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We will say that a utility function rationalizes the observed behavior
(pt,x") for t = 1,-.-,T if u(x') > u(x) for all x such that p*x* > p'x.
That is, u(x) rationalizes the observed behavior if it achieves its maximum
value on the budget set at the chosen bundles. Suppose that the data were

To make the problem interesting, we have to rule out this trivial case.
The easiest way to do this is to require the underlying utility function to be
locally nonsatiated. Our question now becomes: what are the observable
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Revealed preference relations

AFRIAT MATRIX

From the data set we can compute the square matrix A of order n defined by

aij :=pi-(x; —x;) foralli,j € N.
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The data satisfy the Generalized Axiom of Revealed Preference,
abbreviated GARP, if no strict revealed preference cycles exist. That is, for
no X' is it the case that ¥ =" x.  KREPS

GENERALIZED AXIOM OF REVEALED PREFERENCE. If
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afriat theorem

Monday, January 17, 2022 09:56

Afriat’s theorem. Let (p',x') fort = 1,...,T be a finite number of
observations of price vectors and consumption bundles. Then the following

conditions are equivalent. VARAN P 133

(1) There ezists a locally nonsatiated utility function that rationalizes the
date; £ \¢{ RATMONALI2ZABLE

(2) The data satisfy GARP; F SQTISFiey, GARP

(3) There emst positive numbers (u',A!) fort = 1,...,T that satisfy the

Afriat inequalites: (Ling A R} L 9' u t', ] t = VAR ELELS
u® <ul 4+ 2pt(x* - x') for dlit,s;
Y SATUSFIRBLE

(4) There exists a locally nonsatiated, continuous, concave, monotonic util-
ity function that rationalizes the data.

1T Svgficgy 10 ow (1) = (21— 3y— W)
bewoe W)= 1) by defindian
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Rationalizability implies GARP

Monday, January 17, 2022 11:42

Afriat’s theorem. Let (p!,x') fort = 1,...,T be a finite number of
observations of price vectors and consumption bundles. Then the following
conditions are equivalent.

(1) There ezxists a locally nonsatiated utility function that rationalizes the
data;

(2) The data satisfy GARP; (1 ) IMPLice L&)
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Rationalizability and direct revealed preference
:5
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Rationalizability implies GARP

Monday, January 17, 2022 10:31
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Monday, January 17, 2022 12:37
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GARP implies satisfiability of Afriat inequalities

Monday, January 17, 2022 12:53

Afriat’s theorem. Let (p',x!) fort = 1,...,T be a finite number of

observations of price vectors and consumption bundles. Then the following
conditions are equivalent.

et

(2) The data satisfy GARP;

(3) There emst positwe numbers (u',\') for t = 1,...,T that satisfy the
Afriat inequalities:

u® <ul 4+ Npl(x® —x') foradllt,s;
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COMTRuLT THE NAERIAT MATQRIX OF Tk DATA
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THE DATA SATISFY GARP,
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THE STRICT REVEALED PREFERENCE RELATION is ACYCLIC,
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EITHER

1) THE REVEALED PREFERENCE RELATION is Acyclic
OR
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PREFERENCE RELATION
HAS WEIGHT O

3. TAE AFR\AT NEOURUTIES IMOUCED 84 ThE OATA ARE SATISFIANRE

(8) There emst positiwve numbers (ut,X!) fort = 1,...,T that satisfy the
Afriat inequalities: i) ks

u® <ul 4+ Xp'(x* - x') fordllt,s;

VARAN

Lemma 4.5. Real numbers v/ and o' > 0 for i = 1, ..., J can be found such
that, for all i and j, A:“-'

——
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Lemma 4.5. Real numbers v and o/ > 0 for i = 1, ..., J can be found such
that, for all i and j, A:“-'

— )
I T ol [T el | KREPS (4.1)
Afriat’s original argument begins by asserting the existence of numbers ¢,
ooy Opsand Aq, ..., A, > 0 that satisfy the following unusual system of linear
inequalities (from now Afriat inequalities ‘] SCRARE
(,ﬁj < @7 + )tia,;j, for all 3,_} eN.

2. There exist strictly positive numbers U;, A; for ieN satisfying the

system of linear inequalities o
. f q R‘)" C/[L ) N\A

Ui =Uj+2;pi(qi—q;) Vi.jeN. 3)

Afriat inequalities
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(U =3,Uy=1,U;=3, 4 =1, A, = 1, A, =1}

H. COMTRUT The AFRIAT VUTiuTy FuMlion |MOVLED
61 A JdLvion 9F TRE AFRIAT IMFOVALITIES
AVY SoLuTioN ©OF THE AFRKT [FEQRUAITICS
PROVIDES A UTILTY FUMTON THAT
RATLoVALTI2ES THE OATA F
THE SQUTON (4-30-10-3h-1h-1h-1) \NDUCRS TAE AFPWVE
FUMTIONG W, ()= Ut+3£(><-x"), 1c[T]

w (x)=—4+x +3x
1 1 2

?L>>t>

mily¥i\=-4d4+v 4+~
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w](x)=-4+x1+3x2 ? t S>> o

=-44+x +2
wz(x) xl xz 7)1: ~ o

w(x)=-1+2x + x
3 1 2

THe AFRIAT UTiLITy FUMTAN INDVED BY THE DATA 1y

LCOVTIEF
g\le): M i Wi l)‘)' Wz()t)) tvey WT ""3 Ui Lty FuetioV

w{xi=mmm{—4+x, +2x, 4+ x,+3x,, -1+2x,+x, )

THE HvPoGRAPH OF W 15

H‘l?o(w):i(x, b): te w(x)i
)

{éW(X) =) EéMthwlbﬂ) Wy Xy )LA\T(X‘B
)
=) t £ wi x| for ALl
(=) (>, b)) © HMPo(wy) FO2 GLL L

)
1 (%) € [) Hapolw)
=1 /
HYpd (wi) = HALE SPACLE = SoluTioNM

ST OF A SIWNGLE LWEAR IN QUALITY

= Cownvex ScT RemE

HWolWl= INTERSECTUON ODF HNLFE-SPALES
= CohvEX SCT

@ W i AcCoMAVE P UrTION

k¢ Thg LOWER ENVELOPE. 6F

hEPINE FuMTIONS
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W(x) i§ CONTINVOVS, STRICTLY INCREASING, Com(AVE .
Holw ®O THE INDI FPERENME LLRVE) O W

vosk Like !

