(x') and NRW(x?) 
c NRW(x'). 

PROOF: Let x be in RP(x'). Then for all p that support x we have xRxo. Since 
by hypothesis x?Rx', transitivity implies xRx'. Hence x is in RP(x'). 

Let x be in RW(x'). Since x' is actually chosen at price p' this implies x'Rx. 
Since by hypothesis x?Rx', transitivity implies x?Rx. Hence x is in RW(x?). 

3. RECOVERABILITY-ORDINAL COMPARISONS OF BUDGETS 

In many applications of demand analysis the natural objects of interest are not 
bundles of goods but are budgets-i.e. prices and expenditures. For example, if 
one wants to compare proposed changes in the tax structure, it is natural to 
compare alternative price configurations: given two proposed lists of prices and 
expenditures (p?, yo) and (p', y') we want to know which one is preferred by 
some individual consumer. 

If we had a measure of the consumer's indirect utility function v(p, y) we 
could simply compute v(p?, yo) and v(p', y') and compare the two numbers. If 
we have only a finite number of observations on a consumer's behavior (p', x'), 
i = 1, . .. , n, we could postulate a specification of an indirect utility function, 
derive the associated demand functions, and estimate the parameters of the 
resulting demand system. These estimated parameters of the demand system 
translate directly back to parameters of the indirect utility function which can 
then be used to make the welfare comparison between the two budgets. 

However, the parametric specification necessarily involves an unwarranted 
maintained hypothesis of functional form. How can we proceed to make a 
nonparametric comparison of (p?, yo) versus (p', y')? 

Let us recall the notion of indirect revealed preference of Sakai [23], Little [18], 
and Richter [22]. 

DEFINITION: Given an observed budget (pi, yi) and a budget (p, y), we say: 
(1) (p, y) is directly revealed preferred to (p', y'), written (p, y)R 0(p', yi), if 

px'i _y 

(2) (p, y) is strictly directly revealed preferred to (p', y'), written (p,y)P? 
(pi, yi), if pxi < y. 
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(3) (p, y) is revealed preferred to (pi, y'), written (p, y)R (p', y'), if R is the 
transitive closure of R0. 

(4) (p, y) is strictly revealed preferred to (p', y'), written (p, y)P(p', y') if 
there exist observed budgets (pi, yi) and (p', y') such that (p, y)R(pi, y'), 
(pi, yJ)P(p , y'), (p', y')R(p, y). 

Note that the indirect revealed preference relation works exactly opposite to 
the way the revealed preference relation works. To tell whether xo is revealed 
preferred to something we need to know the pricep0 at which xo is demanded- 
and then xo is revealed preferred to the infinite number of bundles beneath its 
budget line. To tell whether (p?, yo) is revealed worse than some budget we need 
to know the bundle xo that is demanded at (p?, yo)-and then (p?, yo) is 
revealed worse than the infinite number of budgets (p, y) for which pxo - y. 

Nevertheless we can apply the same approach to ordinal comparisons to 
construct dual versions of the results in Section 3. This duality is most clearly 
exhibited if we normalize prices by dividing through by expenditure so that 
budgets are uniquely described by p0 = (po, 1) and p' = (p', 1). 

DEFINITION: Given any price p0 not previously observed we define the set of 
bundles that support p0 by: 

S(pW) = {x?: (pi,xi), i = 0, . .. , n, satisfies GARP andpoxo = 1}. 

As before the requirement that poxo = 1 is only a normalization. 
We can now describe the set of budgets "revealed preferred" or "revealed 

worse" than a given budget by: 

R W(p?) = (p : for all x in S (p), 1 _ pox' for some p "Pp, 

or 1 > pox' for some p'Rp}, 

RP(p') = (p: for all x' in S(p'), 1 _ px' for some p'Pp' 

or 1 >px' for some pRx'} . 

Of course these definitions could also be stated as: 

RW(p?) = ( : for all x in S(p), 1 _px' for some xiPx, 

or 1 > px' for some x'Rx}, 

RP (p') = p: for all x' in S (p'), 1 ? px' for some x'Px' 

or 1 >px' for some xRx'}. 
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Or even more succinctly: 

RW(p?) = (p : for some x in S(p), p?Rp}, 

RP(p') = {p : for some x' in S(p'), pPp'}. 

We can now state the dual versions of Facts 2 and 4. The proofs are 
completely analogous and are left to the reader. 

FACT 8: A bundle x? is in S(p?) if and only if it satisfies the following system of 
linear inequalities: 

(1) poX0= 1, 

p'x ip x for all p' such that p?Rp', 
(2) 0 p'x < p'x for allp' such that p0Pp . 

FACT 9: A budget p' is in RP(p?) if and only if there does not exist an xo 0 
that satisfies the following system of linear inequalities: 

(1) pox0 =1, 

() pix' i_p ix? for allp i such that p?Rp i, 

p x <p ix? for allp i such that pPp',i 

pix' ? p x0 for all p' such that p'Rp', 

plx' < p'x for allp' such that p'Pp'. 

Of course the dual versions of Facts 3, 5, and 6 are also true. The statement 
and proofs of these are left to the reader as well. 

Another type of comparison that is often useful is to be able to compare 
bundles with budgets and vice versa. For example if we are given a direct and an 
associated normalized indirect utility function, u(x) and v(p), we could consider: 

(1) All budgets p preferred to a bundle xo: 

PP(x0) = (p: v(p) > u(x0)}. 

(2) All budgets p worse than a bundle xo: 

PW(x?) = ( p: v(p) < u(x?)}. 

(3) All bundles x preferred to a budget po: 

XP(p?) = x : u(x) > v(p?)}. 
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(4) All bundles x worse than a budget p?: 

XW(p?) = {x: u(x) < v(p?)}. 

Each of these constructs has its "revealed preferred" and "revealed worse" 
analogy: 

(1) All budgets p revealed preferred to a bundle x?: 

PRP(x0) = { p: for all x in S(p), xPx0}. 

(2) All budgets p revealed worse than a bundle xo: 

PRW(x?) = ( p: for allpo in S(x?), and all x in S(p), x?Px}. 

(3) All bundles x revealed preferred to a budgetpo: 

XRP(p?) = {x: for allp in S(x), and all xo in S(p?), xPx?}. 

(4) All bundles x revealed worse than a budgetpo: 

XR W(p?) = { x : for all xo in S(p?), x?Px }. 

If we want to verify whether p' is in PRP(x?), etc. we simply have to write 
down the associated system of linear inequalities following the general model of 
Facts 2 and 4. In cases (2) and (4) above, these systems involve unknown p's and 
unknown x's and are therefore somewhat involved. Cases (1) and (4) on the other 
hand are rather simple. We record this fact for future reference. 

FACT 10: 

PRP(x0) = {p :1 > px' for some x'Rx0 or 1 px' for some x iPx} , 

XR W(p) = {x :1 > pox' for some x'Rx or 1 _px' for some x Px}. 

4. EXTRAPOLATION-FORECASTING DEMANDED BUNDLES 

Suppose that we have observed choices (p , xi), i = 1, . .. , n, and that we are 
given some new budget (p?, 1) which has not been previously observed. What 
choice will the consumer make if his choice is to be consistent with the 
preferences revealed by his previous behavior? What is the best "overestimate" of 
the demanded bundle at p0? 

It turns out that we have already answered this question: it is simply the set of 
bundles that support the budget po, namely S(p?). For S(p?) is by definition all 
of the bundles of goods x which make the data (p', x'), i = 0, . .. , n, consistent 
with GARP. It is therefore the tightest overestimate of the demand correspon- 
dence at po: every bundle in S(p?) could be a chosen bundle at po and any 
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bundle outside of S(p?) could never be chosen. Figure 4 gives a simple example 
of S(p0). 

In an analogous manner S(x?) gives us the tightest overestimate of the inverse 
demand correspondence. 

5. RECOVERABILITY-BOUNDING A SPECIFIC UTILITY FUNCTION 

It is often desirable to know not only whether some bundle is preferred to 
some other bundle, but by how much one bundle is preferred to another. Now of 
course, there is no unique answer to this question: demand theory is completely 
ordinal in nature and there is no unique cardinal representation of utility. On the 
other hand it is a common practice to use certain specific cardinalizations of 
utility in measuring economic welfare. 

One particularly useful cardinalization is Samuelson's "money metric" utility 
function (Samuelson [25]). For reasons that will become apparent, I prefer to call 
this function the direct income compensation function. We can define it in two 
equivalent ways: 

m (p, xo) = inf px 

such that x is in P(x?) 

where P (x0) = {x: u (x) > u (x?0)} or, 

m(p,xo) = e(p,u(x0)). 

In the latter definition e(p, u) is the expenditure function and u(x) is the 
associated utility function. It is obvious from this latter definition that m(p, x) 
behaves like an expenditure function with respect to p. It is also straightforward 
to show that for fixed p, m(p, x) behaves like a utility function with respect to 
x?: since the expenditure function is always increasing in utility, m(p, x) is a 
monotonic transformation of a utility function and is therefore itself a utility 
function. 
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The direct income compensation function can be used to describe at least two 
measures of "how much" one configuration (po, x?) is preferred to another 
configuration (p', x'), namely Hicks' compensating and equivalent variations: 

C = m(p ,x') -m(p x ), 

E = m(p?,x') - m(p, x?) 

Since m(po,x) and m(p',x) are each utility functions that represent the same 
preferences, C and E must always have the same sign, but they generally will 
have different magnitudes. 

Let us accept for the moment that m(p,x) is a reasonable cardinalization of 
utility. The question that then arises is how we might measure it. If we are given 
a parametric form for the utility function or expenditure function it is always 
possible to compute m(p, x) directly. However, in the spirit of the nonparametric 
approach to demand analysis we ask how we might compare functions that 
provide bounds on m(p, x) that are consistent with a finite set of observed 
demands (p',x'), i = 1, . .. , n. 

In Section 2 we described the best inner and outer approximations to P(x?). It 
is natural to define the upper and lower bounds on the compensation function 
by: 

m (p, xo) = inf px 
such that x is in RP(x?), 

m - (p, x) = inf px 
such that x is in NRW(x0). 

I refer to these as the overcompensation and the undercompensation functions 
respectively. 

FACT 11: Let m+ and m - be defined as above. Then 

(i) m (p? x) _ m(p0, x)m- (p0,x) for allp 0,x. 

(ii) xiRx implies m+ (p, x') - m+ (p?, x). If x'Rxi and xi 

is chosen at some price pi, then m- (p0,xi) ? m (p0 xl). 

PROOF: (i) Follows from Fact 5. (ii) Follows from Fact 7. 

Fact 11 shows that: (i) m + (p, x) and m -(p, x) do bound the compensation 
function, and (ii) they are themselves utility functions that respect the revealed 
preference ordering. 
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Thus the overcompensation and undercompensation functions provide theoret- 
ically ideal bounds to the compensation function. The problem with these two 
functions is that they are rather difficult to compute in practice. Recall that Fact 
4 gave us a way to verify whether any given bundle x was an element of RP(x?) 
or RW(x?). However, I do not currently have any explicit description of these 
two sets of the sort suitable for mathematical programming techniques. So 
instead I have proceeded by defining two approximations to the overcompensa- 
tion and undercompensation functions. These two approximations do provide 
bounds, but they are just not the theoretically tightest bounds. We turn now to a 
description of these approximations. 

Let us define the convex, monotonic hull of { x': xRx?}: 

CM(x0) = interior of convex hull of {x : x ' xi, x'Rx0}. 

FACT 12: RP (x0) D CM(x0) for all x?. 

PROOF: Let x be a point in CM(x0) and letp be any price vector that supports 
x. Then I claim px > px' for some x'Rxo. For if not, p would separate x from 
CM(x0), a contradiction. Since xRx , x'Rxo we have that x is in RP(x?). 

Then we can define the approximate overcompensation function by: 

am+ (p, x) = inf px 
such that x is in CM(x0). 

Since CM(x0) is a convex polytope whose vertices are precisely those x Rxo, we 
can also describe this minimization problem by: 

am + (p, x?) = min px i, such that x 'Rxo. 

Note that this function is quite simple to compute. Nevertheless, this approxi- 
mate overcompensation function does share some desirable properties with the 
true overcompensation function. 

FACT 13: 

(1) am + (p, x) i_: m+ (p, x) i_' m (p x). 

(2) x?Rx implies am+ (p, x0) ' am+ (p, x). 

(3) There exists a convex monotonic preference order ? such that 

am (p,xo) = m(p,xo) for all xo. 

PROOF: The first two parts are obvious. The third is rather detailed. First we 
define the order and verify that it works; then we establish its properties. 
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Let x x' if and only if am + (p, x) ' am + (p, x'). Let us show that the 
compensation function that goes along with this order is in fact equal to 
am + (p, x). 

Let px* solve: 

px* = m(p,x-) = minpx 
such that am + (p, x) am + (p, x) 

and let px) solve 

px = am + (p,x) = min pxi, such that xkRx. 

Now xRx- so property (2) shows that am + (p, x) _ am + (p, x). Hence x is feasible 
for the first problem and therefore px 'px. 

On the other hand 

px* = am+ (p,x*) am+ (p,x) =px. 

Next we examine the properties of the preference ordering >. 
(a) {x : am+ (p, x) _ k} is convex. To prove this, we suppose am+ (p, x') ? k 

and am+ (p, x") k. Let 

A = {x' : x'Rx'}, 

B = x x Rx": } 

C = {xi: x1R(tx' + (I - t)x")} for some t such that 0 t ' 1. 

I claim that if x' is in C, then x' is in A U B. For to say xi is in C is to say that 
there exists a finite sequence such that: 

I. r 

p X _p X 

prxr prxs, 

p{x' ?p'(tx' + (1 - t)x"). 

From the last inequality it is easy to show that either p x3c'? p{x' or p _x 1pixi 
which establishes the claim. 

Now, since C c A U B, we have: 

k mmn px? mn px= am+ (p,tx' + (1 - t)x"). 
xinAUB x in C 

(b) If x' x?, then am+ (p, x')_ am+ (p,x?). This follows since {x': x'Rx'} 
c {xx': xRx0}. 

Thus am + (p?, x) is a utility function that bounds the compensation function 
and the bound is uniformly tight in the sense that there exists a "nice" prefer- 
ence ordering that actually generates am+ (p?, x) as its compensation function. 