NERFY THAT W RATIONALI2ES Twe DATA | IE fHow
THOT FOR FA(N OBRCemvATON 1, 7mg vEcror xP i A
LMWL MAVUA  OF
MAx wix) & 1=
\

Pt xe ptw |, n2o
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4 Maxima[ {.\'l == 0} ]

Pl=T1 3]
x1-12 0]
Maxima[ {.\'1 =5=— 2.\‘2}. {.\'1 =5, x,= 0}]
P2=1),2)
x*=[5 0]
P>=[21]
x:[oy)

END Of THE DES(RIOTION OF AFRAT'S THEOREM , _
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Identification problem

PECONERARILITY OF PREFEREN(ES (IDENTIFi (AN PROBLEM)

THE NONPARAMETRIC APPROACH TO DEMAND ANALYSIS

By HAL R. VARIAN'

This paper shows how to test data for consistency with utility maximization, recover the
underlying preferences, and forecast demand behavior without making any assumptions
concerning the parametric form of the underlying utility or demand functions.

THE ECONOMIC THEORY of consumer demand is extremely simple. The basic
behavioral hypothesis is that the consumer chooses a bundle of goods that is
preferred to all other bundles that he can afford. Applied demand analysis
typically addresses three sorts of issues concerning this behavioral hypothesis.

(i) Consistency. When is observed behavior consistent with the preference \w
maximization model?

(ii) Recoverability. How can we recover preferences given observations on )
consumer behavior? :

(1) Extrapolation. Given consumer behavior for some price configurations ,
how can we forecast behavior for other price configurations?

THE ECONOMIC THEORY of consumer demand is extremely simple. The basic
behavioral hypothesis is that the consumer chooses a bundle of goods that is
preferred to all other bundles that he can afford. Applied demand analysis
typically addresses three sorts of issues concerning this behavioral hypothesis.
(i) Consistency. When is observed behavior consistent with the preference
maximization model?

(ii) Recoverability. How can we recover preferences given observations on
consumer behavior?

(iii) Extrapolation. Given consumer behavior for some price configurations

how can we forecast behavior for other price configurations?

CONSiftEn(M= GnaRrp,

HE OATA ARE CONKI(TENT WITH COMUPER TREORY IF Anrp
OMVM e ThEM SATIEY GARP, kiME f (oMyUrER ThEORY
Faust | TEsunG 1T Fop G ARe On Sufficicaiv LARGE
Df\TPxS(rg WL EvEnTuapy REweAL A WOLATR M o F GARP.
1T, HOWEVE R COMUMER THEQRY I( TRUE  TWO PROBLEMS
ST

RECOVERAGILITY (IDenTiFTLATION PROBLEM ) :
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lNo AMIWNT OF DATA [ WiLL ReCov R [ IDeVTIFY) ThE

TRVUE UTiily Furton, WT evenv  APADINerTeLY

(THe ATRIAT VTiviTy FOMTOY 1L SAR WAY FRIM TE TRVE LTiLty FumtTow)
AND TH(REFIRE » =

IXTEARLATIONS BA(ED ON ESTMATED Vtivity Fumzond
MAY RE (BADLM) WRONO

EXTRAPOLATION  ExaMpLE
WHAT WiLL TRE COMLYME R CHOOSE AT P4=Ta 6] ?

Mo x U (x] =x’{ +7; 1\
PU% Lpu ) 7o W=TC1]2)
Maxima{,\'l =4, X, = 0
PA=TY o]
=Ty 0
T
TRVE
/~ BEHAVIOR

WHAT WiLL BF “RE ExTtrAroLATON(PREOILTLON) OF
THE ESTIMATED AFRIAT LTILIT™M FouncTion 7
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PUxepinw »ro w=[) 2)

. e B
Maxuna“.\l—-o. X, 3 H

PREDWTED REHAVINE PL"-'LU 6]
: v g
=10, -3]

NO AMouNT OF TXTRA DATA Will RECOVER ThE

TRVE  VTiLTy FumTiaN,
ALTHOVEH THE ESTIMATED AFRIAT VUTiury Furetaw,

€7 <HE DATA IrACTLY.

Comiumgp THEORY B TOO WEAK  BoT
TestapLE ( GARP)
PRoDUCER THFEsPY (y Tdo WEAK

BUT TECTABLE ( WAPH)

{9, 9 eYe yO <7
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ML
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Afriat inequalities,simplified form

Afriat inequalities

U‘: £ Us -+ 2.) AJL ALL () e 1T

U; =0 < AL U ¢[T]

2 70O AL v e lT)

O .
U-Lebb'—%f/\g}“/ =
O ¢ O,

L

Simplified afriat inequalities

U: £ US -+ 'Aj Aji ALL +) ¢ 1T)

N 70 AL v oelT)

Satisfiable afriat lemma 1

ignore the requirement that each U* > 0, as any solution
to the remaining inequalities can be made to satisfy
this simply by adding a large enough constant to each
U a a

THE FOLLOMNG ARE £ QUivALen T

m ‘n‘E Afriat inequalities P\ RE SATISFIARLE

SMITem OF
__2
| +2T

INEWUALITIES

SMetem of
TZ
INE R vALITIES

1£) ME .. ARE SATISFIARLE

THE  INbdVALiTigy TOR =] Neap

\); 2 \)i —I"A; /—\il' ). E U,"— Ui
ANy Az¢ Thel(soRe RLDUNMPNT

1] —)2) O K
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onenote:#Afriat%20inequalities&section-id={5B1C4626-9C6D-42A5-A580-76D35DD64860}&page-id={D1460F34-2A3D-4278-A762-F27CE23EC755}&object-id={034C05D2-0B9D-4E14-8860-C2F1C7A88A90}&29&base-path=D:/notes/1N_class/class/demand/13.one
onenote:#Afriat%20inequalities&section-id={5B1C4626-9C6D-42A5-A580-76D35DD64860}&page-id={D1460F34-2A3D-4278-A762-F27CE23EC755}&object-id={DEFFDE10-6608-4268-BE76-3A845A165402}&C&base-path=D:/notes/1N_class/class/demand/13.one