962 HAL R. VARIAN 

X2 

m* 
\ \ 

mf 
~~~~~~~~am + 

(po, tx)/ 

\ \~~~~~~~~ 

xi t 
FIGURE 5. 

However it must be pointed out that this ordering typically exhibits regions of 
satiation, and is in general discontinuous. An example is given in Figure 5. Here 
all the points in the shaded region are assigned am + (p0, x) = pox 1. The approxi- 
mate overcompensation function increases linearly as one moves out the ray tx, 
then is constant, and then jumps discontinuously. 

We turn now to the problem of computing an approximation to the under- 
compensation function. The basic trick here is to get an "inner bound" to 
RW(x?) by eliminating the nonconvexities shown in Figure 3. We define this 
inner bound by: 

IRW(xo) = {x: for allpo in S(x0),x0Rx', x' 7 xo andp x p'x}. 

The crucial difference between RW(x?) and IRW(x?) is the requirement that 
xi # xo. This is made clear in Figure 3. The complement of IRW(x?), 
NIRW(x?), is then given by: 

NIRW(x0) = {x :pix > pvx' for some xi ' x0 such that x0Rx' 

for allpo in S(x0)}. 

This is simply a set of a points defined by a finite number of linear inequalities. 
Hence there is no problem in computing the "approximate undercompensation 
function": 

am (- p, inf pox 

such that x is in NIRW(x-). 

This also shares some desirable features with the true undercompensation func- 
tion: 
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FACT 14: 

(1) mm(p,x) ' m (p, x) ' am (p,x), 

(2) x0Rx' implies am - (p, x0) 'am - (p, x). 

PROOF: Left to the reader. 

Thus am - (p, x) bounds the true undercompensation function and it respects 
the revealed preference ordering, although it does not provide the theoretically 
ideal bound. 

6. RECOVERABILITY-BOUNDING A SPECIFIC 
INDIRECT UTILITY FUNCTION 

It is natural to extend the results of the last section to indirect utility 
comparisons. The function one wishes to bound is the indirect income compensa- 
tion function 

It(q; p, y)-=_e(q, v (p, y)) 

where e(q, u) is the expenditure function and v(p, y) is the indirect utility 
function.5 An equivalent way to define t(q; p, y) is: 

u(q; p, y) = inf qx 

such thatx is inXP(p,y)= {x :u(x) > v(p,y)}. 

Applying the approach of the last section, it appears natural to define the indirect 
overcompensation function and the indirect undercompensation function by: 

A (q; p, y) = infqx 

such that x is in XRP (p, y), 

,u.-(q;p,y)= inf qx 

such that x is in NXR W(p, y). 

Recall that XRP(p, y) consists of all bundles revealed preferred to the budget 
(p, y), and NXR W(p, y) consists of all bundles not revealed worse than the 
budget (p, y); formal definitions were given in Section 3. 

It is by now straightforward to verify the following fact: 

5The indirect compensation function was first discussed by McKenzie [19]. It has been extensively 
treated by Hurwicz and Uzawa [13]. 
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FACT 15: The indirect over and under compensation functions have the following 
properties: 

(i) ,- (q; p, y) -_ It(q; p, y) itM+ (q; p, y) 

(ii) (p,0y )R, y')R(pl, y') implies ,u- (q; p?, y?) ' ,- (q; p'l y'). 

If (p0, y0) is the budget for some observed choice 

then M' (q; po, yo) _ M (q; pl, y'). 

Let us now consider the computability of It+ and C-. As before, we can verify 
whether any given x' is an element of XRP(p, y) by solving a set of linear 
inequalities; however it seems difficult to get an explicit description of the sort 
necessary for mathematical programming. 

I therefore suggest the following approximation to It: 

alt + (q; p, y) = am+' (q, xi 

if (, y) = (p', y') for some observed (pi, yi), 

= max qx 

such that x is in S(p, y) otherwise. 

That is, if (p, y) is observed, we use the value of the approximate overcom- 
pensation function. Otherwise, we adopt the most conservative estimate and 
set a,u+ (q; p, y) equal to the maximum expenditure over all bundles in the 
"overestimate" of the demand correspondence. This clearly gives an upper 
bound on the true overcompensation function. 

The indirect undercompensation function is, on the other hand, quite simple to 
compute. Since Fact 10 gives an explicit description of XRW(p, y), as the 
solution set to a system of linear inequalities, we can simply compute y - (q; p, y) 
by solving a small linear program. An illustration of XRW(p, y) and ,u(q; p, y) is 
given in Figure 6. 

X2 

(q ; p0 y0)- 

NXRW (p0 

q xi 

FIGURE 6. 
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7. SOME APPLICATIONS 

The algorithms described in the previous sections have been assembled in a 
package of FORTRAN subroutines available from the author. Here I will briefly 
describe some computational experience with these routines.6 

First let us consider the issue of testing demand data for consistency with 
preference maximization. I have applied the routines of Section 1 to several sets 
of aggregate consumption data. In each case the aggregate consumption data was 
consistent with GARP: that is, it could have been generated by a single 
neoclassical "representative consumer." At first glance this may seem somewhat 
surprising given the negative theoretical results of Sonnenschein [27] and Debreu 
[8]. However, upon reflection, it is not difficult to understand why this occurs.7 

Most existing sets of aggregate consumption data are post-war data, and this 
period has been characterized by small changes in relative prices and large 
changes in income. Hence, each year has been revealed preferred to the previous 
years in the sense that it has typically been possible in a given year to purchase 
the consumption bundles of each of the previous years. Hence no "revealed 
preference" cycles can occur and the data are consistent with the maximization 
hypothesis. This observation implies that those studies which have rejected the 
preference maximization using conventional parametric techniques are rejecting 
only their particular choice of parametric form. 

Given that a set of aggregate consumption data are consistent with preference 
maximization, we can compute the over- and undercompensation functions 
described in Sections 5 and 6. One can use these functions to provide some 
interesting bounds on cost of living indices. 

Let (p', y') be a budget in year i and (p?, yo) be a budget in the base year. 
Then the true cost of living index is defined by: 

It(P0; pi~ yi 

y 
The true cost of living index measures how much money one would need in the 
base year to be as well off as one was in the comparison year expressed as a 
fraction of base year expenditure. In order to calculate i one needs the indirect 
income compensation function which is equivalent to requiring complete knowl- 
edge of the individual preference ordering over some range. 

However, we can use the results of Section 6 to compute upper and lower 
bounds on i that are consistent with any finite set of data. Table I presents the 
results of such a computation using U.S. aggregate consumption data by nine 
categories from 1947-78. 

Note the tightness of the bounds. Typically the overestimate is within 15 per 

6Diewert and Parkan [10] discuss their computational experience with some alternative nonpara- 
metric techniques. 

7For another independent recent application of revealed preference methodology to aggregate 
data see Landsburg [17]. 
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TABLE I 
UPPER AND LOWER BOUND ON TRUE COST OF LIVING INDEXa 

(CLASSICAL BOUNDS IN PARENTHESES) 

Year Upper Bound Lower Bound 

1947 .2496 .1841 
1948 .2666 .2004 
1949 .2715 .2024 
1950 .2906 .2113 
1951 .3107 .2237 
1952 .3246 .2401 
1953 .3409 .2548 
1954 .3497 .2634 
1955 .3744 .2886 
1956 .3905 .3013 
1957 .4096 .3172 
1958 .4205 .3324 
1959 .4500 .3596 
1960 .4682 .3779 
1961 .4806 .3903 
1962 .5082 .4208 
1963 .5342 .4499 
1964 .5707 .4865 
1965 .6119 .5342 
1966 .6581 .5864 
1967 .6906 .6089 
1968 .7524 .6809 
1969 .8089 .7406 
1970 .8553 .8104 
1971 .9174 .8906 
1972 1.0000 1.0000 
1973 1.0960 1.0409 
1974 1.1900 1.0478 (0.9496) 
1975 1.2994 1.0623 (1.0466) 
1976 1.4354 1.1615 
1977 1.5767 1.2764 
1978 1.7330 1.4404 

aData are U.S. consumption data by 9 categories from the NBER Time 
Series Database (Tables 2.3 and 2.4). The goods are motor vehicles, furniture, 
other durables, food, clothing, gasoline and oil, housing, transportation, and 
other services. 

cent of the underestimate which allows for a fairly tight estimate of the true cost 
of living. However, the accuracy of the table is slightly misleading in the 
following sense. 

Given only the information contained in the two observations (po, y?) and 
(p', y') it is possible to construct the classical bounds depicted in Figure 7. 
Improvements in these bounds are possible only when some budget set from 
another sample observation intersects the budget set given by (p', y') as in 
Figure 8. 

Given the nature of the data, these intersections are quite rare, and in fact only 
occur for two years 1974 and 1975. Again, the lack of variation in the price data 
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limits the power of these methods in this case. However, the techniques proposed 
here do provide an improvement on the classical bounds when sufficient varia- 
tion in price data is present. 

8. SUMMARY 

We have shown how the nonparametric techniques of revealed preference 
analysis can be used to: (1) test a finite amount of data for consistency with 
preference maximization model; (2) construct a nicely behaved utility function 
capable of rationalizing a finite amount of demand data; (3) compare previously 
unobserved consumption bundles and budgets with respect to their ordinal 
rankings; (4) compute cardinal bounds on the direct and indirect compensation 
functions; and (5) compute estimates of the direct and indirect demand corre- 
spondence consistent with previously observed demand data. 

University of Michigan 

Manuscript received August, 1980; final revision received August 1, 1981. 
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APPENDIX I: A PROOF OF AFRIAT's THEOREM 

In this appendix we give a proof of Afriat's theorem. The proof we give is based on earlier proofs 
by Afriat [4] and Diewert [9], but is somewhat more constructive. In fact we will exhibit an algorithm 
which will actually compute a utility function which rationalizes any given finite amount of data. It 
turns out that it is convenient to first describe the algorithm to do this computation and then verify 
that it works in the course of the proof of Afriat's theorem. 

The algorithm that we describe below makes use of a subroutine which calculates a maximal 
element of a finite set with respect to some binary relation. 

Let us recall the following definition. 

DEFINITION: An element xm of a set S is maximal with respect to a binary relation B if x Bxm 
implies x mBx'. 

If x m is a maximal element then either there is nothing that is ranked ahead of it or the only things 
that are "ahead" of it are things that are indifferent to it. 

If we have a finite set with a reflexive and transitive binary relation then there is always at least 
one maximal element; the following algorithm shows us how to find it. (See Sen [26, p. 11].) 

ALGORITHM 2: Finding a maximal element. 
Input: a reflexive and transitive binary relation B defined on a finite set S = (x. xn) 

indexed by I = (1, . . . n). 
Output: an index m where xlBxm implies xmBx'. 
1. Set m = 1, b?= xl. 
2. For each i = 1, . . n, if x'Bb'- set b' = x, and m = i. Otherwise set b' = b- 

We will let max(I) be a routine that performs Algorithm 2; that is, given a set S indexed by I, 
max(I) returns the index of a maximal element in S. 

It is perhaps not immediately obvious that Algorithm 2 works. Hence we provide the following 
proof. 

FACT 15: The output of Algorithm 2 is the index of a maximal element of S. 

PROOF: First we note that by the transitivity and reflexivity of B, bnBbJ for allj = 0, . . n. Also 
note that xm = bn. 

Now suppose we are given some xiBxm; i.e. x'Bb . We must show that b Bx'. First we observe 
that since x'Bb n, and b nBb' '-, then x'Bb '- 1. Line 2 of the algorithm then implies b' = x'. But then 
bnBb', b' = x' gives b nBx' as required. 

We note that the revealed preference relation R is transitive and reflexive, so Algorithm 2 will 
therefore correctly compute a maximal element. We can now present an algorithm which calculates 
numbers that satisfy the Afriat inequalities: 

ALGORITHM 3: Constructing the Afriat numbers. 
Input: A set of demand observations (p', x'), i = 1, . . . n, and the revealed preference relation R 

that satisfy GARP. 
Output: A set of numbers Ui, X' > 0, i = 1, . . . n, that satisfy the Afriat inequalities. 
1. I= (1, . . .,n}, B=0. 
2. Let m = max(I). 
3. Set E =i in I: xRx'}. If B = 0, set Utm = = 1 and go to 6. Otherwise go to 4. 
4. Set Um= miniE EminJ E Bmint UJ + XJpJ(x i- xi), U' ). 
5. Set Xm =max, EEmaxEBmax((U - U)/pi(xi- x'), 1). 
6. Set U'= Um, X' = Xm for all i & E. 
7. Set I = I\E, B = B U E. If I = 0, stop. Otherwise, go to 2. 

It is not at all obvious that Algorithm 3 does in fact compute numbers that satisfy the Afriat 
inequalities; however that fact will be verified in the proof of Afriat's theorem. 
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AFRIAT'S THEOREM: The following conditions are equivalent: 
(1) There exists a nonsatiated utility function that rationalizes the data. 
(2) The data satisfies GARP: if x'RxJ, then pJxJ' pJxi 
(3) There exist numbers U', X' > 0 such that U'-? U' + XJpJ(x' - xJ) for i, j = 1. n. 
(4) There exists a nonsatiated, continuous, concave, monotonic utility function that rationalizes the 

data. 

PROOF: (1)X=(2). Let u(x) rationalize the data. If pix' _p'xJ then u(x') ? u(xJ) by definition so 
that x'R0xJ implies u(x')? u(xJ). If p'x' > pix so that x'P0xJ, then I claim that u(x') > u(xJ). If 
not, then u(x') = u(xJ). But by local nonsatiation there is then an x such that p'x' > px and 
u(x)> u(x'). But then u(x) could not rationalize the data point (p ,x'). Hence x'P0xJ implies 
u(x') > u(xJ), and GARP follows. 

(2) =* (3). In order to prove this we need to verify that Algorithm 3 works; i.e., that the numbers it 
calculates do indeed satisfy the Afriat inequalities. 

At each pass through the algorithm a set of indices of "equivalent" elements, E, is removed from I 
and added to B, a set of indices of "better" elements. We will show that after step 6 is executed, the 
U's and the 's at that stage satisfy the Afriat inequalities for all the U's and 's calculated up to that 
point. That is, we will verify the following three statements: 

(a) U' _ UJ + xJpJ(x' - xJ) for allj in B and all i in E, 

(b) UJ' Ui + X'p'(xJ - xI) for allj in B and all i in E, 

(c) U' _ UJ + xJpJ(x' - xJ) for all i andj in E. 

Proof of (a): By step 4 of the algorithm: 

Ui= Ur= UJ +XJpJ(xi_xJ) foralljin B andalliin E. 

Proof of (b): First note that when the algorithm correctly executes statement 5, p (xl - x) > 0, 
for all j in B. If not, x RxJ for some j in B. But then i would have been moved into B before j was 
moved into B. 

Hence, the division is well defined and 

X.i = Xim > UJ- U for allj in B and all i in E. 
p (xi-x') 

Cross multiplying: 

X p'(xJ-x) UJ- U' for allj in B and all i in E 

which proves (b). 
Proof of (c): First note that i, j in E implies pJ'(x - xi) _ 0. If not xJP0x, giving a violation of 

GARP. Now for all i and j in E: 

U'-UJ and Xi=Xm>0 

so 

U'-' Uj + X'pJ(x' - xJ). 

(3)X=-(4). We define the function U(x) by 

U(x) = min { U' + Xp'(x -XI). 

It is clear from the definition that this piecewise linear function has the stated properties. Hence we 
only need to verify that it rationalizes the data. 
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First we note that U(x') = U' for all i = 1, . n. For suppose the minimum is attained at xm; 
then 

U(x') = Um + Xmpm(xm - x) C ui 

since Xmpm(x' - x') = 0. But if this inequality were ever strict we would violate one of the Afriat 
inequalities. 

Now suppose we are given some x such that pJxJ ' pJx. We must show that U(xJ) '- U(x). This 
follows directly from the following set of inequalities: 

U(x) = min { U' + Xp'(x- x')} 

_ U' + xJpJ(x - xj) 

_ UJ = U(xJ) 

since XJpJ(x - xi) _ 0. 
(4)=X(1). This is obvious. 

It is worthwhile giving a somewhat more heuristic argument for Afriat's Theorem, which more 
directly exhibits the meaning of the Afriat inequalities. Suppose that we have a differentiable concave 
utility function that rationalizes some data (p', x), i = 1, . . ., n. Then concavity implies 

u(x') _ u(xJ) + Du(xJ)(x'- xi) 

and utility maximization implies 

Du(xJ) = XjpJ. 

Putting these together we see that the Afriat conditions are a necessary condition for utility 
maximization in this differentiable framework. To motivate the sufficiency result we simply note that 
by concavity we have n overestimates of the utility at some point x since 

u(x) _ u(x') + Xp'(x-x') for i = 1, . . ., n. 

Hence the minimum of the right hand side over all observation i-the lower envelope-should give us 
a reasonable measure of the utility of x. 

This interpretation of the U"s as utility levels and the X's as the marginal utilities of income was 
first suggested by Afriat [1] and further elucidated by Diewert and Parkan [10]. Varian [29, 30], has 
used this sort of argument to derive finite necessary and sufficient conditions for a number of 
specializations of the utility maximization model. 

Finally we give a proof of one last fact concerning Afriat's construction that was stated without 
proof at one point in the text. If x' is not revealed preferred to xJ, then it is intuitively plausible that 