121 = 11]

wieoss (L D) (=8 T WA 1o oF Te

Simplified afriat inequalities » lF U l > O V OP A Ll’ L } DD NO TH) N (J“ , F L .S E

LET Y= Ny <O Thay Ui»y Vo

LET p=1-X. Thév B 2| Defwe U:;b\--r{;_?mn/
/

UL:@L-ZS\'I')ZP>O g
Av D L\)E\’A;)_

‘|I:) \) A J:)L UTI\:)N O\F Afriat inequalities

Re(nyz
Ui ¢ Uy = 35 A MpLiES

U\L-rfs < UJ-)-P + >\J AJL

Simplified weak afriat inequalities

UL .4_ U\\ -+ ’Aj A_)I. ALL [4.\') ¢ ‘,T_] MItem v F

TZ

')tg, )1 AL v e LT) INEQuaLiTIES

Satisfiable afriat lemma,weak inequalities

THE fOLLOWWNE ARE EWULIVALENT
A ™ME . ARE SATISFIARLE
12] TE wiis e ARG CATISFIARLE

EZ] —_ \:13 O
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onenote:#Afriat%20inequalities&section-id={5B1C4626-9C6D-42A5-A580-76D35DD64860}&page-id={D1460F34-2A3D-4278-A762-F27CE23EC755}&object-id={DEFFDE10-6608-4268-BE76-3A845A165402}&C&base-path=D:/notes/1N_class/class/demand/13.one
onenote:#Afriat%20inequalities&section-id={5B1C4626-9C6D-42A5-A580-76D35DD64860}&page-id={D1460F34-2A3D-4278-A762-F27CE23EC755}&object-id={DEFFDE10-6608-4268-BE76-3A845A165402}&C&base-path=D:/notes/1N_class/class/demand/13.one
onenote:#Afriat%20inequalities&section-id={5B1C4626-9C6D-42A5-A580-76D35DD64860}&page-id={D1460F34-2A3D-4278-A762-F27CE23EC755}&object-id={EBA86424-CE0C-4FED-9DDE-800723C19739}&19&base-path=D:/notes/1N_class/class/demand/13.one
onenote:#Afriat%20inequalities&section-id={5B1C4626-9C6D-42A5-A580-76D35DD64860}&page-id={D1460F34-2A3D-4278-A762-F27CE23EC755}&object-id={034C05D2-0B9D-4E14-8860-C2F1C7A88A90}&29&base-path=D:/notes/1N_class/class/demand/13.one

_[
m -> lg L t T [ U ‘- | ’r) l. 3 [-:_ | JOL V:E -(HE Simplified afriat inequalities

LET Y= Mmiv)e
RS
DE fwiE ”,\L L

. TTHEN ;7 Y>0 fon AL

q(/( | ¢ ut’/h)

<>

N
L 4 N T

N A
Pvo LV, ,’_/h:l

Reu)g
U\/ < U\-}—* h
U
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onenote:#Afriat%20inequalities&section-id={5B1C4626-9C6D-42A5-A580-76D35DD64860}&page-id={D1460F34-2A3D-4278-A762-F27CE23EC755}&object-id={DEFFDE10-6608-4268-BE76-3A845A165402}&C&base-path=D:/notes/1N_class/class/demand/13.one
onenote:#Afriat%20inequalities&section-id={5B1C4626-9C6D-42A5-A580-76D35DD64860}&page-id={D1460F34-2A3D-4278-A762-F27CE23EC755}&object-id={72A45BDA-B39E-42D1-8F45-7798E1C783DE}&5F&base-path=D:/notes/1N_class/class/demand/13.one

Garp implies Afriat matrix has a nonnegative row

JUpposE THE DATA F SATISEY GA RP. Tuew THE
s R INDWIED 8Y F O HAG AT LEALT ONE

NONNEGATWE ROW

Revealed strictly worse than relation

FOR EALH OrcepuaTioN L 1£i2T, Defwe

C(iv= {IeLT]: THere 1LA DAY ’L—"’-ajfz
ALL ) RewaLep PReFereep STRICTLY
WORSE WAV ¢
n= #Cu)

V Nilz O MeAM uaT NO OBSerYATION

ReVEALtn STRic7y WOR(E THANM U,

t_>l-
]GQK? meavy, L@ CUn B o

AT
IN  pper THE D pEcT RetpToV NDUtEDp B9 F g
/_0\ cu)= Sty t 551
S, Q. fhereads a

Pﬂ—lfl 1__) o—<%° —7:)
-A /=1 o

2 1.-\2—>1
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onenote:#examples&section-id={839E9664-E4E8-42A6-96EC-17A4E47F5E12}&page-id={AE78D151-C3A0-44CD-9C01-906FFFCAC065}&object-id={A828EE0C-F75B-40BC-A5F2-C5659CB7DA7D}&B4&base-path=D:/notes/1N_class/teams/micro/2021/B/220117/13.one

- /— ' : : J
9:\\3/ L i :_2) 2 o
c)= (40| Cle)=151,2] =512}
nil=141 N2)=2 n@)\= 2

IV Bz Tye 0y Recr Rechton Ipduep By F T
CUHr=123] my)=2

1_ "t .2
\\ A Cer=g ,nz2i1zo0
— b 3A Cer=128 iy =1

o )= @ vi)= O
1 — > 5
ko — Ch=8 Y=~z o

\ / Cr= 1121, ni3i=2
/l 3 ,)-

Positive row lemma

SRQOJE THE DATA § SATISFY GARP AND A iy THE
ARFRIAT MATRIX MDUCED By F. THEN
n(i)zn) Imprieg Aij=o
12)) nid)=nli) wmeitg Ajzo
NMUWl=0O ImpLigg ROW;(A)Z O

&~ -\
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onenote:#examples&section-id={839E9664-E4E8-42A6-96EC-17A4E47F5E12}&page-id={AE78D151-C3A0-44CD-9C01-906FFFCAC065}&object-id={7EAB3261-5AF2-43AD-8B98-CB29F3D28A6F}&3F&base-path=D:/notes/1N_class/teams/micro/2021/B/220117/13.one

14) ) FOR A1 LEALT ovg OBSERVATION L’ Nni)= o
NOTE EJ Avp ,m lMPL\/ ROW, (PA)> O FOR (onaf

PROOE

4] ,"Ll')<"l(55 mpLies Ry >o

|

ME AMS TUKT

THE NWMBel 6F ORSec RVATIONS REVEALED
STRICTLY WIRSE Tha N J I B/6cFn
Ty THE CORNES)INODING MaREN FO R .