there is a nice utility function that rationalizes the data for which u(xJ) _ u(x i). This is verified in the 
next statement. 

FACT 16: If not x'RxJ, then there is a nonsatiated, continuous, concave, monotonic utility function 
that rationalizes the data for which u(xJ) - u(x'). 

PROOF: Simply ensure that max(I) returns the index j before the index i. Line 4 of Algorithm 3 
then implies that u(xJ)_? u(x'). 

APPENDIX II: COMPUTING THE TRANSITIVE CLOSURE 

The following discussion concerning the computation of the transitive closure of a relation is taken 
from Aho and Ullman [6], which in turn is based on Warshall [31]. Their results are very slightly 
generalized in a way that is useful in some other applications (Varian [29]). 
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Let M be an n by n matrix representing a binary relation; i.e. m I = 1 if X'R XJ and m, = 0 
otherwise. We can also think of M as representing a directed graph as in Figure 9: there is an arrow 
from vertex i to vertex j if and only if m. = 1. It is this interpretation that gives rise-somewhat 
indirectly-to Warshall's algorithm. 

Suppose now that we have an arbitrary directed graph and some associated cost function Cj where 
CY ' 0 measures the cost of transporting one unit of a good directly from vertex i to vertexj. If vertex 
i and vertexj are not directly connected c,J is by definition infinite. Now although the cost of moving 
i toj directly is given by C,j the cheapest cost of moving i toj may be much less. Warshall's algorithm 
is concerned with calculating the least cost of moving from any vertex to any other vertex. We denote 
the magnitude of this least cost by - 

I claim that if we can solve this "least cost problem" we can easily solve the "transitive closure" 
problem. We just create a cost matrix C where 

1 if ml =1, 
00 if mi = ?. 

Now we run C through Warshall's algorithm to compute the least cost matrix (,i ). Then if 
c= < oo we know that there is some path of length I that connects vertex i with vertex j. Hence a 
method to solve the least cost problem gives us a method to solve the transitive closure problem. 

ALGORITHM 4: Minimum cost of paths in a graph. 
Input: cy = cost of moving from node i to node j; Cy J- 0. 
Output: C, = minimum cost of moving from node i to node j. 
(1) Set k = 1. 
(2) For all i and j, if c, ck + ck1 set cy = C,k + Ckj. 
(3) If k < n, let k = k + I and go to 2. If k = n, set Ci, = Cy for all i and j. 

It is not at all obvious that Algorithm 4 does indeed compute the minimum cost of moving from i 
to j for all i and j. But the following argument shows that it works. 

FACT 17: Let (i, 1, . . ., m, j) be a path from i to j. Then E. _ c,1 + * + Cmj. 

PROOF: Consider the algorithm when it has completed step (2). We will show that c y is the cost of 
the cheapest path from i to j that passes through no intermediate vertex with index greater than k. 
This is certainly true for k = 1, and we suppose it to be true for k - 1. 

Let (i, 1, . . .i, m,]) be a path from i to j that passes through no intermediate vertex with index 
greater than k. If it does not pass through vertex k we are done. If it does pass through k, we can 
suppose it only passes through once, since removing a cycle cannot increase the cost. By the 
induction hypothesis Cik is the cheapest path from i to k with no intermediate vertex greater than 
k-l and similarly for Ck1. Since step (2) of the algorithm ensures c_ C,k + Ckj, we are done. 

Note that step (2) of the algorithm will be executed n3 times; thus we can compute the transitive 
closure of a relation in n3 computer additions and comparisons. Of course, if we are using Warshall's 
algorithm only to compute the transitive closure of a relation we can improve a bit on that bound. 
Consider for example the following FORTRAN subroutine which computes the transitive closure of 
a relation represented by the matrix M. 
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ALGORITHM 5: Computing the transitive closure. 
Input: M(I, J) = 1 if pi x' _ p'xJ, 0 otherwise. N = number of observations; nobs = maximum 

number of observations. 
Output: M(I,J) = 1 if xRxJ, 0 otherwise. 

SUBROUTINE TCLSR (M, N) 
DIMENSION M(nobs, nobs) 
DO30K= 1,N 
DO 20I= 1,N 
DO 10J= 1,N 
IF (M(I, K) .EQ. 0 .OR. M(K,J) .EQ. 0) GO TO 10 
M(I,J) = 1 

10 CONTINUE 
20 CONTINUE 
30 CONTINUE 

RETURN 
END 

This clearly computes the transitive closure by a straightforward modification of the argument 
given in Fact 17. 
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Revealed preference theory is a domain within economics that studies rationalizability of behavior by 

(certain types of) utility functions. Given observed behavior in the form of choice data, testing whether 

certain conditions are satisfied gives rise to a variety of computational problems that can be analyzed 

using operations research techniques. In this survey, we provide an overview of these problems, their 

theoretical complexity, and available algorithms for tackling them. We focus on consumer choice settings, 

in particular individual choice, collective choice and stochastic choice settings. 
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1. Introduction 

1.1. Motivation 

Our world is full of choices. Before we step outside the door in 

the morning, we have already chosen what to eat for breakfast and 

which clothes to wear. For the morning commute, we decide how 

to travel, by what route, and whether we will pick up coffee along 

the way. Dozens of small choices are made before it is even time 

for lunch, and then there are the less frequent, but more important 

decisions like buying a car, moving to a new home, or setting up 

retirement savings. Neoclassical economists hypothesize that such 

consumption choices are made so as to maximize utility. Given this 

hypothesis, it follows that each choice tells us something about 

the decision maker. In other words, choices reveal preferences , and 

thereby provide information about an underlying utility function. 

As we observe the choices of a decision maker over time, we can 

piece together more and more information. Given this information 

about choices made, a number of questions naturally arise: 

i) Does there exist a utility function which is consistent with 

the observed choices? 

ii) When a consistent utility function exists, does there exist 

one in a prespecified class? 

iii) When no consistent utility function exists, how close are the 

observed choices to being consistent? 

∗ Corresponding author. 

E-mail addresses: bart.smeulders@uliege.be (B. Smeulders), Yves.Crama@ 

uliege.be (Y. Crama), f.c.r.spieksma@tue.nl (F.C.R. Spieksma). 

These questions belong to the domain of revealed preference the- 

ory , pioneered by Samuelson (1938, 1948) . In this theory, it is usual 

to formulate a minimum set of prior assumptions, also known as 

axioms , which are based on a theory of choice behavior. Thus, re- 

vealed preference characterizations are defined as conditions on 

the observed choices of decision makers. This approach allows for 

direct tests of the decision models, without running the risk that 

excessively strong functional (mis)specifications lead to rejections 

of the model. 

Testing the axioms of revealed preference theory is a topic 

at the interface of economics and operations research. We focus 

on the algorithmic aspects of solving the corresponding optimiza- 

tion/decision problems, and we highlight some of the issues of in- 

terest from the operations research viewpoint. In particular, we ex- 

amine algorithms that can be used to test whether observed con- 

sumer choices satisfy certain revealed preference conditions. We 

also look at the tractability, that is, the computational complexity 

of algorithms for answering these questions. Following the classical 

framework of computational complexity (see, for instance, Garey 

& Johnson, 1979 or Cormen, Leiserson, Rivest, & Stein, 2001 ), we 

focus on worst-case time-bounds of algorithms. We are especially 

interested in whether a particular question is easy (that is, solv- 

able in polynomial time) or difficult ( np-hard ), and what the best- 

known method is for answering the question. 

Let us first motivate this computational point of view. In a very 

general way, it is clear that computational issues have become in- 

creasingly important in all aspects of science, and economics is no 

exception. This is reflected, in particular, in the economic litera- 

ture on revealed preference, where computational challenges are 

frequently and explicitly mentioned. We illustrate this claim with 

three quotes from recent papers. 

https://doi.org/10.1016/j.ejor.2018.04.026 

0377-2217/© 2018 Elsevier B.V. All rights reserved. 

https://doi.org/10.1016/j.ejor.2018.04.026
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2018.04.026&domain=pdf
mailto:bart.smeulders@uliege.be
mailto:Yves.Crama@uliege.be
mailto:f.c.r.spieksma@tue.nl
https://doi.org/10.1016/j.ejor.2018.04.026


804 B. Smeulders et al. / European Journal of Operational Research 272 (2019) 803–815 

Echenique, Lee, and Shum (2011) write: 

“Given [that calculating money pump costs can be a huge com- 

putational task], we check only for violations of garp that in- 

volve cycles of limited length: lengths 2, 3, and 4.”

Choi, Kariv, Müller, and Silverman (2014) write (in the online 

appendix): 

“Since the algorithm is computationally very intensive, for a 

small number of subjects we report upper bounds on the con- 

sistent set.”

Kitamura and Stoye (2014) write: 

“It is computationally prohibitive to test stochastic rationality 

on 25 periods at once. We work with all possible sets of eight 

consecutive periods, a problem size that can be very comfort- 

ably computed.”

These quotes signify the need for fast algorithms that can test 

rationality of choices made by an individual (or a group of indi- 

viduals), or at least to better understand the tractability of these 

underlying questions. 

Another trend that emphasizes the relevance of efficient com- 

putations in the domain of revealed preference is the ever- 

increasing size of datasets. As in many other fields of social and 

exact sciences, and as underlined by the pervasiveness of buz- 

zwords such as “big data” and “data science”, more and more in- 

formation is available about actual choices of decision makers. As 

a striking example, it is now commonplace for brands or large re- 

tailers to track the purchases of individual consumers or house- 

holds. This activity yields numerous datasets with sizes far be- 

yond those provided by laboratory experiments. This only rein- 

forces the need for efficient methods, in order to be able to tackle 

and to draw meaningful conclusions from huge datasets. For ex- 

ample, Cherchye et al. (2017a) use revealed preference models to 

study food choices. The sample they analyze contains records of all 

grocery purchases of 3645 individuals over a period of 24 months. 

It is extracted from the Kantar Worldpanel, which records the 

purchases of 25,0 0 0 households. Long-running longitudinal stud- 

ies actually provide large datasets of household consumption and 

other economic indicators. Cherchye, Demuynck, De Rock, and Ver- 

meulen (2017b) identify intrahousehold decision structures using 

such large datasets. 

In view of these considerations, there is a quickly growing body 

of work on computation and economics. As mentioned above, our 

objective is to give an overview of algorithmic problems arising in 

revealed preference theory. Due to the wide range of choice situ- 

ations to which revealed preference has been applied, providing a 

comprehensive overview is not a realistic goal. In this paper, we 

focus on algorithmic results concerning tests of rational behavior 

in consumer choice settings. For different discussions of the topic, 

we refer the reader to the recent monograph on the theory of re- 

vealed preference by Chambers and Echenique (2016) , and to a sur- 

vey by Crawford and De Rock (2014) on empirical revealed prefer- 

ence; an earlier overview can be found in Houtman (1995) . Finally, 

we should note that certain aspects of revealed preference theory, 

as a way of explaining choice behavior, have also been criticized; 

see, e.g., the works of Hausman (20 0 0) and Wong (2006) . 

1.2. Preference modeling and utility theory 

Before we close this introductory section, we find it useful to 

formulate a few comments on the relations between the stream of 

literature that we cover in this paper, and the literature on pref- 

erence modeling and utility-based decision making, as they have 

classically been handled in operations research (OR) and, more re- 

cently, in artificial intelligence (AI). Our goal is obviously not to 

survey these huge and active fields of research. Rather, we simply 

intend to clarify some of the similarities and differences that ex- 

ist between the “economic” setting of revealed preference theory, 

and an “operations research” or “artificial intelligence” perspective 

which may be more familiar to readers of this journal. 

Many of the results surveyed in this paper express conditions 

for the existence of a utility function which represents the pref- 

erences revealed through the choices made by consumers. Most 

of these results have been published by economists. On the other 

hand, in operations research and in decision theory, there is a 

long tradition of building utility functions (sometimes called “value 

functions” in the deterministic setting) based on information pro- 

vided by one or several decision makers. Classical references are, 

for instance, Fishburn (1970) , Keeney and Raiffa (1976) . Typically, 

in such settings, the preferences of the decision maker are ex- 

pressed by a limited number of pairwise comparisons of alterna- 

tives, or by rankings of the alternatives on several criteria. The ob- 

jective is then to build a utility function which is coherent with 

the expressed preferences, and which can be used, for instance, 

in order to evaluate each and every alternative on a numerical or 

ordinal scale, or to evaluate alternatives that have not yet been 

seen. The utility functions under consideration may be as sim- 

ple as a (weighted) sum of criteria, or may be selected within 

a parameterized class of functions whose parameters are to be 

determined. This type of approach has been extensively investi- 

gated, in particular, by researchers interested in multiple crite- 

ria problems with discrete alternatives (MCDA) (see, e.g., Greco, 

Ehrgott, & Figueira, 2016 , and in particular Bouyssou & Pirlot, 2016; 

Dyer, 2016; Moretti, Öztürk, & Tsoukiàs, 2016; Siskos, Grigoroudis, 

& Matsatsinis, 2016 for recent surveys of closely related topics; 

see also Corrente, Greco, Matarazzo, & Słowi ́nski, 2016 for exten- 

sions), or in conjoint analysis (see, e.g., Giesen, Mueller, Taneva, & 

Zolliker, 2010; Gustafsson, Herrmann, & Huber, 2007; Rao, 2014 ). 

More recently, similar questions have also been investigated in 

preference learning, a subfield of artificial intelligence (see, e.g., 

Corrente, Greco, Kadzi ́nski, & Słowi ́nski, 2013; Fürnkranz & Hüller- 

meier, 2010 ). 

Not surprisingly, all of these fields share a common theoretical 

basis, as well as many methodological concepts: preference rela- 

tions, transitivity, pairwise comparisons, to name but a few. Nev- 

ertheless, they also all have their own specific purposes, assump- 

tions, and applications, which lead to a variety of research ques- 

tions and results. The objective of this survey is not to carry out a 

systematic comparison of these various settings. However, in order 

to avoid any confusion in the mind of the reader, we find it use- 

ful to briefly outline some of the most striking differences between 

revealed preference theory and other utility-based frameworks. 

• The approaches proposed in OR and in AI are mostly prescrip- 

tive or operational in nature. Their main objective is to help an 

individual, or a group of individuals, to express and to structure 

their preferences, so as to allow them to make informed decisions . 

This is the case in MCDA, in conjoint analysis, and in prefer- 

ence learning. In contrast, the revealed preference literature is 

mostly normative (to the extent that it posits axioms of rational 

choice behavior) and descriptive (to the extent that it attempts 

to test whether actual consumer choices are consistent with the 

stated axioms), but it is not meant to support any decision mak- 

ing process . This is definitely a major distinguishing feature of 

revealed preference theory. 
• As a corollary of the previous item, an objective frequently pur- 

sued in OR and in AI is to explicitly build (“assess”, “elicit”) 

a utility function which is compatible with the data; this 

is the case in multiattribute utility theory or in conjoint 

analysis, most noticeably. (Of course, some classical approaches 

to multicriteria decision making do not explicitly attempt to 
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build the utility function of the decision maker; this is the case, 

for instance, of the interactive methods developed by Zionts 

and Wallenius (1976, 1983) , and of outranking methods such 

as described by Roy (1991) .) On the other hand, in the eco- 

nomic literature, a main objective is to check the coherence of 

consumer choices with rationality axioms proposed in the the- 

ory. Hence, building a compatible utility function (sometimes 

called the “recovery” issue in economics) is usually not viewed 

as the primary outcome of the process. It should be noted, 

however, that the existence proofs provided for instance by 

Afriat (1967b) or Varian (1982) (see Section 3 hereunder) are 

constructive and provide an analytical expression of the utility 

function, when it exists. Predicting, or bounding the demand 

bundles associated with future prices is also a topic in interest 

in economics; see, e.g., ( Blundell, 2005; Varian, 1982 ). 
• In utility theory and in MCDA, the alternatives are often con- 

sidered as “abstract”, “unspecified” entities: most papers in this 

stream start with the assumption that the decision maker is 

facing “a set A of alternatives”, or potential actions, but the na- 

ture of these alternatives is not directly relevant for the devel- 

opment of the theoretical framework (although, of course, the 

alternatives must be fully determined in any specific applica- 

tion of the theory); see ( Dyer, 2016; Fishburn, 1970; Keeney & 

Raiffa, 1976 ). In conjoint analysis or in preference learning, the 

alternatives are represented as multidimensional vectors asso- 

ciated with product attributes or other measurable features. In 

revealed preference theory, on the other hand, the observations 

consist of bundles of goods and their associated prices : this as- 

sumption is crucial for the definition of the preference relation, 

as we explain next. 
• In OR or AI, preferences among alternatives can be formulated 

in a variety of ways (e.g., through pairwise comparisons of al- 

ternatives), but are solely based on declarations of the deci- 

sion maker. In revealed preference settings, on the contrary, 

the preferences between bundles are explicitly derived by the 

analyst from pairwise comparisons of the prices of the bundles 

purchased by the decision maker. As a consequence, goods and 

their prices play a central role and provide another distinguish- 

ing feature of the theory. In particular, many of the theorems 

regarding the existence of utility functions can be stated in 

terms of prices and quantities of goods. 
• In MCDA, in conjoint analysis, or in preference learning, the 

procedure used to elicit the utility function often rests on the 

formulation of questions that can be submitted to the decision 

maker, possibly in an interactive, dynamic process; so, the de- 

sign of the most appropriate experiments is an important issue to 

be tackled by the analyst, as it influences the relevance of the 

collected data and the efficiency of the elicitation process (see, 

e.g., Gustafsson et al., 2007; Rao, 2014; Riabacke, Danielson, & 

Ekenberg, 2012 for a discussion of such design issues). In re- 

vealed preference settings, the analyst usually faces the results 

of uncontrolled experiments , in the form of a database of obser- 

vations which have been typically collected for other purposes 

(although the issue of experimental design is also discussed, for 

instance, in Blundell, 2005 ). 
• As a consequence of the previous point, the datasets consid- 

ered in the OR literature on preference modeling are often quite 

small, and computational complexity, or even algorithmic con- 

siderations have not been a main focus of attention in this area. 

(This is true, at least, for multiple criteria problems with dis- 

crete alternatives, as opposed to multiple criteria optimization 

problems which may feature an infinite set of feasible alterna- 

tives, such as a polyhedron described by linear inequalities, and 

which call for more efficient algorithmic approaches; see, e.g., 

( Wallenius et al., 2008 ) for a discussion of the growing impor- 

tance of algorithmic issues in multicriteria decision making.) On 

the other hand, the databases to be handled in revealed pref- 

erence studies are potentially huge, so that complexity issues 

naturally arise and have been considered, more or less explic- 

itly, by various researchers. They provide the main theme to be 

covered in this paper. 

As previously mentioned, in spite of the inherent differences 

outlined above, and in spite of the fact that the streams of re- 

search on utility-based decision making and on revealed prefer- 

ence have evolved in almost total separation, there remain some 

obvious commonalities between these topics. The objective of our 

survey, however, is not to establish a comparative study, but rather 

to provide the reader with an overview of fundamental results and 

of recent developments in the field of algorithmic revealed pref- 

erence theory. We hope that this may lay the ground for future 

cross-fertilization between operations research and revealed pref- 

erence theory. 

1.3. Outline of the survey 

We begin this survey by introducing key concepts in revealed 

preference theory, such as utility functions and preference rela- 

tions, in Section 2 . Next, in Section 3 , we state the fundamental 

theorems that characterize rationalizability in revealed preference 

theory. We explicitly connect rationalizability with properties of 

certain graphs, and we state the worst-case complexity of algo- 

rithms that establish whether a given dataset satisfies a particu- 

lar “axiom” of revealed preference. In Section 4, we look at vari- 

ous kinds of utility functions that have been considered in the lit- 

erature, and we provide corresponding rationalizability theorems. 

Section 5 deals with goodness-of-fit and power measures, which 

respectively quantify the severity of violations and give a mea- 

sure of how stringent the tests are. In Section 6, we explore col- 

lective settings, where the observed choices are the result of joint 

decisions by several individuals. Finally, in Section 7 , we look at 

stochastic preference settings where the decision maker still at- 

tempts to maximize her utility, but her preferences are not neces- 

sarily constant over time. Instead, the decision maker has a num- 

ber of different utility functions, and the function that she max- 

imizes at any given time is probabilistically determined. We con- 

clude in Section 8 . 

2. Preliminaries 

In this section, we lay the groundwork for the remainder of this 

paper: Section 2.1 introduces utility functions and their properties, 

Section 2.2 states the different axioms of revealed preference, and 

Section 2.3 shows how graphs can be built from a given set of ob- 

servations. 

2.1. Basic properties of utility functions 

Let us first introduce the basic ideas of revealed preference, by 

considering purchasing decisions and utility maximization. Specifi- 

cally, consider a world with m different goods. The decision maker 

selects a bundle of goods, denoted by the ( m × 1) vector q ∈ R 

m + . 
Throughout this paper, except where noted otherwise, we assume 

this choice is constrained by a linear budget constraint. The (1 × m ) 

vector p ∈ R 

m ++ denotes the prices of the goods, and b the avail- 

able budget. Under the classical hypothesis of utility maximization, 

the choice of the decision maker is guided by a utility function 

u (q ) : R 

m + → R + . Thus, the decision maker selects (consciously or 

not) an optimal bundle q by solving the following problem, for any 

given price vector p and budget b . 

Maximize u (q ) (1) 

subject to pq ≤ b. (2) 
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Following standard economic theory, we assume the utility 

function to be concave, continuous and strictly monotone, a set of 

properties we capture in the following definition: 

Definition 1 Well-behaved utility function. A utility function 

u (q ) : R 

m + → R + is well-behaved if and only if u is concave, con- 

tinuous, and strictly monotone. 

Notice that in this survey, we restrict ourselves exclusively to 

the deterministic setting where the utility function does not de- 

pend on unobservable, random elements beyond the bundle q . 

Another relevant property of a utility function is the potential 

uniqueness of its optima. This is formulated as follows: 

Definition 2 Single-valued utility function. A utility function 

u (q ) : R 

m + → R + is single-valued if and only if, for each p , b , the 

problem {Maximize u ( q ) subject to pq ≤ b } has a unique optimal so- 

lution q . 

Of course, there are many other properties that one may want 

to require from a utility function; we come back to this issue in 

Section 4 . 

2.2. Preference relations and axioms of revealed preference 

In the remainder of the paper, we assume that data is col- 

lected by observing, at n different points in time, the prices and 

quantities of all goods that are bought. This yields a dataset S = 

{ (p i , q i ) | i ∈ N} , where p i ∈ R 

m ++ is the vector of prices at time i , 

q i ∈ R 

m + is the bundle purchased at time i , and N = { 1 , 2 , . . . , n } . We 

use the word observation to denote a pair ( p i , q i ), i ∈ N . 

Samuelson (1938) introduced the definition of the direct re- 

vealed preference relation over the set of bundles. 

Definition 3 Direct revealed preference relation. For any pair of 

observations i , j ∈ N , if p i q i ≥ p i q j , we say that q i is directly revealed 

preferred over q j , and we write q i R 0 q j . 

The interpretation of Definition 3 is quite intuitive: indeed, note 

that p i q i and p i q j respectively express the total price of bundle q i 
and bundle q j at time i , that is, when the prices p i apply. If the in- 

equality p i q i ≥ p i q j holds, we thus observe that bundle q i was pur- 

chased at time i in spite of the fact that q i was at least as expensive 

as q j at time i . The natural conclusion is that the decision maker 

prefers bundle q i over q j (otherwise, she would have bought q j ), 

and this is the meaning of the relation R 0 . 

Assume now that we wish to test the hypothesis of utility max- 

imization. In the empirical setting, the budget available to the de- 

cision maker at time i ∈ N is generally unobservable, but it is nat- 

ural to assume that it is equal to p i q i . (As a matter of fact, if the 

decision maker maximizes her utility and if the utility function is 

monotonic, then the bundle picked at each period must exhaust 

the available budget, which is therefore equal to p i q i at time i .) 

We now wish to test whether the given dataset is consistent 

with the theory of utility maximization. For the data to be consis- 

tent with that theory, there must exist a utility function such that 

all purchasing decisions maximize utility under the budget con- 

straints. We say that a utility function satisfying this requirement 

rationalizes the data, and we call it a rationalizing utility function . 

Definition 4. Rationalizability 

A dataset S = { (p i , q i ) | i ∈ N} is rationalizable by a well-behaved 

(single-valued) utility function if and only if there exists a well- 

behaved (single-valued) utility function u such that for every ob- 

servation i ∈ N , 

u (q i ) ≥ u (q j ) for all j ∈ N with p i q i ≥ p i q j . 

This rationalizability concept is key in revealed preference the- 

ory, and goes back to the work of Antonelli (1886) . In words, 

Definition 4 expresses that, at each time i ∈ N , the choice of the 

decision maker was rational in the sense that she picked the bun- 

dle which maximizes her utility among all (observed) bundles q j , 

j ∈ N , whose total price p i q j (at time i ) was within the budget p i q i . 

Restricting the attention to the finite set of bundles { q j | j ∈ N } that 

actually have been observed in the dataset, rather than consider- 

ing the infinite universe R 

m + of all bundles that could potentially be 

bought by the decision maker, will allow us to test Definition 4 in 

an empirical setting, as we will find out in the next sections. 

In terms of the direct revealed preference relation, the utility 

function u ( q ) rationalizes the data if and only if u ( q i ) ≥ u ( q j ) for 

all i , j ∈ N such that q i R 0 q j : in the terminology of Fishburn (1970) , 

this means that u ( q ) is order-preserving for R 0 ; see also Bouyssou 

and Pirlot (2016) . Therefore, it is natural to investigate conditions 

on R 0 which ensure that a data set is rationalizable. This observa- 

tion led Samuelson (1938) to formulate the Weak Axiom of Revealed 

Preference . 

Definition 5 Weak Axiom of Revealed Preference ( WARP ). A 

dataset S satisfies warp if and only if, for each pair of distinct bun- 

dles q i , q j , i , j ∈ N with q i R 0 q j , it is not the case that q j R 0 q i . 

warp is the first rationalizability condition proposed in the lit- 

erature. It requires the revealed preference relation to be asym- 

metric. The intuition behind it is simple: if the decision maker 

shows through her decision that she prefers bundle q i over q j at 

time i , then she cannot at another time show that she prefers q j 
over q i (assuming she behaves as a utility maximizer). In other 

words, warp is a necessary condition for rationalizability by a 

single-valued utility function (see Section 3 ). On the other hand, 

we notice that warp does not require the direct revealed prefer- 

ence relation to be transitive, so that warp is not sufficient for ra- 

tionalizability. 

The work of Samuelson was further developed by Houthakker 

(1950) , who noted that by using transitivity, the direct revealed 

preference relation could be extended to an indirect relation. 

Definition 6 Revealed preference relation. For any sequence of 

observations i 1 , i 2 , . . . , i k ∈ N, if q i 1 R 0 q i 2 R 0 . . . R 0 q i k , we say that 

q i 1 is revealed preferred over q i k , and we write q i 1 R q i k . 

Using these revealed preference relations, Houthakker formu- 

lated the Strong Axiom of Revealed Preference . 

Definition 7 Strong Axiom of Revealed Preference (. sarp ) 

A dataset S satisfies sarp if and only if for each pair of distinct 

bundles q i , q j , i , j ∈ N with q i R q j , it is not the case that q j R 0 q i . 

In order to allow for indifference between bundles, Varian 

(1982) introduced the strict direct revealed preference relation, and 

using this relation, defined the generalized axiom of revealed prefer- 

ence , garp . 

Definition 8 Strict direct revealed preference relation. For any 

pair of observations i , j ∈ N , if p i q i > p i q j , we say that q i is strictly 

revealed preferred over q j , and we write q i P 0 q j . 

Definition 9 Generalized Axiom of Revealed Preference (. garp ) 

A dataset S satisfies garp if and only if for each pair of distinct 

bundles, q i , q j , i , j ∈ N , such that q i R q j , it is not the case that q j P 0 q i . 

Example 1. Consider the following small dataset consisting of four 

observations. 

p 1 = (2 , 2 , 2) q 1 = (2 , 2 , 2) 

p 2 = (1 , 2 , 4) q 2 = (4 , 0 , 2) 

p 3 = (2 , 1 , 3) q 3 = (4 , 4 , 0) 

p 4 = (4 , 2 , 1) q 4 = (0 , 1 , 4) 

Table 1 contains the values p i q j for i, j = 1 , . . . , 4 . 
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Table 1 

p i q j for i, j = 1 , . . . , 4 . 

q 1 q 2 q 3 q 4 

p 1 12 12 16 10 

p 2 13 12 12 18 

p 3 12 14 12 13 

p 4 14 18 24 8 

Fig. 1. Relations of the axioms of revealed preference. 

Fig. 2. A revealed preference graph. 

Clearly, there are direct revealed preference relations q 1 R 0 q 2 , 

q 2 R 0 q 3 , q 3 R 0 q 1 and a strict direct revealed preference relation 

q 1 P 0 q 4 . This dataset satisfies both warp and garp , but not sarp 

since q 1 R q 3 and q 3 R 0 q 1 . 

Fig. 1 illustrates the relations between the different core axioms 

of revealed preference theory ( warp , sarp , and garp ). Indeed, any 

dataset satisfying sarp satisfies both warp and garp , and there ex- 

ist datasets not satisfying sarp that satisfy both warp and garp 

(see Example 1 ). 

2.3. Graphs representing a dataset 

We now describe how to build a directed graph that can be 

used to represent a dataset; this construction originates from Koo 

(1971) . As we wil see in Section 3 , such graphs are very useful 

tools in deciding rationalizability. Given a datset S = { (p i , q i ) | i ∈ 

N} , we build a directed weighted graph G S = (V S , A S ) as follows. 

For each observation i ∈ N , there is a node in V S , i.e., V S := N . Fur- 

ther, there is an arc from node i to node j in A S exactly when 

p i q i ≥ p i q j and q i � = q j (or equivalently, when q i R 0 q j and q i � = q j ). Ob- 

serve that in G S there is no arc between distinct observations that 

feature an identical bundle. Finally, the length of an arc ( i , j ) ∈ A S 

equals p i (q j − q i ) . Notice that this length is always nonpositive. 

Example 1 Continued. The revealed preference graph correspond- 

ing to the dataset is given in Fig. 2 . Notice that the direct, but not 

strict, revealed preference relations correspond to an arc of length 

0, while the strict revealed preference relations correspond to arcs 

of strictly negative length. 

An alternative version of this construction was proposed by 

Talla Nobibon et al. (2016) . These authors defined a directed graph 

G R 0 
which is simply the graph of the direct preference relation R 0 : 

the node set of G R 0 
is again N , and there is an arc from node i 

to node j if and only if q i R 0 q j (including when q i = q j ). For the 

dataset in Example 1 , G R 0 
= G S since no bundle appears twice. 

3. Fundamental results 

In this section, we connect the fundamentals given in Section 2 , 

and we formulate the theorems that characterize rationalizability. 

Clearly, a main goal within revealed preference theory is to test 

whether there exists a (particular) utility function rationalizing a 

given dataset S . 

3.1. Testing GARP 