AO>0 ME A p‘(x\)‘—-xtl)>0
Ve PL')&J > ocl'XC
« XJ | NoT AFFIRO0ABLE k7 Ry

JURRUE FOR (ONTRADICTION ThAT n L\ <w (J)

O£ n(t)

\__/

A ND THeérRerope

cor 42

)

i3

1#) AND AJ‘,O MOy L —>y
1 ] C 13 I e
CU\:tp IMpLLY ThHeERE g Cé (Al/
1 _t .ok AMD  Thepefop &
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- p . I y,

+ ArD 7heﬂ’éFL9'i—H~

l——7j +’K e li)K

&GCUL

WE Have Shown K e (D) weues ke (()

13

ConTpAvicwroN

@ N )= nty) MpLIES At'd'>/o

SupeAIE Fop CorTMDicionN W (i)= i)y Anp

&\(] < O’ Cthev ij’_’jv) hewce J e Ly

{ — AR

AVD ) >4y Ten QW)= v ) 7L,

v

For AN\7 KGC\;)) J-—\-I K. AND Thiepefo RE

b X )N AN THepeFORE he (@ . héneE
e .

CQR) e C)
SInCe F SaTicFies GARP Thepe 74 Ao

(M(LE J —LJ AND TheREFORE
)& C V)
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€4 THE Purte Facts  C()) ;— Ce)

le h(J\A Y\U’.)’ o MTRAOICTION

13l Mi)= 0 MpLiEs Row,(A)ZO
7\

M) ORS¢ pUATIS V

iy RevexLzp
STRictey WoRS E
Thon L

Nil= 0 Moigs v )7 wl) FaR ALy
IF Ni) <)) ThgMn A(--J>o By !
Foal)= Myy) ThEN Agme By [2(
HEME  ROW (A) Z O

|d] wi)=0 FokR K1 LEACT oWE
JOPSSE FOR CONTRAD/ i, w21 Y
THIS IvpLiIES ThAT C )+ F FoR
ALL OBSc RVATIONS ¢

HENMCE FOR EACH L, WE (AN CHoosE

PEY w Cl) o 0 _F) i

A Frw o piey T3y AL
BUT THE MIMBFR o F ORSER VATIONS
U FNTE (T
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Hem g Théepe (A PepreiioN /N THE

Y ATY \E ThERE E>xs7 NUMBERS
)

M <Y /J”/L)sf/l”(.i.}:s

s= b M 3 __;*)b"u):f
hEME  THe DBTHA Do NMOT CATTIL il 4
G A RP) (ONT ZAO C T oN

é ]
JWeNE FOR (avtRgpiction M )= 1 W
Then FOR EAUL ( Thepe 1 Py e Cly

L>+ Ml — A
15(4_“\', ié)&Uné'T
The

1t Pt et
Swee 4 2 pure T ¥y
TRerC (A ReQeTTiony PAlopnlb g
SEAEME =2=p I M 1w 2y

y""\ (1\)-= i’“li)z s  Thew



S= Py T opnlig)=s
CoOMTRAOKLTIVG O ARP



Base case, T=2

Veeosy THE DaTA F = (P sd) (p2x) ] Gw(Fy GARP.

THEN THE AFRIPT N OUALITIES RRe SATSFABLE | -2
A A 1

y V2o A1 A7) AT SATi (R

Uy ¢ \)Q + Ay A:,l' U, < Us + ™ A1y

PRooF

A
THERE €T Ul>o

(1)

w, Uy £ Usr™g Agy

ARE EQUIWALENT TO

(FOLRIER- MOT2KIN ELUMINATION )
¢ Lg + ), A2)

Ug - N hag £
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Vg - MRyy £ VL € Vg 4+ A, Aza |2)
ELMMVATIVG Uy

My = NP2 US4 D, A,

Oé M Ayy A Pa 3)
CARSE A11>O ’/
A\ A;) AN

A A A 1 4
\)ZR MAL A UZ—-\'AZ‘ = UZ_F &Aza S e

r

A S A A A
UZ’ 7\l Aﬁfﬁ yd Ui< Uz"’ >‘L 2
T 0(t & Jorutavy € TrE AERAT IME QUALITIES

CA(E Ay = O = As)

p
A A A A
THEN )= A;.Q 0=V, >0 WuL do
e B =9, A1|>’O
A A
04 W'hzl\z; N=1= X
U2>O

A A A
Ueg ,% 4L Uj,4 Vs + ), A,
Ui £ UL 402* All

(ASE M;&
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A

Ay F0 =) U < UJ-t SAJ"

PUESToNS /

”

14 Page 49

.

951:-_1) ’Aa> - —

-



Induction step

SUPE TRAT GARP IMPLIES SATICRIABILITY OPF Thg AFRIAT
INNGURLITIEG FOR RlL PATASETY OF Size 4,2, ,T-L;
Show THat AW DA SeT F = £(Pt »x¥): 4=, 7L OF

Sizg T, THE PSISLIATED AFRIAT INE OVALITIES

ARE SATICFIARLE |

P RoOF

LET  F= (et x¥: =1 b SATrcEy
GARP. PEFINE THE ArF2AT MiTix A
AND ThE DiREcT RTVENLED PREPEREAE
LecxkusN —> ofF F.

WE REPRE(ENT THE (TRICT REvVEALED
YREFERPNCE ReLATLDNM "r'; LLNVG
JT¢( ©OF DES(ENRAVTY
SYMONR ACOTDM2 WV
I A 7—\3 lil—;
4 is A

D ESCEMANT 5

3
FD &5 5
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vV 2oL ivynr vt D I™
(Reo ¢
atrices with a nonnegative row JH\')WS _IH“AT, IFf WE OEF('\/E
i . e+ .
Cl)= {) elT]: —>\)§’ = k Q)
Clil= ATRLT DESLENDNTL o ¢ f
NW)= B CUl= NOMBER OF D& SCENRANMTY OF (
T=1ielm]: nir=0lxg )

T 2 NODES WITHOUT OfS(EINDANTS

1el = Rowil A2 0 (2)
DEFNE A= TC
A={ielr]: nir»1} 3)

= KL OBSERVATIONS WiTH k7 LEAST
ONT D ESCEND ANT

(e A2 L

Simce f:l‘f@) WE Have 1 ¢ H(A)eT- L

The DATA 9 (0%,x%): e 0] SATICFY GARP

Revip €9 The WOuudn HYPIOTR ESIS

INERQLA)

N A
IS SATIGEPBLE: Ley TV, tiecA] BE A Sorvuy/
of- 1INt Q(A). WE (AN ALWAYS ALUME [/)lt' >0 Vre,/_\
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NE RRE GoNG TV EXTEND THE JolUTION
A A
OF The AFRMINT INe &umyTps LU0 3¢ siepal

A A
<o A FulL soLeTioN EUI'-| PYRE fC‘LT]]

Satisfiable afriat lemma 1

O tewg 06 BY
D =m0y +2 P Jed, ierf iy

A A
wE Extevn LU it 1€ A TR A dotewn
A
L UL 22 ieIT]) OF Tne vt wravauTics,

A

vV U"; 0—¢ ie ¥ \,5) v el
N

v ’\i.: \3 Te [ 6/ v

a1 OK &y
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D HvesTHESIS
(s 1€V el
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OR. € QUIVALENTLY

B-c cbetr LAy
t 7

Ly eT mpLies ML= )= O TgRefore BY

Positive row lemma A:“io/ A \;’ > o

HEME THE INSLALITIES ARE AT =@ BY Avv iz)

OU By

INDpULTION
HYPY THESIS

CACE ler Jel

0: < Ui+ %A

. < . ° .i

AT J "; A4 WANT
iz L a7

THEV  BY (D)

rG A Aj L/
beg y T AR WANT
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D = v 05 +2 Aji - Jed, ierf

A A A
U=0-e< b ¢ UJ4>‘\) AJ'L'

>

A

O ¥Foe

T A™MM -|-_>/’
OK By
INDV (LW
b HYP3TheS)¢
(Ale (e B Q€T
U, £ U+ %A
, = ) T 4,A5
A‘ J A ! W ANT
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Satisfiability of Afriat's inequalities implies rationalizability by strictly increasing,concave,continuous
utility function

(8) There exist positive numbers (u',A') for t = 1,...,T that satisfy the
Afriat inequalities:

u® <ul+ Np'(x* - x') foradllt,s;

(3) wmeug 1)

(4) There exists a locally nonsatiated, continuous, concave, monotonic util-
ity function that rationalizes the data.
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WARP and aggregation across consumers

Revealed Preference and Aggregation

Laurens Cherchye; Ian Crawford! Bram De Rock'and Frederic Vermeulen®

March 13, 2015

Abstract

In the tradition of Afriat (1967), Diewert (1973) and Varian (1982), we provide a
revealed preference characterisation of the representative consumer. Our results are sim-
ple and complement those of Gorman (1953, 1961), Samuelson (1956) and others. They
can also be applied to data very readily and without the need for auxiliary parametric
or statistical assumptions.

4D Aggregate Demand and the Existence of a
Representative Consumer MWW G
The aggregation question we pose in this section is: When can we compute meaningful
measures of aggregate welfare using the aggregate demand function and the welfare
measurement techniques discussed in Section 3.I for individual consumers? More
specifically, when can we treat the aggregate demand function as if it were generated

by a fictional representative consumer whose preferences can be used as a measure of
aggregate societal (or social) wellare?

Robert E. Lucas, Jr., (1987) proposed that the cost of business cvcles be mea-
sured in terms of a proportional upward shift in the consumption process that SAR CENT
would be required to make a representative consumer indifferent between its —_—
random consumption allocation and a nonrandom consumption allocation with
the same mean. This measure of business cycles is the fraction 2 that satisfies

Whom or What Does the
Representative Individual Represent?

My basic point in this paper is to explain that this reduction of the behavior
of a group of heterogeneous agents even if they are all themselves utility maximizers,
is not simply an analytical convenience as often explained, but is both unjusti-
fied and leads to conclusions which are usually misleading and often wrong.
Why is this? First, such models are particularly ill-suited to studying macroeco-
nomic problems like unemployment, which should be viewed as coordination

* EYUTemsE IN Mopels ©F (MPE RFECT
CompeTi TIOW.

- Um\auaweg ANO STAGBLITY
OR AW KINDS PE MODPELS
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o WELFARE EVALLAT.ON( WhERC
The CEVALUARTISM ROGREES WITH
ThE OUNDERLYIMG (ONMUMRER PREFENEMES,

Also, results in general equilibrium theory to be presented in » Chap. 6 (the
so-called Sonnenschein-Mantel-Debreu results) have shown that when the very
restrictive assumptions guaranteeing the existence of a representative consumer
are not satisfied, then market demand functions can differ drastically from the
demand functions derivable from a single consumer and can have essentially any
shape. PCTR;

In conclusion, there seems to be very little reason to expect market demands
to behave as if they came from a single consumer.*> But unless they do, economic
theory does not restrict the possible choice of functional forms for economet-
ric estimation of market demand functions. Thus the relevance of Proposition

Econometrica, Vol. 45, No. 1 (January, 1977)

ON THE FOUNDATIONS OF THE THEORY OF
MONOPOLISTIC COMPETITION l’ J

By JouN ROBERTS AND HUGO SONNENSCHEIN'

Available theorems establishing the existence of general equilibrium in models incor-
porating imperfectly competitive firms rely on the assumption that reaction curves are
continuous functions (or convex-valued, upper hemi-continuous correspondences). How-
ever, this property has not been derived from conditions on the fundamental data of tastes,
technology, and maximizing behavior. We show here that continuity may fail even in
extremely simple cases, with the result that equilibrium price and/or quantity choices fail
to exist. The non-pathological nature of the examples we present suggests the need for a
fundamental re-examination of the way our partial and general equilibrium models of
monopolistic competition fit together.