Necessary and sufficient conditions for rationalizability of a 

given dataset by a well-behaved utility function are given in 

Theorem 1 . 

Theorem 1. ( GARP ) 

The following statements are equivalent: 

1. The dataset S = { (p i , q i ) | i ∈ N} is rationalizable by a well-behaved 

utility function u ( q ) . 

2. There exist strictly positive numbers U i , λi for i ∈ N satisfying the 

system of linear inequalities 

U i ≤ U j + λ j p j (q i − q j ) ∀ i, j ∈ N. (3) 

3. S satisfies GARP . 

4. Each arc contained in a cycle of the graph G S has length 0. 

The inequalities comprising system (3) are called the Afriat In- 

equalities . It is not difficult to see that system (3) can be reformu- 

lated as a linear program. Indeed, notice that multiplying a given 

feasible solution ( U i , λi : i ∈ N ) by any positive constant gives again 

a feasible solution; thus, one can require each of the variables to 

be at least equal to 1, and not just strictly positive. The equiv- 

alence of statements 1 and 2 in Theorem 1 was established by 

Afriat (1967b) , and their equivalence with statement 3 is due to 

Varian (1982) . Statement 4 is easily derived from the definition of 

garp . Thus, Afriat (1967b) provided a linear program, formed by 

the Afriat Inequalities, that characterizes rationalizability by a well- 

behaved utility function. This allows us to conclude that garp can 

be tested in polynomial time (although no polynomial time algo- 

rithms for solving linear programming problems were known at 

the time when Afriat published his work). 

Rationalizability tests for consistency of datasets with garp 

have gone through a number of stages. Diewert (1973) states 

another linear programming formulation. Varian’s formulation of 

garp ( Varian, 1982 ) provides another algorithm for testing ratio- 

nalizability. This formulation shows that rationalizability can be 

tested by computing the transitive closure of the direct revealed 

preference relation. This transitive closure yields all revealed pref- 

erence relations, direct and indirect. Given the transitive closure, 

garp can be tested by checking, for each pair of bundles q i , q j , i , 

j ∈ N , whether both q i R q j and q j P 0 q i simultaneously hold. The bot- 

tleneck in this procedure is the computation of the transitive clo- 

sure. Varian suggests to use Warshall’s algorithm ( Warshall, 1962 ), 

which has a worst-case time complexity of O ( n 3 ); he also notes 

the existence of faster algorithms based on matrix multiplication, 

which at the time achieved O ( n 2.74 ) complexity ( Munro, 1971 ). By 

now, these algorithms have improved, the best known algorithms 

for general matrices having O ( n 2.373 ) time complexity ( Coppersmith 

& Winograd, 1990; Le Gall, 2014; Williams, 2012 ). 

Recently, Talla Nobibon, Smeulders, and Spieksma (2015) de- 

scribed an algorithm with a worst-case bound of O ( n 2 ) for garp , 

based on the computation of strongly connected components of 

the graph G S . An alternative, simple statement of the O ( n 2 ) test 

is derived in Talla Nobibon et al. (2016) from the observation that 
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a dataset S satisfies garp if and only if p i q i = p i q j for each arc ( i , 

j ) contained in a strongly connected component of G R 0 
(see Condi- 

tion 4 of Theorem 1 ). Shiozawa (2016) describes yet another way 

to test garp in O ( n 2 ) time, using shortest path algorithms. Talla 

Nobibon et al. (2015) prove a lower bound on testing garp , show- 

ing that no algorithm can exist with time complexity smaller than 

O ( n log n ). 

3.2. Testing SARP 

Analogously to Theorem 1 , we now give a theorem that pro- 

vides necessary and sufficient conditions relating to sarp . 

Theorem 2. ( SARP ) 

The following statements are equivalent: 

1. The dataset S = { (p i , q i ) | i ∈ N} is rationalizable by a well- 

behaved, single-valued utility function u ( q ) . 

2. There exist strictly positive numbers U i , λi for i ∈ N satisfying the 

system of linear inequalities 

U i < U j + λ j p j (q i − q j ) ∀ i, j ∈ N. (4) 

3. S satisfies SARP . 

4. The graph G S is acyclic. 

Houthakker (1950) , extending the work of Samuelson, intro- 

duced the formulation of sarp and proved the equivalence of state- 

ments 1 and 3. Statement 2 is an extension of Theorem 1 . 

Again, observe that system (4) can be cast into a linear opti- 

mization format. Using a matrix representation of the direct re- 

vealed preference relations, Koo (1963) describes a sufficient con- 

dition for consistency with sarp . Dobell (1965) is the first to de- 

scribe conditions which are both necessary and sufficient. Dobell’s 

test is based on the matrix representation of direct revealed prefer- 

ence relations. He proposes checking whether every square subma- 

trix of the direct revealed preference matrix contains at least one 

row and one column consisting completely of elements equal to 0. 

Since there is an exponential number of such submatrices, this test 

runs in exponential time. Koo (1971) later publishes another paper 

where he observes that testing sarp amounts to checking whether 

G S is acyclic: this can be done in O ( n 2 ) time, and is to-date the 

most efficient available method for testing consistency with sarp . 

An alternative version of this test is provided by Talla Nobibon 

et al. (2016) . These authors observe that S satisfies sarp if and only 

if, within each strongly connected component of G R 0 
, all bundles 

are identical. This condition can again be checked in O ( n 2 ) time by 

relying on Tarjan’s algorithm to compute all strong components of 

G R 0 
( Tarjan, 1972 ). 

3.3. Testing WARP 

For the sake of completeness, let us now state an easy result 

which is in fact nothing but a restatement of the definition of 

warp . 

Theorem 3. ( WARP ) 

The following statements are equivalent: 

1. The dataset S = { (p i , q i ) | i ∈ N} satisfies WARP. 

2. The graph G S does not contain any cycle consisting of two arcs. 

As mentioned before, satisfying WARP is only a necessary con- 

dition for rationalizability by a single-valued utility function. How- 

ever, in the special case where the dataset involves only two goods 

(i.e., m = 2 ), warp is both a necessary and sufficient condition for 

rationalizability by a single-valued utility function ( Little, 1949; 

Samuelson, 1948 ). 

Testing warp can be done in O ( n 2 ) time, since it is sufficient to 

test each pair of observations for a violation. More explicitly, after 

having computed the quantities p i q i and p i q j for all distinct i , j ∈ N , 

warp can be rejected if and only if there exists a pair of distinct i , 

j ∈ N such that p i q i ≥ p i q j and p j q j ≥ p j q i . 

Finally, let us point out that the graph characterization of garp , 

sarp and warp allows us to easily conclude (using Fig. 2 ) that the 

dataset given in Example 1 satisfies warp (as there are no 2-cycles 

in G S ), satisfies garp (as the cycle 1-2-3 has length 0), and does 

not satisfy sarp (as G S is not acyclic). 

Rationalizability questions are not limited to general utility 

functions. In the next sections, we are interested in the question 

whether datasets can be rationalized by utility functions of a spe- 

cific form ( Section 4 ), by collective choice processes ( Section 6 ), or 

by stochastic choice processes ( Section 7 ). 

4. Other classes of utility functions and their rationalizability 

Besides the basic tests discussed in the previous paragraphs, 

conditions and tests have been derived for testing rationalizabil- 

ity by various specific forms of utility functions. In this section 

we consider two additional classes of utility functions: utility func- 

tions that are separable ( Section 4.1 ), and utility functions that are 

homothetic ( Section 4.2 ). In addition, we assume from now on that 

the utility functions are non-satiated . This is a concept used to 

model the property that for every bundle q there is another bun- 

dle q ′ in the neighborhood of q that is preferred over q . Formally 

( Jehle & Reny, 2011 ): 

Definition 10 Non-satiated utility functions. A utility function 

u ( · ) is non-satiated if, for each q ∈ R 

m and for each ε > 0, there 

exists q ′ ∈ R 

m with || q ′ − q || ≤ ε such that u ( q ′ ) > u ( q ). 

The property of non-satiatedness expresses that, in the absence 

of a budget constraint, no particular bundle is preferred to all other 

bundles. It also imposes some form of continuity to the preferences 

over bundles. 

4.1. Separable utility functions 

Separability of a utility function refers to the property that dif- 

ferent goods in a bundle may have no joint effect on the utility of 

the bundle; then, goods can be regarded as independent of each 

other. More generally, it is often assumed that there exists a parti- 

tion of the goods into R subsets such that goods from different sets 

do not interact. Hence, separability of a utility function is defined 

with respect to a given partition of the goods. More concretely, 

given a partition of the goods into R disjoint sets, we denote by 

m j the number of goods in set j , 1 ≤ j ≤ R . Any bundle of goods 

can then be written as q = (q 1 , . . . , q R ) , with q j ∈ R 

m j 
+ denoting the 

vector of quantities for the goods in set j , 1 ≤ j ≤ R . 

There are two versions of separability: strong and weak. We 

first provide the definition of a strongly separable (also known as 

additive ) utility function. 

Definition 11 Strongly separable utility functions. A utility func- 

tion u ( q ) is strongly separable with respect to a given partition of 

the set of goods { 1 , 2 , . . . , m } if and only if there exist well-behaved 

functions f j (q j ) : R 

m j 
+ → R + for each j ∈ { 1 , . . . , R } such that 

u (q ) = f 1 (q 1 ) + f 2 (q 2 ) + · · · + f R (q R ) . 

The case where we partition the set of goods into two subsets, 

i.e., the case R = 2 , allows the following theorem due to Varian 

(1983) : 

Theorem 4. The following statements are equivalent: 

1. There exists a strongly separable, well-behaved, non-satiated utility 

function u ( f ( q 1 ), q 2 ) rationalizing the dataset S = { (p i , q i ) | i ∈ N} . 
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2. There exist strictly positive numbers U i , V i , λi with i ∈ N satisfying 

the system of linear inequalities 

U i ≤ U j + λ j p 
1 
j (q 1 i − q 1 j ) ∀ i, j ∈ N, (5) 

V i ≤ V j + λ j p 
2 
j (q 2 i − q 2 j ) ∀ i, j ∈ N. (6) 

Varian (1983) also gives a linear programming formulation for 

arbitrary R , allowing for a polynomial-time test of rationalizability 

by a strongly separable utility function. 

A weaker version of separability occurs when the utilities of the 

different sub-bundles are not necessarily summed to obtain the 

total utility; weak separability rather assumes that there exists a 

function, denoted u ′ , that takes as input the utilities of the indi- 

vidual groups of goods, and translates these into a total utility. 

Definition 12 Weakly separable utility functions. A utility func- 

tion u ( q ) is weakly separable with respect to q 1 , . . . , q R −1 if 

and only if there exist functions f j (q j ) : R 

m j 
+ → R + for each j ∈ 

{ 1 , . . . , R − 1 } and a function u ′ (x 1 , . . . , x R −1 , q 
R ) such that 

u (q ) = u 

′ ( f 1 (q 1 ) , . . . , f R −1 (q R −1 ) , q R ) . 

Following his paper on general utility functions, Afriat also 

wrote an unpublished work on separable utility functions ( Afriat, 

1967a ). Varian (1983) built further on this, giving a non-linear sys- 

tem of inequalities, reproduced below in Theorem 5 , for which the 

existence of a solution is a necessary and sufficient condition for 

rationalizability by a well-behaved, weakly separable utility func- 

tion with R = 2 sets of goods. 

Theorem 5. The following statements are equivalent. 

1. There exists a weakly separable, well-behaved, non-satiated utility 

function u ( f ( q 1 ), q 2 ) rationalizing the dataset S = { (p i , q i ) | i ∈ N} . 
2. There exist strictly positive numbers U i , V i , λi , μi for i ∈ N satisfy- 

ing the system of non-linear inequalities 

U i ≤ U j + λ j p 
2 
j 
(q 2 

i 
− q 2 

j 
) + (λ j /μ j )(V i − V j ) ∀ i, j ∈ N, (7) 

V i ≤ V j + μ j p 
1 
j 
(q 1 

i 
− q 1 

j 
) ∀ i, j ∈ N. (8) 

Diewert and Parkan (1985) extend this result to multiple sep- 

arable subsets. Cherchye, Demuynck, De Rock, and Hjertstrand 

(2015) prove that testing rationalizability by a weakly separable 

utility function is np-hard even for R = 2 . They also provide an 

integer programming formulation which is equivalent to (7) and 

(8) . Several heuristic approaches have been formulated for testing 

weak separability. Varian attempts to overcome the computational 

difficulties by finding a solution to the linear part of the system of 

inequalities and then fixing variables based on this solution, which 

linearizes the remainder of the inequalities. This implementation 

can be too restrictive, as the variables are usually fixed with values 

making the system infeasible, even if a solution exists, as shown 

by Barnett and Choi (1989) . Fleissig and Whitney (2003) take a 

similar approach, but improve on it by fixing variables with val- 

ues that are more likely to allow solutions to the rest of the sys- 

tem of equalities. Exact tests of (adaptations of) Varian’s inequal- 

ities are described in Swofford and Whitney (1994) and Fleissig 

and Whitney (2008) . Both use non-linear programming packages 

to find solutions and are limited in the size of datasets they can 

handle. Computational results in Cherchye et al. (2015) suggest 

that the integer programming approach is feasible for moderately 

sized datasets. Hjertstrand, Swofford, and Whitney (2016) use this 

approach in an application testing separability of consumption, 

leisure and money. When dropping the concavity assumption, the 

rationalizability problem remains np-hard , even if the dataset is 

Fig. 3. A revealed preference graph for testing homotheticity. 

limited to 9 goods ( Echenique, 2014 ). Quah (2014) provides an al- 

gorithm for testing separable utility functions without the concav- 

ity assumption. Swofford and Whitney (1994) modify (7) and (8) to 

account for consumers needing time to adjust their spending. 

4.2. Homothetic utility functions 

Another class of utility functions of interest are the homothetic 

utility functions . Their definition is based on the concept of a ho- 

mogenous function. 

Definition 13 Homogenous functions. A function f ( · ) is homoge- 

nous when f (λq ) = λ f (q ) , for each q ∈ R 

m and for each λ ∈ R . 

Definition 14 Homothetic utility functions. A utility function u ( · ) 

is homothetic when there exist a homogenous function f and a 

monotonic function � such that u (q ) = � ( f (q )) for each q ∈ R 

m . 

In effect, if u is homothetic and if u ( q i ) ≥ u ( q j ) for two bundles 

q i , q j , then for any constant α > 0, u ( αq i ) ≥ u ( αq j ). Theorem 6 gives 

necessary and sufficient conditions for rationalizability of a dataset 

by a homothetic utility function. Notice that for tests of homo- 

thetic utility functions described in the theorem, we assume the 

price vectors are normalized so that p i q i = 1 for all i ∈ N . One 

of these conditions is based on the following graph H = (V S , A S ) 

(whose construction is in the spirit of the construction described in 

Section 2.3 ). For each observation i ∈ N , there is a node in V S , i.e., 

V S := N . Further, for each ordered pair of observations ( i , j ), there 

is an arc of length log ( p i q j ) between the corresponding nodes. 

Fig. 3 shows a graph to test homotheticity for the dataset given 

in Example 1 . 

Theorem 6. The following statements are equivalent: 

1. There exists a non-satiated homothetic utility function u ( · ) ratio- 

nalizing the dataset S = { (p i , q i ) | p i q i = 1 , ∀ i ∈ N} . 
2. There exist strictly positive numbers U i for i ∈ N satisfying the in- 

equalities 

U i ≤ U j p j q i ∀ i, j ∈ N. (9) 

3. For all distinct choices of observations (i 1 , i 2 , . . . , i k ) , we have 

(p i 1 q i 2 )(p i 2 q i 3 ) . . . (p i k q i 1 ) ≥ 1 . (10) 

4. The graph H S does not contain a cycle of negative length. 

The equivalence of statements 1, 2 and 3 was proven by Afriat 

(1972, 1981) . Based on statement 4, Varian (1983) proposes a com- 

binatorial test which can be implemented in O ( n 3 ) time. 
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Table 2 

Complexity results for testing rationalizability by utility functions of specific 

forms. 

Type of utility function Type of test Time complexity 

General Graph test O ( n 2 ) 

Single-valued Graph test O ( n 2 ) 

Strongly separable System of linear ineq. Polynomial 

Weakly separable System of non-linear ineq. np-hard 

Homothetic Graph test O ( n 3 ) 

Homothetic and separable System of non-linear ineq. Open 

Varian (1983) also provides a test for homothetic, separable 

utility functions, which is again a difficult-to-solve system of 

non-linear inequalities. Finally, utility maximization in case of 

rationing (i.e., when there are additional linear constraints on the 

bundles which can be bought, on top of the budget constraint) is 

also handled by Varian. He provides a linear system of inequal- 

ities whose feasibility is a necessary and sufficient condition for 

rationalizability. 

In summary, various forms of utility functions are usually asso- 

ciated with a system of inequalities, for which the existence of a 