WHAT i¢ A REPRESeMTATIVE COMIUME R 7
AVTIOP03 2T UTIHOS UATANAN D THS |

WE SAY{ THAT K Q’DJFI\VE) REPREJEMNTATIVE

CONOUER Exitty IN SOME Gl ECordsry

I the Beolze-m—ce DE MAND

CoR)E SPpONDEME., (AN BE OBTAINED
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strong rationalizability implies SARP
Friday, 14 December 2018 16:29
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sarp implies Afriat matrices with a nonnegative row

Friday, 14 December 2018  20:48
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SARP implies strong afriat's inequalities
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Strong afriat inequalities imply strong rationalizibility
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Representative consumer
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Revealed Preference and Afriat’s Theorem

This chapter concerns a consumer who, we hypothesize, is solving the CP for a
number of different prices and incomes. We observe the consumer’s choices and
ask, What can we say about this consumer? In particular, are her choices
consistent with the standard model of preference-driven, utility-maximizing
choice? What patterns can we expect to see in the choices she makes, as we
(say) vary one price only or her level of income? The emphasis here is on what
can be discerned fiom a finite number of actual choices; Chapter 11 concerns the
entire array of choices the consumer might make, for every possible level of
income and every possible set of prices.

4.1. An Example and Basic Ideas

The main point of this chapter is illustrated by the following example. Imagine
a consumer who lives in a three-commodity world and makes the following
three choices.

*  When prices are (10, 10, 10) and income is 300, the consumer chooses the
consumption bundle (10, 10, 10).

*  When prices are (10, 1, 2) and income is 130, she chooses the consumption
bundle (9, 25, 7.5).

* When prices are (1, 1, 10) and income is 110, she chooses the consumption
bundle (15, 5, 9).

Are these choices consistent with the standard model of the CP, in which the
consumer has complete and transitive preferences and solves the CP for each set
of prices and income?

This question is somewhat artificial. The story of the CP is that the
consumer makes a single consumption choice, at one time, for all time. How
then could we observe three diferent choices that she makes? The best we can
do is to suppose that we have posed a set of hypothetical questions to the
consumer of the form, If prices were p and your income was y, what would you
purchase?1

Setting this artificiality to one side, a trivial affirmative answer to the
question is possible. Imagine a consumer who is indiferent among, say, all



bundles that give her less than 1000 units of each of the three goods. Since at
these three sets of prices, the incomes she has are insufficient to purchase any
bundle with 1000 units of each good, any choices—in particular, the choices she
has made—are consistent with utility maximization, as long as they respect her
budget constraint, which these do. This trivial answer may seem fanciful, but
the point is not. To falsify the standard model, we must be able to use the data
to conclude that some bundle is strictly preferred to some other(s). Otherwise,
complete indifference is consistent with any pattern of choice that satisfies
feasibility.

One way we might proceed is to ask whether the choices observed are
consistent with preference maximization for strictly convex preferences. If a
consumer with strictly convex preferences chooses the bundle x* when prices are
p and income is y, then the consumer strictly prefers x* to any other bundle x
such that p - x <y, since we know that with strictly convex preferences and a
convex choice set, the chosen bundle is strictly preferred to all fasible
alternatives.

We take a slightly different path in this chapter, asking whether the observed
choices are consistent with preference maximization for locally insatiable
preferences. Local insatiability gives us cutting power according to the ©llowing
lemma.

Lemma 4.1. Suppose a consumer with complete, transitive, and locally
insatiable preferences *— chooses the consumption bundle x* facing prices p
with income y. Then we know that x* ‘— x for all bundles x such that p - x =

y. And we know that x* *— x for all bundles x such thatp - x < y.

Proof. The first part is obvious: Ifp - x =y, x is fasible. Since x* is chosen, it
must be at least as good as x. The second part uses local insatiability: Ifp - x <
y, local insatiability ensures that there is some bundle x’ near enough to x so
that p-x’ <y, with x" =~ x. This means x' is feasible; hence x* = x'. But then x*

“— x' ' x gives the desired conclusion.
- |

Now back to the example. From the data given above, we calculate the cost



of each of the three selected bundles at each of the three sets of prices. This is
done for you in Table 4.1.

Prices
(10,1010) (101,2) (1.1,10)
(10,10,10) 300 130 120
Bundle (9,25,75) 415 130 109
(15,59 290 173 110

Table 4.1. Cost ofthree bundles at three sets of prices.

In each case, the bundle selected exhausts the income of the consumer. This
is required for these choices to be consistent with local insatiability: A locally
insatiable consumer always spends all of her income; ifa consumer ever chooses
a bundle that costs strictly less than the income she has available, she cannot be
maximizing locally insatiable preferences.

Beyond this, the important things to note are:

e When (10, 10, 10) was chosen (at prices (10, 10, 10) and income 300), the
bundle (15, 5, 9) could have been purchased with some money leff over
Apparently, this consumer strictly prefers (10, 10, 10) to (15, 5, 9).

* At the second set of prices (10, 1, 2), since (10, 10, 10) and (9, 25, 7.5)
both cost 130 and (9, 25, 7.5) was selected, the latter must be at least as
good as (10, 10, 10).

* At the third set of prices (1, 1, 10), the bundle (9, 25, 7.5) costs 109, while
(15, 5, 9) costs 110. And we are told that with income 110, the consumer
chose (15, 5, 9). Hence, (15, 5, 9) =— (9, 25, 7.5).

The data tell us that (10, 10, 10) s (15, 5, 9), that (9, 25, 7.5) '— (10, 10,

10), and that (15, 5, 9) — (9, 25, 7.5). We can string these three deductions
from the data together in the order (10, 10, 10) — (15, 5, 9) — (9.25, 7.5) "~

(10, 10, 10), which by transitivity (if the consumer has complete and transitive



preferences) tells us that (10, 10, 10) — (10, 10, 10). These data are therefore
inconsistent with consumer behavior based on the standard preference-
maximization model with locally insatiable preferences. On the other hand,
suppose the third piece of data was instead:

e At prices (1, 2, 10) and income 115, the bundle selected is (15, 5, 9).

Then we would have come to no negative conclusions. At the first set of prices
and income, the bundles (10, 10, 10) and (15, 5, 9) are affordable, and as the
first bundle is selected and the (15, 5, 9) does not exhaust the budget constraint,
(10, 10, 10) is revealed to be strictly preferred to (15, 5, 9). At the second set of
prices and income level, (10, 10, 10) and (9, 25, 7.5) are precisely affordable and
(9, 25, 7.5) is selected, so it is revealed to be weakly preferred to (10, 10, 10).
This is just as before. But now, at the third set of prices and income level, of
the three bundles only (15, 5, 9) is affordable. Knowing that it is selected tells
us nothing about how it ranks compared to the other two; it could well come at
the bottom of the heap. In fact, the other two choices tell us that (15, 5, 9) must
come bottom among these three; the data are consistent with preferences among
the three bundles that have (9, 25, 7.5) — (10, 10, 10) %~ (15, 5, 9), as well as
preferences where (9, 25, 7.5) ~ (10, 10, 10) *— (15, 5, 9).

Of course, this argument doesn’t tell us for sure that these three pieces of
data are consistent with locally insatiable preference maximization; we need
locally insatiable preferences for all ofR3+ that support these three choices. But

it is not hard to imagine that we can fill in preferences consistent with these
data. The main result of this chapter, Afiiat’s Theorem, shows that we can
construct preferences supporting these choices that are complete, transitive, and
locally insatiable, and, in addition, strictly increasing, convex, and continuous.

4.2. GARP and Afriat’s Theorem

To generalize the example, three definitions are needed. The setting throughout
is one with k£ commodities, so that consumption bundles lie in Rk+, prices are

from Rk++, and income levels come from R, .

Definition 4.2.



a. Take any finite set of (feasible) demand data: x' > 0 chosen at (p', y'),
>0 chosen at (p*, Y), ..., and X’ >0 chosen at (p’, '), where, in addition,
P X <y foreach . Ifp' - ¥ < y’ the data reveal directly that X' is weakly
preferred to ¥, written X 9 ¥. And the data reveal directly that X' is
strictly preferred to ¥, wrztten Kol ifp' - ¥ <3 (The superscript d is
for directly.) Note that X' v implies X Ay

b.  Suppose that for some X and ¥, there is a chain of direct revelations of
weak preferences that start with X' and end with ¥. That is, for some x'1,
Loadm o d e d g2 d | d o — 1 d g o d o Then the
data indirectly reveal that X' is weakly preferred to ¥, written ¥ " ¥. If
some one or more of the steps in the chain is a direct relevation of strict
preference, the data indirectly reveal that X' is strictly preferred to ¥,
written X =" . (The superscript r is for revealed.) In this definition, we
allow for the case in which no intervening steps are required; ¥ wd
implies X' " ¥, and X ¢ ¥ implies X' " ¥.
c. The data satisfy the Generalized Axiom of Revealed Preference,

abbreviated GARP, if no strict revealed preference cycles exist. That is, for
no ¥ is it the case that X' =" .

Part ¢ sometimes confuses students, so let me be explicit on two grounds. First,
suppose that for some ¥, p’, and y/, p' - ¥ < ). Then according to part a of the
definition, ¥ < ¥/, hence by part b, ¥ " ¥, and hence GARP is violated. In
words, GARP is violated if any bundle chosen at given prices and income costs
less at those prices than the level of income. Second, suppose ¥ —' ¥ and,
simultaneously, ¥ g )3, for some pair)f and ¥. That is, there is a chain ol
revealed weak preferences ffom X to ¥ and a chain of revealed weak preferences,
at least one of which is also strict, fom ' back to x. Then according to part b of
the definition, x¥' " x' and ¥ " ¥/, and this is also true for any element in
either of the two chains of revealed preference. The two chains join together in a



cycle, so there is a chain going ffom any link in the chain back to that link,
with one of the links direct strict preference. Satisfaction of GARP is
equivalently stated as: No such cycle can be found in the data.

Proposition 4.3 (Afriat’s Theorem). If a finite set of demand data violates
GARP, these data are inconsistent with choice according to locally insatiable,
complete, and transitive preferences. Conversely, if a finite set of demand data
satisfies GARE, these data are consistent with choice according to complete,
transitive, strictly increasing (hence, locally insatiable), continuous, and
convex preferences.

Before giving the proof, two comments are in order.

1. GARP concerns weak and strict revealed preferences among the finite
collection of bundles that are chosen. We need not compare chosen bundles
with those that never are chosen. No violations of GARP among the set of
chosen bundles is necessary and sufficient for standard (locally insatiable)
preferences for all okaJr.

2. If the data contain a violation of GARP, then no locally insatiable,
complete, and transitive preferences can rationalize or explain the data. But
if the data satisfy GARP, then not only can we produce locally insatiable,
complete, and transitive preferences, but preferences which in addition are
strictly increasing, continuous, and convex. In other words, given a finite
collection of demand data, we cannot falsify the hypothesis that the
consumer’s preferences are strictly increasing or continuous or convex
without throwing away the entire model of choice by locally insatiable,
complete, and transitive preferences. The three extra properties add no
testable restrictions.

Please be careful in interpreting this. This does not say that it is
impossible to falsify strictly increasing or convex preferences empirically.
(I'm unwilling to make a claim one way or the other about continuity;
whether continuity can be tested empirically depends on your definition ofa
valid empirical test.) Suppose, for instance, I ask a consumer to rank order
the three distinct bundles x, x/, and 0.5x + 0.5x', and she says the convex
combination is definitely the worst of the three. Then we know she doesn’t



have convex preferences. Suppose I ask her to rank order three distinct
bundles x, x', and x” where x” and x" are both > x and neither x’ > x" nor x” >
x', and she says x' is worst of the three. Then we can reject the hypothesis
that she has strictly increasing preferences (and even nondecreasing
preferences), without (yet) rejecting local insatiability. The point is, these
are not questions about market demand data. What is asserted here is that,
with a finite collection of market demand alone, 1 can’t reject the three
properties without simultaneously rejecting that her preferences are
complete, transitive, and locally insatiable.

The proof of Afriat’s Theorem

The first “half” of the proposition is easy. If the data are generated from locally
insatiable, complete, and transitive preferences “—, then x’ o d o implies X' —
¥, and x }:—d ¥ implies ¥ *— ¥. The argument is the one given in Lemma 4.1.
Therefore, by standard transitivity properties of strict and weak preferences, x
" x implies ' *— X/, which violates the asymmetry of strict preference.