solution is a necessary and sufficient condition for rationalizability 

by such a utility function. The difficulty of these rationalizability 

tests crucially depends on whether the systems are linear or non- 

linear. General, single-valued and strongly separable utility func- 

tions are easy to rationalize, as their associated systems of inequal- 

ities are linear. The same holds true for utility maximization by 

a general utility function under rationing constraints. For general 

and single-valued utility functions, more straightforward tests have 

been developed. A polynomial test also exists for rationalizabil- 

ity by a homothetic utility function. On the other hand, for those 

utility functions associated with non-linear systems of inequali- 

ties, that is, weakly separable and homothetic separable functions, 

no efficient tests are known. For weakly separable utility, formal 

np-hardness results exist. For homothetic separable functions, the 

complexity question remains open. Varian (1982, 1983) provides a 

way to construct consistent utility functions for all of these set- 

tings. Table 2 summarizes these results. 

To complete our overview on rationalizability by general utility 

functions, we mention some recent work on indivisible goods and 

non-linear budget sets. More precisely, these are settings where 

the optimization problems (1) and (2) are further constrained by 

the conditions that (i) some components of q are integral, and (ii) 

the budget constraint is non-linear (e.g., in the presence of quan- 

tity discounts), and/or there are multiple budget constraints. Forges 

and Minelli (2009) give a revealed preference characterization for 

non-linear budgets, for which garp is a sufficient and necessary 

condition for rationalizability by an increasing and continuous util- 

ity function. Cherchye, Demuynck, and De Rock (2014) give condi- 

tions for rationalizability by an increasing, concave and continu- 

ous utility function for the setting with non-linear budgets. They 

note that, together with the results by Forges and Minelli, this al- 

lows for tests of the concavity of utility functions which are not 

possible in the setting with linear budgets. Computationally there 

is no obvious easy way to test the conditions laid out by Cher- 

chye et al. in general. However, they show that if the budgets can 

be represented by a finite union of polyhedral convex sets, a sys- 

tem of linear inequalities provides conditions for rationalizability. 

Fujishige and Yang (2012) and Polisson and Quah (2013) extend 

the revealed preference results to the case with indivisible goods. 

They find that garp is a necessary and sufficient test for rationaliz- 

ability, given a suitable adaptation of the revealed preference rela- 

tions for their setting. Cosaert and Demuynck (2015) look at choice 

sets which are non-linear and have a finite number of choice al- 

ternatives. They provide revealed preference characterizations for 

weakly monotone, strongly monotone, weakly monotone and con- 

cave, and strongly monotone and concave utility functions, all of 

which are easy to test, either by some variant of garp or a system 

of linear inequalities. 

5. Goodness-of-fit and power measures 

An often cited limitation of rationalizability tests is that they 

are binary tests: either the dataset is rationalizable or it is not. 

Thus, when violations of rationalizability conditions are found, 

there is no indication of their severity. Likewise, when the ra- 

tionalizability conditions are satisfied, this could be because the 

choices faced by the decision maker make it unlikely that vio- 

lations would occur. To refine this yes/no verdict inherent to ra- 

tionalizability, so-called goodness-of-fit measures and power mea- 

sures have been proposed in the literature. Goodness-of-fit mea- 

sures ( Section 5.1 ) quantify the severity of violations, while power 

measures ( Section 5.2 ) indicate how far the choices are from vio- 

lating rationalizability conditions. 

5.1. Goodness-of-fit measures 

A first class of goodness-of-fit measures is based on the sys- 

tems of inequalities which are used to establish rationalizability 

of many different forms of utility functions (see Section 3 ). Slack 

variables are added to these systems, so as to relax the constraints 

on the data. An optimization problem can then be defined, for 

which the objective function is the minimization of some appro- 

priate function of the slack variables, such as their sum, under the 

constraint that the system of equalities is satisfied. The goodness- 

of-fit measure is then equal to the value of the optimal solution of 

this optimization problem. Such an approach was first described by 

Diewert (1973) and has since been used in a number of different 

papers for various forms of utility functions (see Diewert & Parkan, 

1985; Fleissig & Whitney, 2005; Fleissig & Whitney, 2008 for weak 

separability, Fleissig and Whitney (2007) for additive separability). 

Computing the goodness-of-fit measure is easy if the system of in- 

equalities is linear, which is the case for general utility functions 

and additive separable utility functions. In the case of non-linear 

systems of inequalities, minimizing the sum of the slack variables 

is at least as hard as finding a solution to the system without slack 

variables. Since this is already np-hard for weakly separable utility 

functions, the hardness result remains valid for these goodness-of- 

fit measures. 

A second class of goodness-of-fit measures is due to Afriat 

(1973) , and is based on strengthening the revealed preference re- 

lations. In this case, revealed preference relations are assumed to 

hold if the difference in price between the chosen bundle and an- 

other affordable bundle is big enough. This is done by introducing 

efficiency indices 0 ≤ e i ≤ 1 for each observation i ∈ N , and defining 

the revealed preference relation R 0 (e 1 , . . . , e n ) as follows: 

for all i, j ∈ N , if e i p i q i ≥ p i q j , then q i R 0 (e 1 , . . . , e n ) q j . (11) 

Obviously, when e i = 1 , conditions (11) are the same revealed pref- 

erence relations as in Definition 3 ; when e i < 1, condition (11) can 

be interpreted as defining a revealed preference relation between 

two bundles for which the price difference exceeds a certain frac- 

tion of the budget. As a result, there will be fewer revealed pref- 

erence relations, and axioms such as warp , sarp and garp will be 

easier to satisfy. A goodness-of-fit measure is then the maximum 

value of the sum of the e i values, under the constraint that a given 

axiom of revealed preference is satisfied by R 0 (e 1 , . . . , e n ) . Three 

different goodness-of-fit indices based on this idea have been re- 

spectively described by Afriat (1973) , Varian (1990) and Houtman 

and Maks (1985) . Of these three, Afriat’s index is the simplest, as 
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it constrains the e i values to be equal for every observation (e 1 = 

e 2 = · · · = e n ) . Afriat’s index can be computed in polynomial time 

(see Smeulders, Spieksma, Cherchye, & De Rock, 2014 ), although 

for a long time the only published algorithm was an approxima- 

tion algorithm due to Varian (1990) . Varian’s index, in contrast, 

allows the e i values to differ between observations. This makes 

computation less straightforward and the computation of this in- 

dex was thus perceived to be hard (as confirmed by Smeulders 

et al. (2014) who showed that computing Varian’s index is np- 

hard ). This led to work on heuristic algorithms for computing Var- 

ian’s index by Varian (1990) , Tsur (1989) , and more recently by 

Alcantud, Matos, and Palmero (2010) . Finally, Houtman and Maks 

(1985) proposed to constrain the e i values to be either 0 or 1. In 

effect, maximizing the sum of the e i ’s then amounts to remov- 

ing the minimum number of observations so that the remaining 

dataset is rationalizable. Houtman and Maks established a link be- 

tween the feedback vertex set problem (known to be np-hard ) and 

their index, thus informally showing its difficulty; see Hjertstrand 

and Heufer (2015) for two methods computing the Houtman–Maks 

index. The complexity of computing all three of the above in- 

dices is addressed by Smeulders et al. (2014) , who provide poly- 

nomial time algorithms for Afriat’s index for various axioms of re- 

vealed preference, and establish NP-hardness of Varian’s index, and 

of the Houtman–Maks index. Even stronger, it is shown that no 

constant-factor approximation algorithms running in polynomial 

time exist for these indices unless p = np . Boodaghians and Vetta 

(2015) strengthen these hardness results, by showing that comput- 

ing the Houtman–Maks index is already np-hard for datasets with 

only 3 goods. 

A third approach to the definition of goodness-of-fit measures 

was introduced by Varian (1985) . When a dataset fails to satisfy 

the rationalizability conditions, the goal is here to find a dataset 

which does satisfy the conditions and is only minimally differ- 

ent from the observed dataset. The problem of finding these mini- 

mally different rationalizable datasets can be formulated as a non- 

linear optimization problem, which, in general, is hard to solve. To 

avoid solving large scale non-linear problems, De Peretti (2005) ap- 

proaches this problem with an iterative procedure. Working on 

garp , his algorithm tackles violations one at a time, also perturbing 

only one observation at a time. If a preference cycle exists between 

two bundles of goods q i and q j , i , j ∈ N , he computes the mini- 

mal perturbation necessary to remove the violation both for the 

case in which q i R 0 q j (in which case q i is perturbed) and for the 

case in which q j R 0 q i (in which case q j is perturbed). The small- 

est of the two perturbations is then used to update the dataset, 

and the new dataset is checked again for garp violations. While 

this algorithm does not guarantee an optimal solution, it allows 

handling large datasets, especially if the number of violations is 

small. 

A number of recent papers introduce new goodness-of-fit mea- 

sures, thus showing continued interest in this topic. Echenique 

et al. (2011) define the mean and median money pump indices. 

In their paper, the severity of violations of rationality is measured 

by the amount of money which an arbitrageur could extract from 

the decision maker by exploiting her irrational choices. This is re- 

flected by a money pump index for every violation of rationality. 

Echenique et al. propose to calculate the money pump index of the 

mean and median violation as measures of the irrationality of the 

decision maker. Computing these measures is np-hard , as shown 

in Smeulders, Cherchye, De Rock, and Spieksma (2013) . In the lat- 

ter paper, it is also shown that computing the money pump index 

for the most and least severe violations can be done in polynomial 

time. Furthermore, Apesteguia and Ballester (2015) introduce the 

minimal swaps index. Informally, the swaps index of a given pref- 

erence ordering over the alternatives is calculated by counting how 

many better alternatives (according to the preference order) were 

not chosen over all choice situations. The minimal swaps index is 

then the swaps index of the preference order for which this in- 

dex is minimal. Apesteguia and Ballester show that computing the 

minimal swaps index is equivalent to the np-hard linear ordering 

problem. Finally, Dean and Martin (2016) define the minimum cost 

index. This index is the minimum cost of removing revealed pref- 

erence relations, such that the remaining relations induce no vio- 

lations. The cost of removing violations is weighted by the price 

difference of the considered bundles. Dean and Martin show that 

computing this index is np-hard by a reduction from the set cov- 

ering problem. 

5.2. Power measures 

Power measures were first introduced by Bronars (1987) , with 

the following motivation. Consider a test that allows us to deter- 

mine whether the observations in a dataset are coherent with the 

choices of a utility-maximizing decision maker. If the outcome of 

the test is positive for most datasets, including those where choices 

were not made so as to maximize a utility function, then obviously 

the test is not good at discriminating between utility maximizing 

behavior and alternative behaviors. Power measures are numeri- 

cal values indicating to what extent a test is able to discriminate 

between samples coming from a rational or from an irrational de- 

cision maker. 

Bronars (1987) proposes to use random choices as an alterna- 

tive model of behavior. The likelihood of this alternative model sat- 

isfying the rationalizability conditions (that is, passing the test) is 

determined by Monte Carlo simulation. The higher this likelihood, 

the lower the power of the test. Andreoni and Miller (2002) use 

a similar approach: they generate synthetic datasets by bootstrap- 

ping from observed choices, and use these alternative datasets to 

establish the power of their test. 

Bronars’s Monte Carlo approach has also been applied to 

goodness-of-fit measures. The value of a goodness-of-fit measure is 

hard to interpret without context. There is no natural level which, 

if crossed, indicates a large deviation from rational behavior. Fur- 

thermore, the values of goodness-of-fit indices which point to large 

deviations may vary from dataset to dataset, as the choices faced 

by a decision maker may or may not allow large violations of ra- 

tionalizability. One way to establish what values are significant, is 

to generate random datasets by a Monte Carlo approach and to 

calculate their goodness-of-fit measures. This yields a distribution 

of the values of goodness-of-fit measures for datasets of random 

choices. It can then be checked whether the goodness-of-fit mea- 

sures computed for the actual decision makers are significantly dif- 

ferent. Examples of this approach are found in Choi, Fisman, Gale, 

and Kariv (2007) and Heufer (2012) . As this framework requires 

a large number of computations of the goodness-of-fit measures, 

there is a strong incentive to use efficient algorithms and to favor 

measures which are easy to calculate. 

Beatty and Crawford (2011) propose to evaluate the power of 

a test by calculating the proportion of possible choices which 

would pass the test. Andreoni, Gillen, and Harbaugh (2013) give 

an overview of power measures and introduce a number of new 

power measures themselves. The measures they introduce are 

adaptations of goodness-of-fit measures. For example, they intro- 

duce a jittering index, which is the minimum perturbation of the 

data such that the rationalizability conditions are no longer satis- 

fied, in line with the work of Varian (1985) . They also introduce 

an Afriat Power Index, which is the converse of Afriat’s goodness- 

of-fit measure; that is, instead of considering the maximum value 

of e ≤ 1 in (11) such that the dataset satisfies the considered axiom 

of revealed preference, they propose to determine the minimum 

value of e ≥ 1 such that the dataset does not satisfy the conditions. 
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6. Collective choices 

In the preceding sections, datasets are analyzed as if a sin- 

gle person buys or chooses goods, so as to maximize her own 

utility function. However, in many cases purchasing decisions are 

observed at the household level that consists of multiple deci- 

sion makers. The choices that result from collective decision mak- 

ing may appear irrational, even if all individual decision makers 

have rational preferences. For example, Arrow’s impossibility theo- 

rem ( Arrow, 1950 ) shows that for non-dictatorial, unanimous pref- 

erence aggregation functions, independence of irrelevant alterna- 

tives cannot be guaranteed. As a result, the group can exhibit 

choice reversals if more choice alternatives are added. Moreover, a 

group can use different choice mechanisms at different times, giv- 

ing more or less power to different group members, also leading 

to choices that appear irrational. Analyzing datasets resulting from 

collective choices thus calls for collective models, which account 

for individually rational household members, and in addition, some 

decision process for splitting up the budget. Example 2 shows how 

the joint purchases of two rational decision makers can appear ir- 

rational when they are analyzed as if there was a unique decision 

maker. 

Example 2. Consider the following dataset with 2 periods and 3 

goods. 

p 1 = (3 , 2 , 1) q 1 = (5 , 4 , 7) (12) 

p 2 = (2 , 3 , 1) q 2 = (3 , 5 , 9) (13) 

Then, bundle 1 would be strictly revealed preferred over bundle 2, 

since p 1 q 1 = 30 > 28 = p 1 q 2 . Likewise, bundle 2 would be strictly 

revealed preferred over bundle 1, since p 2 q 2 = 30 > 29 = p 2 q 1 . The 

dataset thus does not satisfy garp . However, consider the following 

datasets. 

p 1 = (3 , 2 , 1) q 1 1 = (5 , 0 , 0) 

p 2 = (2 , 3 , 1) q 1 2 = (3 , 0 , 0) 

and 

p 1 = (3 , 2 , 1) q 2 1 = (0 , 4 , 7) 

p 2 = (2 , 3 , 1) q 2 2 = (0 , 5 , 9) 

It is clear that both of these satisfy garp , since for the first dataset 

q 1 
1 

> q 1 
2 
, and for the second dataset q 2 

2 
> q 2 

1 
. Furthermore, notice 

that q 1 = q 1 1 + q 2 1 and q 2 = q 1 2 + q 2 2 . The datasets (12) and (13) thus 

represent the joint purchases of two rational decision makers. 

The initial contributions in revealed preference theory dealing 

with collective choice are published by Chiappori (1988) , for the 

so-called labor supply setting. This setting corresponds to a situa- 

tion in which there are two goods, namely leisure time and aggre- 

gated consumption, which are observed for each member in the 

household. Also, we assume that the household consists of two 

decision makers. The behavior of this household is then rational- 

izable if the consumption can be split up so that the resulting 

individual datasets of leisure and consumption are rationalizable 

for all individual household members. Chiappori provides condi- 

tions for rationalizability, both for the cases with and without ex- 

ternalities of private consumption. To model the labor supply set- 

ting in the collective choice model, we use a dataset of the form 

S = { (w 

1 
i 
, w 

2 
i 
, L 1 

i 
, L 2 

i 
, C i ) | i ∈ N} , with w 

1 
i 

and w 

2 
i 

corresponding to 

the wages of household members 1 and 2, with L 1 
i 

and L 2 
i 

cor- 

responding to their respective leisure time, and with C i denoting 

the level of (collective) consumption in the household ( i ∈ N ). No- 

tice that, since wages can be seen as the price of leisure time, and 

there is a unit price for aggregated consumption, we can write 

p i = (w 

1 
i 
, 1 ) and q i = (L 1 

i 
, fC i ) (for some fraction 0 ≤ f ≤ 1). Hence, 

the dataset S can still be seen as a set of observations consisting of 

price vectors and bundles. 

Theorem 7. (Chiappori’s Theorem for collective rationalization by 

egoistical agents) 

The following statements are equivalent. 

1. There exists a pair of concave, monotonic, continuous non-satiated 

utility functions which provide a collective rationalization by ego- 

istical agents. 

2. There exist numbers Z i with 0 ≤ Z i ≤ C i such that the following 

(equivalent) conditions are satisfied. 

(a) The datasets { (w 

1 
i 
, 1 ) , (L 1 

i 
, Z i ) | i ∈ N} and { (w 

2 
i 
, 1 ) , (L 2 

i 
, C i −

Z i ) | i ∈ N} both satisfy SARP . 

(b) There exist strictly positive numbers U 

1 
i 
, U 

2 
i 
, λi , μi for i ∈ N sat- 

isfying the non-linear inequalities 

U 

1 
i ≤ U 

1 
j + λ j w 

1 
j (L 1 i − L 1 j ) + λ j (Z i − Z j ) ∀ i, j ∈ N, 

U 

2 
i ≤ U 

2 
j + μ j w 

2 
j (L 2 i − L 2 j ) + μ j (C i − Z i − C j − Z j ) ∀ i, j ∈ N, 

with equality holding in the first (respectively, the second) in- 

equality only if L 1 
i 

= L 1 
j 

and Z i = Z j (respectively, L 2 
i 

= L 2 
j 

and 

Z i = Z j ). 

Theorem 7 states Chiappori’s result for collective rationalization 

by egoistical agents. (The agents are egoistical in the sense that 

they each spend their own personal wages, so that the observed 

consumption is just the sum of the individual ones.) No straight- 

forward method is included in the paper to test the first condi- 

tion; the second condition requires solving a system of non-linear 

inequalities. Similar conditions hold for the case with externalities. 

Snyder (20 0 0) provides a reformulation of Chiappori’s conditions 

for two periods and uses it in empirical tests. Thanks to the limit 

on the number of periods, this test is very easy: it requires solv- 

ing four small linear systems of inequalities. Cherchye, De Rock, 

and Vermeulen (2011) depart from the labor supply setting by for- 

mulating a collective model with an arbitrary number of goods. 

In their model, each specific good is known to be either publicly 

or privately consumed. Given this information, rationalizability is 

tested by checking whether there exists a split of prices (for pub- 

lic goods) or quantities (for private goods), such that the dataset of 

personalized prices and quantities for each household member sat- 

isfies garp . Cherchye et al. (2011) provide an integer programming 

formulation to test their model. Talla Nobibon et al. (2016) provide 

a large number of practical and theoretical computational results 

for this problem. First, they prove it is np-hard . Furthermore, they 

describe a more compact integer programming formulation, and 

provide a simulated annealing based metaheuristic. They compare 

the computational results with these different integer program- 

ming formulations and heuristics; they observe that the heuristic 

approach is capable of tackling larger datasets and seldom fails to 

find a feasible split when one exists. Smeulders, Cherchye, De Rock, 

Spieksma, and Talla Nobibon (2015) give further hardness results 

for a collective version of warp : they find that the problem re- 

mains np-hard when testing for transitivity is dropped. All hard- 

ness results for these problems assume that the number of goods 

is not fixed a priori. It remains an open question whether the prob- 

lems become easy for a small, fixed number of goods. In particular, 

the labor supply setting only requires one good to be partitioned 

over members of the household. 

The work by Chiappori is generalized by Cherchye, De Rock, and 

Vermeulen (2007) . Leaving the labor supply setting, they provide 

conditions for an arbitrary number of goods and without any prior 

allocation of goods, as was the case with leisure time in Chiap- 

pori’s work. Cherchye et al. (2007) derive separate necessary and 

sufficient conditions for collective rationalizability by concave util- 

ity functions. In a later paper, Cherchye, De Rock, and Vermeulen 

work
Highlight
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(2010) show that the necessary condition given in their earlier 

work is both necessary and sufficient, when dropping the assump- 

tion of concave utility functions. However, testing this condition 

is np-hard , as shown by Talla Nobibon and Spieksma (2010) . Due 

to the hardness of rationalizability in collective settings, a num- 

ber of papers have appeared on how to test this problem. An 

integer programming formulation is given by Cherchye, De Rock, 

Sabbe, and Vermeulen (2008) and an enumerative approach is pro- 

vided by Cherchye, De Rock, and Vermeulen (2009) . Talla Nobi- 

bon, Cherchye, De Rock, Sabbe, and Spieksma (2011) take a differ- 

ent approach and propose a heuristic algorithm. The goal of this 

algorithm is to quickly test whether the rationalizability condi- 

tions are satisfied. If this heuristic cannot prove that the condi- 

tions are satisfied, then an exact test is used. Using this heuris- 

tic pre-test, many computationally demanding exact tests can be 

avoided. Deb (2010) strengthens the hardness results by proving 

that a special case of this problem, the situation dependent dicta- 

torship setting, is also np-hard . In this setting, the household de- 

cision process is such that each purchasing decision is made by a 

single household member, called the dictator. At different points in 

time, different household members can assume the role of the dic- 

tator; the goal is thus to partition the observations into datasets, 

so that each dataset is consistent with (unitary) garp . Crawford 

and Pendakur (2013) also consider this problem in the context 

of preference heterogeneity, and provide algorithms for comput- 

ing upper and lower bounds on the number of ‘dictators’. Cosaert 

(2017) links this to the problem of computing the chromatic num- 

ber of a graph. Furthermore, Cosaert formulates an integer program 

to partition the observations into sets, so that the observed charac- 

teristics within each set are as homogenous as possible. Smeulders 

et al. (2015) give further hardness results for a collective version of 

warp : they find that dropping transitivity makes the test easy for 

households of two members, but the problem remains open for 

three or more members. 

7. Revealed stochastic preference 

In the previous sections, we have looked at methods that decide 

whether a set of observations can be rationalized by one or more 

decision makers, using different forms of utility functions, or dif- 

ferent ways in which the choice process can be split over several 

decision makers. However, we assumed that utility functions and 

preferences are fully deterministic. As a result, if a choice situation 

repeats itself, we expect that the decision maker always chooses 

the same alternative. However, it is commonly observed in experi- 

ments on choice behavior that if a person is given the same choice 

situation multiple times, her decision may change. One possible 

way of explaining this behavior is by stochastic preferences, as pi- 

oneered by Block and Marschak (1960) . Theories of stochastic pref- 

erences posit that, while at any point in time a decision maker has 

a preference ordering over all alternatives, these preferences are 

not constant over time and may fluctuate randomly. An observed 

behavior is rationalizable by stochastic preferences if and only if 

there exists a set of utility functions and a probability distribution 

over these utility functions, such that the frequency with which 

an alternative is chosen in any given choice situation is equal to 

the probability that this alternative has the highest utility in that 

situation. We note that many results on stochastic preferences are 

established for the case of finite choice sets, as opposed to the con- 

sumption setting, where there exists an infinite number of bundles 

that can be bought for a given expenditure level and prices. For an 

overview, we refer to McFadden (2005) . 

A very general result was established by McFadden and Richter 

(1990) , namely, the axiom of revealed stochastic preference ( arsp ), 

which states a necessary and sufficient condition for rationalizabil- 

ity of choice probabilities by stochastic preferences. The general- 

ity of this axiom allows it to be used for any form of choice sit- 

uation, and all classes of decision rules. Besides the axiom, Mc- 

Fadden and Richter also provided a system of linear inequalities 

whose feasibility is a necessary and sufficient condition for ratio- 

nalizability. Neither of these characterizations can be easily opera- 

tionalized, since arsp places a condition on every possible subset 

of observations, so that the resulting number of conditions is ex- 

ponential in the number of observations. Furthermore, each con- 

dition requires finding a decision rule among all allowed decision 

rules which maximizes some function, and this can in itself be an 

np-hard problem (for example when the class of decision rules be- 

ing tested are based on linear preference orders, this means solv- 

ing an np-hard linear ordering problem; Karp (1972) ). The linear 

system of inequalities, on the other hand, contains one variable 

for every possible decision rule within a class of decision rules, 

a number which is often exponential in the number of choice 

alternatives. 

For the setting of consumer purchases (and thus infinite choice 

sets), Bandyopadhyay, Dasgupta, and Pattanaik (1999) formulate 

the weak axiom of stochastic revealed preference ( warsp ). This axiom 

provides a necessary condition for rationalizability by stochastic 

preferences. Analogously to warp , warsp compares pairs of choice 

situations. Since the condition placed on these pairs is easy to 

test, warsp allows for a polynomial time test. Heufer (2011) and 

Kawaguchi (2016) build further on this work. Heufer provides a 

sufficient condition for rationalizability in terms of stochastic pref- 

erences. Kawaguchi (2016) proposes the strong axiom of revealed 

stochastic preference ( sarsp ), a necessary condition for rationaliz- 

ability by stochastic preferences. Both of these conditions seem dif- 

ficult to test, requiring in the case of Heufer a feasible solution to 

a linear program with an exponential number of constraints and 

variables. Kawaguchi’s sarsp likewise requires checking an expo- 

nential number of inequalities. Despite these challenges, Kitamura 

and Stoye (2014) develop a test which can be used to test ratio- 

nalizability by stochastic preferences on consumption data, though 

for relatively small datasets. A key element in their approach is 

discretizing the dataset, so as to return to a setting with a finite 

number of choice options. 

8. Conclusion 

In this final section, let us summarize our discussion, and 

outline perspectives regarding possible future developments in 

the field. It is indisputable that revealed preference theory has 

established itself as an important tool in economics. On the other 

hand, testing revealed preference axioms on large datasets gives 

rise to numerous algorithmic challenges that should appeal to the 

operations researcher community. While a thorough understanding 

of individual rational choice, as it relates to revealed preference, 

has been achieved, we see (at least) three research directions 

emerging: 

1. Economists are increasingly extending the revealed preference 

setting to more complex theories of choice behavior, such as 

collective decision making, or non-deterministic choices. The 

testing problems emerging in these cases are likewise more 

complex. Much work, both theoretical and algorithmically re- 

mains to be done in this area. 

2. Many complexity hardness results have been established un- 

der the assumption that the number of goods can be arbitrarily 

large, as opposed to assuming that this number is limited and 

fixed (e.g., m = 2 or m = 3 ). We have mentioned in this sur- 

vey a few results that hold when the number of goods is fixed, 

but many questions remain open in this direction. Beyond its 

theoretical interest, this setting has practical relevance, since in 

many empirical studies the number of goods is quite small, or 
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goods are aggregated into a limited number of classes. Tests 

that are difficult in general may turn out to be polynomially 

computable in these cases. 

3. The relevance of efficient revealed preference tests for large 

datasets (see Section 1.1 ) continues to increase due to the 

ever growing size of available datasets. Better algorithms, both 

heuristic and exact, are required in order to be able to cope 

with this phenomenon. Thus, we need to further increase our 

understanding of the achievable running times for different ver- 

sions of the rationalizability question. 

Answering these questions will not only reveal the inherent dif- 

ficulty of testing rationalizability of a given dataset by a utility 

function from a particular class, it will also shed light on the in- 

centives and properties of human behavior. 
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Summary. We provide two new, simple proofs of Afriat’s celebrated theorem stat-
ing that a finite set of price-quantity observations is consistent with utility maxi-
mization if, and only if, the observations satisfy a variation of the Strong Axiom of
Revealed Preference known as the Generalized Axiom of Revealed Preference

Keywords and Phrases: Afriat’s theorem, SARP, GARP.
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1 Introduction

The neoclassical theory of demand supposes that a consumer, facing a price vector
p ∈ R

�
++ and with income I > 0, chooses his demand bundle x ∈ R

l
+ to maximize

some utility function u : R
�
+ → R over his budget set B(p, I) := {x ∈ R

�
+ : p·x ≤

I}. We assume we have been presented with a finite data set D := {(pi, xi) : i ∈
N}, where N := {1, 2, . . . , n}, of price vectors pi ∈ R

�
++ and corresponding

demand vectors xi ∈ R
�
+. The basic question raised by Afriat is whether this data

set is consistent with the maximization of a locally non-satiated utility function u
in the sense that for each i ∈ N , xi maximizes u over B(pi, pi · xi). A locally
non-satiated utility function is one for which every neighborhood of a commodity
bundle contains another bundle with a higher utility. With such a utility function
the consumer will have spent all his income, so that we can use pi ·xi as the income
for situation i.

Correspondence to: H.E. Scarf
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If the set of price and quantity observations is derived from utility maximization
it will surely satisfy the variation of the Strong Axiom of Revealed Preference,
known as the Generalized Axiom of Revealed Preference, which states that, for any
list (x1, p1), . . . , (xn, pn) with the property that

pj · xj+1 ≤ pj · xj , for all j ≤ n − 1,

we must have pn · x1 ≥ pn · xn.1

The argument for the GeneralizedAxiom is straightforward. If pj ·xj+1 ≤ pj ·xj

then xj+1 could have been purchased at prices pj . Since xj+1 was not purchased
it cannot be strictly preferred to xj so that xj � xj+1. The entire sequence of
inequalities therefore implies that x1 � xn. If, on the other hand, pn ·x1 < pn ·xn

and the utility function is locally non-satiated, we could find a commodity bundle
ξ close to x1 with pn · ξ < pn · xn and ξ � xn, violating the assumption that xn

maximizes utility at prices pn and income pn · xn.
The Generalized Axiom may be stated in a slightly different fashion which is

more appropriate for our needs. If the inequalities

pj · xj+1 ≤ pj · xj , hold for all j ≤ n − 1 and if

pn · x1 ≤ pn · xn as well,

then we must have pn ·x1 = pn ·xn. But in this form there is no distinction between
the last observation and any of the other observations, so that

pj · xj+1 = pj · xj

holds for all j. This is the variation of the Strong Axiom which we shall adopt, not
only for the full set of n observations but for any ordered subset as well.

Definition 1 We say that the observations satisfy the Generalized Axiom of Re-
vealed Preference (GARP) if for every ordered subset {i, j, k, . . . , r} ⊂ N with

pi · xj ≤ pi · xi

pj · xk ≤ pj · xj

...
pr · xi ≤ pr · xr

it must be true that each inequality is, in fact, an equality.

1 There is a great variety of terminology associated with the concept of revealed preference. The
original definition offered by Samuelson [4], now known as the Weak Axiom of Revealed Preference
(WARP), was thought by the author to be sufficient to recover a utility function generating the data.
Houthakker’s definition of the Strong Axiom (SARP) [3] provided the additional conditions necessary
for recovery. But Houthakker’s statement of the Strong Axiom is motivated by a single valued demand
function rather than a finite list of observations and is, as a consequence, somewhat awkward. Afriat [1]
used the terminology Cyclical Consistency (CC) for the simpler concept of the current paper. Cyclical
Consistency is identical with the Generalized Axiom of Revealed Preference (GARP) introduced by
Varian [5]. This does not exhaust the list of variations in terminology.
We have chosen to use the term GARP rather than Cyclical Consistency. Our purpose is to use a
definition in which the phrase ”Revealed Preference” actually appears rather than the earlier, equivalent
terminology used by Afriat.
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From the data set we can compute the square matrix A of order n defined by

aij := pi · (xj − xi) for all i, j ∈ N.

Hence, aij negative means that xi is revealed preferred to xj . In this more con-
densed notation, the observations satisfy the Generalized Axiom if for every chain
{i, j, k, . . . , r} ⊂ N , aij ≤ 0, ajk ≤ 0, . . . , ari ≤ 0 implies that all the terms are
zero. It is clear that this condition is necessary for observations arising from utility
maximization. What is less clear, and indeed surprising, is that it is also sufficient.

Theorem 2 (Afriat’s Theorem) If the data set D satisfies the Generalized Axiom
then there exists a piecewise linear, continuous, strictly monotone and concave
utility function that generates the observations.

This is a remarkable result because it gives succinct, testable conditions that a
finite data set must satisfy in order to be consistent with utility maximization. More-
over, from the result, it follows that the assumptions of continuity, monotonicity
and concavity are not refutable by a finite data set.

Afriat’s original argument begins by asserting the existence of numbers φ1,
. . . , φn, and λ1, . . . , λn > 0 that satisfy the following unusual system of linear
inequalities (from now Afriat inequalities)

φj ≤ φi + λiaij , for all i, j ∈ N .

He then defines the utility function

u(x) = min{φ1 + λ1p1 · (x − x1), . . . , φn + λnpn · (x − xn)} .

We notice that each term in this expression is linear (and hence continuous and
concave) and strictly monotone. Therefore, u, as their pointwise minimum, is con-
tinuous, concave, and strictly monotone as well. Finally, as is shown in the next
two steps, u indeed generates the observations in the data set D.

1. u(xj) = φj , for all j ∈ N.

By definition u(xj) = mini{φi+λipi ·(xj−xi)} = φj+λjpj ·(xj−xj) = φj ,
where the minimum is taken by the index j from the Afriat inequalities.

2. pj · x ≤ pj · xj ⇒ u(x) ≤ u(xj).

u(x) ≤ φj + λjpj · (x − xj) ≤ φj = u(xj), where the first inequality follows
from the definition of u, the second from the fact that x is feasible at prices pj

and the last equality from Step 1.

2 A simple case

We have shown that the Afriat inequalities imply the existence of a nice utility
function that generates the data. What is less straightforward is to show that if
the observations satisfy the Generalized Axiom then the Afriat inequalities have a
solution. Afriat’s original proof is an inductive one, which is correct in the case in
which aij 	= 0, i 	= j. Indeed in this case the proof is quite simple.2

2 A similar version was presented in an informal communication by M. Weitzman.
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Claim 1. There is an index i ∈ N with aij ≥ 0 for all j ∈ N .

Proof of Claim 1. If this were not so, then every row would have a strictly negative
entry. Start with row i, say, and suppose that aij < 0. Now consider row j, and
identify a negative entry, say ajk < 0. Continue to generate the sequence i, j, k, ...,
until an index is repeated.Then a subsequence of this sequence yields a contradiction
to the Generalized Axiom. 
�

The existence of λj and φj is trivially true for n = 1; we can choose λ1 = 1 and
φ1 arbitrarily. For the induction let us begin by renumbering the observations (and
hence the rows and columns of A) so that anj > 0 for j = 1, ..., n−1 (using Claim
1). Now suppose, by induction, that there exist φ1, ..., φn−1; λ1, ..., λn−1 > 0 such
that

φj ≤ φi + λiaij , i 	= j, i, j = 1, ..., n − 1.

Let us select φn such that

φn ≤ min
i=1,...,n−1

φi + λiain,

and then choose λn > 0 so that

φj ≤ φn + λnanj , for j = 1, ..., n − 1.

Since all the non-diagonal elements of the nth row are strictly positive, λn can be
chosen large enough so that these n − 1 inequalities hold. Note the difficulty that
arises if any anj is zero: increasing λn will not help to fix the inequality for this n
and j. This completes the proof that the Afriat inequalities have a solution in this
simple case.

The general case, in which non-diagonal elements are allowed to be zero, is
related to the issue of indifference classes in the revealed preference ordering. Two
authors, Varian [5] and Diewert [2], have given correct proofs in this general case.
They prove the result using an inductive argument which manages to handle the
subtle issue of indifference classes. Unfortunately, the induction in each of these
presentations is complex and may involve the introduction of more than one price-
quantity observation at each step.

3 A general inductive proof

We now provide a simple proof for Afriat’s theorem in the general case where
anj ≥ 0 for j = 1, ..., n − 1, but with some of these entries possibly zero. The
argument is inductive, and as in the simple case, the inductive step introduces a
single observation at a time.

The key is to apply the inductive hypothesis to a different (n − 1) × (n − 1)
matrix A′. Specifically, for j = 1, ..., n − 1, we define

a′
ij :=

{
aij if anj > 0,

min{aij , ain} if anj = 0.
(1)
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Claim 2. A′ satisfies the Generalized Axiom.

Proof of Claim 2. First note that, if anj = 0, then ajn ≥ 0 by the Generalized
Axiom, so that a′

jj = ajj = 0 for j = 1, . . . , n − 1. Now suppose that A′ has a
cycle (i, j, k, . . . , r, i) with

a′
ij ≤ 0

a′
jk ≤ 0

...

a′
ri ≤ 0

and at least one term strictly negative. Since A does satisfy the Generalized Axiom
by hypothesis, there must be a term, say that for (p, q), with

a′
pq 	= apq .

But if a′
pq = apn and anq = 0, then we can replace the cycle (. . . , p, q, . . . ) by

(. . . , p, n, q, . . . ) with two new terms

apn ≤ 0
anq = 0

and, as before, at least one of the terms in the new sequence is strictly negative.
Continuing in this way we can construct a cycle in A that violates the Generalized
Axiom, contrary to our assumption. Hence A′ must satisfy the Generalized Axiom.


�

We can therefore apply our inductive assumption toA′ to guarantee the existence
of φi and positive λi for i ∈ N− := {1, 2, ..., n − 1} so that

φj ≤ φi + λia
′
ij (2)

for i, j ∈ N−. Since a′
ij ≤ aij from (1), this ensures that the Afriat inequalities

hold also for A for i, j ∈ N−. Next, set

φn = min
i∈N−

{φi + λiain}

(note that we choose equality, not less than or equal to), to achieve the inequalities
for i < n, j = n. Finally, set

λn := max
{

1, max
j∈N−,anj>0

[(φj − φn)/anj ]
}

.

As in the simple case, this choice makes sure that the inequalities hold for i = n
and j < n in the case that anj > 0. To complete the proof, suppose that anj = 0.
Then we have

φj ≤ mini∈N−{φi + λia
′
ij} (by (2))

≤ mini∈N−{φi + λiain} (by (1))
= φn by definition of φn

= φn + λnanj since anj = 0.
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Clearly the inequality holds for i = j = n, and so the inductive step is complete.
This finishes the proof.

4 A proof using linear programming

Diewert’s proof [2] relates theAfriat inequalities to a particular linear programming
problem. However the programming problem is not directly used in his proof. The
argument presented here makes use of a linear program which is essentially identical
to Diewert’s, but uses the Duality Theorem of Linear Programming to show that
the Afriat inequalities have a solution.3

Consider the following linear programming problem:

minλ,φ 0 · λ + 0 · φ
λi ≥ 1, for all i ∈ N,

aijλi + φi − φj ≥ 0, for all i, j ∈ N with i 	= j

in which the objective function is zero and the constraints are theAfriat inequalities.
We shall show that the dual linear program is feasible and has a maximum of zero.
The Duality Theorem then implies that the original problem is also feasible, and
therefore the Afriat inequalities have a solution. Although the argument may seem
a bit eccentric, the procedure is a standard trick to verify that a system of linear
inequalities is consistent.

The matrix associated with the linear program is

objective

...

...

...

...

variables

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 0 0 · · · 0 0 RHS
1 0 · · · 0 0 0 · · · 0 0 1
0 1 · · · 0 0 0 · · · 0 0 1
...

...
...

...
...

...
...

...
...

...
0 0 · · · 1 0 0 · · · 0 0 1

a12 0 · · · 0 1 −1 · · · 0 0 0
...

...
...

...
...

...
...

...
...

...
a1n 0 · · · 0 1 0 · · · 0 −1 0

...
...

...
...

...
...

...
...

...
...

0 0 · · · an1 −1 0 · · · 0 1 0
...

...
...

...
...

...
...

...
...

...
0 0 · · · an,n−1 0 0 · · · −1 1 0
λ1 λ2 · · · λn φ1 φ2 · · · φn−1 φn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

y1
y2

...
yn

x12
...

x1n

...
xn1

...
xn,n−1

In this matrix the top row describes the coefficients of the objective function, the
bottom row the variables associated with the columns and the last column the right
hand side of the inequalities. The slack variables have been omitted.

3 Our colleague, John Geanakoplos, has shown us an elegant proof that the Afriat inequalities have
a solution using the Min-Max Theorem for two-person zero-sum games.
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If the dual variable associated with the inequality λi ≥ 1 is yi(≥ 0) and the
dual variable associated with the inequality aijλi + φi − φj ≥ 0, for i 	= j, is
xij(≥ 0), the dual problem can be stated as

maxy,x

∑
i∈N yi ∑

h∈N xhi − ∑
j∈N xij = 0, for all i ∈ N,

yi +
∑

j∈N aijxij = 0, for all i ∈ N,

with yi, xij ≥ 0 for all i, j.

The dual variables xij can be viewed as the entries in an n × n matrix X , whose
diagonal entries are zero and whose off-diagonal elements are non-negative. The
first set of constraints in the dual problem state that for each i the sum of the entries
in row i of X equals the sum of the entries in column i.

In order to use the Duality Theorem to prove that the Afriat inequalities have
a solution, we need to show that x = 0, y = 0 is the optimal solution to the dual
problem. Clearly x = 0, y = 0 is feasible for the dual and 0 is an lower bound for
the optimal value of the dual objective function.

Claim 3. Let (x, y) be a feasible solution to the dual linear program. Then there
is a feasible solution, possibly different, with the same objective function value and
with no cycle (i, j), (j, k), . . . , (r, i) on which all xpq’s are positive and all apq’s
zero.

Proof of Claim 3. If there is such a cycle in a feasible solution, we can decrease
each xpq on the cycle by the minimum value of these xpq’s, so that at least one
such value becomes zero. In this procedure, the perturbed matrix X will still satisfy
the constraints of the dual problem and the variables yp, and hence the objective
function value, are unchanged since we are only modifying those xpq’s whose
corresponding apq coefficient is zero. 
�

Now let us show that an optimal solution to the dual problem is x = 0, y = 0.
Suppose, to the contrary, that yi > 0 in some feasible solution (x, y), which without
loss of generality we can assume satisfies the property of Claim 3. Then the sum

∑
q∈N

aiqxiq < 0

and at least one term is negative, say aijxij . Therefore aij is negative and xij

positive. By the first set of constraints,

∑
q∈N

xjq > 0,

while
∑

q∈N :xjq>0

ajqxjq ≤ 0
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by the second set of constraints. We can therefore choose k 	= j with xjk positive
and ajk nonpositive. Continuing in this way, we must eventually repeat an index,
and therefore we construct a cycle (�, m, . . . , r, �) on which all xpq’s are positive
and all apq’s nonpositive.

If the index we repeat is the first one with which we started, we immediately
get a contradiction since the Generalized Axiom implies that all the terms in the
cycle must be zero, but the first one is strictly negative by construction.

In the case that the cycle we construct does not include the first term, again, the
Generalized Axiom implies that all terms must be zero, but this was already ruled
out by our assumption that (x, y) satisfies the property of Claim 3.

We have demonstrated that the dual linear program is feasible and its maximum
value is 0. By the Duality Theorem of Linear Programming the original problem is
feasible, which means that the Afriat inequalities have a solution.

5 Complexity

Here we discuss the complexity of determining whether the data D is consistent
with utility maximization and, if so, computing a possible utility function u.

We remarked in the introduction that the Generalized Axiom gives testable
conditions for the data D to be consistent with utility maximization. But how
hard is it to check whether the axiom holds, and if so, to find a possible utility
function? At first sight, we need to check every possible cycle, and while this is a
finite procedure, there are exponentially many cycles. If we knew the 2n numbers
φ1, . . . , φn and λ1, . . . , λn > 0, potentially satisfying the Afriat inequalities, then
we would merely have to check these n2 relations, and from these a suitable utility
function is at hand. Diewert [2] proposed to find these numbers by solving a linear
programming problem, but this is computationally burdensome. Varian’s proof [5]
gives an O(n3) algorithm to find the φ’s and λ’s. Indeed, Varian first defines xi

to be directly revealed preferred to xj if pi · xj ≤ pi · xi, and then computes
the transitive closure R of this relation by a graph-theoretic algorithm in O(n3)
time. Then the Generalized Axiom can be checked simply: for each i and j, see if
xiRxj and pj · xi < pj · xj ; if so the Generalized Axiom is violated. If this does
not occur for any such pair, the Generalized Axiom is satisfied. Armed with the
transitive closure, Varian finds the φ’s and λ’s by an algorithm that must consider
together every subset of observations with each pair related by R. Our inductive
proof in Section 3 provides a simple alternative O(n3) method that determines
these parameters one by one. (Of course, we also need O(n2) work to compute the
entries of A from the data D.)

At each step of the inductive process, we search the current matrix A to find a
nonnegative row, say the ith, which takes O(n2) time. (If there is no such row, then
we can find a cycle violating the Generalized Axiom by the argument in the proof
of Claim 1, also in O(n2) time.) We then interchange the ith and nth rows of A, in
O(n) time, and calculate the reduced matrix A′, in O(n2) time. When we receive
information back from the smaller problem, we can find φn and λn each in O(n)
time. (If the smaller problem returns a cycle violating the Generalized Axiom in
A′, we can expand this to a cycle violating the Generalized Axiom in A using the
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argument in the proof of Claim 2, also in O(n) time.) This gives a total amount of
work at each stage of O(n2), for a total complexity of O(n3).

However, if at each stage we can find a positive row (except for its diagonal
entry), then we can avoid the per stage O(n2) work and complete all the computation
in a total of O(n2) time. Clearly we do not require the O(n2) work to calculate A′

so we only need to show how the search for a positive row can be performed in
only O(n) time at each stage. Initially, let us compute the number of negative and
zero entries in each row, at a one-time cost of O(n2). Then at each stage we can
scan these counts to find a positive row, and then after permuting that row and the
associated column to the end, we can update the counts for the submatrix containing
all but the last row and column in just O(n) work. Hence there is only O(n) work
per stage for a total of O(n2). (This complexity also holds if there are only a fixed
number of times that a positive row cannot be found.)

When can we use this simplified algorithm? Clearly, if A contains no zero
elements outside its diagonal, then the Generalized Axiom implies the existence of
a positive row. More generally, note that, if the GeneralizedAxiom holds vacuously,
i.e., there are no cycles with all aij’s nonpositive at all, then the argument of the
proof of Claim 1 shows that a positive row exists. This condition (assuming that
all demand vectors xi are distinct) is usually called the Strong Axiom of Revealed
Preference (see, e.g.,Varian [5]). Thus either the simple case considered in Section 3
or the Strong Axiom leads to the reduced complexity of O(n2) time to compute the
φ’s and λ’s satisfying the Afriat inequalities and hence a possible utility function.
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