The proof of the second half of the proposition is long and very technical.
The proof ] am about to give is due to Varian (1982). I am unaware of any other
use for these prooftechniques in economics; to my knowledge, they give you no
technique that can be usefully transfrred to any other situation you will
enounter. Therefore, I think you can almost surely skip this proof without risk
of missing something later on. On the other hand, if you are an aficionado of
very elegant proofs, this is one to see. Assume throughout that we have J

demand choices—¥ > 0 chosen at prices p/ with income )/, such that p/ - ¥ </,
forj =1, ..., J—that collectively satisfy GARP.

As we remarked infrmally a page ago, r each j, p/ - ¥ =/, ifp/ - ¥ < ¥/,
then ¥ 7 ¥ according to the definition, which is a violation of GARP.

Lemma 4.4. For each i, let n(i) be the number of indices j such that X =" .
a. If nG) < n(), thenp’ - X < p' - ¥.
b. Ifn()=n(), thenp' - X <p' - ¥.

c. At least one i satisfies n(i) = 0.



Proof. For both a and b, we prove the contrapositives. (a) Ifp’ - X' >p’ - ¥ = y/,
then ¥ “—“ ¥ by definition. But then if¥ =" x* for any £, it Hllows that X' "
X, and hence the set of indices k such that ¥ P + is a subset of the indices
such that ' =" x¥; n(j) < n(i) Hllows immediately.

(b) And ifp - ¥ > p’ - ¥, then ¥ },—d ¥. We know that every k such that ¥ "
¥ also satisfies ¥ o x/‘, and there is at least one &, namely j itself such that X
' ¥ but not ¥ =" ¥. (If¥ '~ ¥, GARP is violated.) Hence n(i) > n(j). The
contrapositive to this that n(i) < n(j) implies p’ ¥/ <p -¥, and b then follows as
a special case.
(c) Ifn(7) > 1 for every i, then for each i we can produce another index j such that
¥ " ¥. Starting ffom any i, this gives us a chain ¥ = X'l %" x2 " ¥3
. Since there are only J possible values for the bundles, this chain must

eventually cycle, which would violate GARP. -

Lemma 4.5. Real numbers v and o > 0 for i = 1, ..., J can be found such
that, for all i and j,

Proof. We use induction on J. The result is trivially true for J = 1. Suppose it
is true for all sets of data of size J— 1 or less. Take a set of data of size J (with
no violations of GARP), and (renumbering if necessary) let 1 through / be the
indices with n(i) = 0. By Lemma 4.4c we know that /> 1. Therefore, the set of
indices / + 1, ..., J gives us J — 1 or fewer pieces of data (with no violations of
GARP). (The case where / = J is handled by an easy special argument.) Hence
we can produce v/ and o as needed fori fiom 7 + 1 toJ, and inequality (4.1)
holds for i and j both from 7+ 1 to J.
We extend to a fill set of v/ and o as Bllows. Set

vi=tt=..v'=  min ¥ +ai[p2f-p 2]



By this definition, (4.1) will hold for i fom 1 to /and j ffom 7+ 1 to J.

To get (4.1) for i fiom 7+ 1 to J and j fiom 1 to Z, we use o/. Note that by
Lemma 4.4a, for such i and j, since n(i) > 0 and n(j) = 0, we know that p/ - x' >
P - ¥. Therefore, we can select (for eachj = 1, ..., I) o/ large enough so that
these strictly positive terms give us the desired inequalities.

Finally, Lemma 4.4b tells us that for i and j both fom 1 to 7, p/ - ¥/ > p/ -
¥. Therefore, since v/ = v/, no matter what (positive) values we chose for o/, we
have (4.1). This completes the induction step and the proof of Lemma 4.5.

The rest is easy. Define

u(z) = min_ vt + of[pt-x — P 2]

=1

Note that u is the minimum of a finite set of strictly increasing, affine functions;
hence u is strictly increasing, concave, and continuous. (Math facts: The (point-
wise) minimum of a finite set of strictly increasing functions is strictly
increasing. The minimum of a finite set of concave functions is concave. The
minimum of a finite set of continuous functions is continuous. If you did not
know these facts, prove them.)

From (4.1), u(¥) = V.. This is a simple matter of comparing (4.1) with the
definition of u.

We are done once we show that u rationalizes the data. To do this, take any
observation (¥, p/, /). Because GARP is satisfied, p/ - ¥ = )/. We know that ¥/
gives utility v. And it is evident fiom the definition of u that for any x such that

poxsy=p ¥,
uz)= min o +a'lpt - pt 2] <ol ed[pn—p 9] <
ilyyd

That does it.
]

WARP: The Weak Axiom of Revealed Preference



In many economic textbooks, the so-called Weak Axiom of Revealed Preference,
or WARP, is discussed. It may be helpful to make (brief) connections with what
we have done here.

The Weak Axiom of Revealed Preference says that ifx* is chosen at (p, y),
then x* is strictly preferred to any other bundle x such that p - x <y. This is
almost a special case of GARP. It is a special case because it refers only to
direct revelation of preference. GARP, on the other hand, looks at chains of
revealed preference. But it is only a/most a special case because it is a bit
stronger than local insatiability allows; following Lemma 4.1, we can conclude
only that when x* is chosen at (p, y), then x* is strictly preferred to any other
bundle x such that p - x < y, and is weakly preferred to x ifp - x = y.

The diference comes about because we are augmenting the standard model of
preference maximization with local insatiability; WARP “works” if we augment
the standard model with the maintained hypothesis that solutions to the CP are
always unique, for example, if preferences are strictly convex.

4.3. Comparative Statics and the Own-Price Effect

Comparative statics is a term used by economists for questions (and answers to
those questions) of the form, How does some economic quantity change as we
change underlying parameters of the situation that generates it? Much of the
empirical content of economics lies in the comparative statics predictions it
generates. If within a model we can show that quantity x must rise if parameter z
falls, and if the data show a falling z accompanied by a falling x, then we reject
the original model.

In terms of consumer demand, the natural comparative statics questions are:
How does demand for a particular good change with changes in income, holding
prices fixed? How does demand for a good change with changes in the price of
some other good, holding all other prices and income fixed? And—the so-called
own-price effect—how does the demand for one good change with changes in
the price ofthat good, holding other things fixed?

Everyday experience indicates that the theory on its own will not have much
to say about income effects. There are goods the consumption of which declines
as the consumer’s wealth increases, at least over some ranges—public
transportation is a commonly cited example. And there are goods the
consumption of which rises with the consumer’s wealth—taxicab rides, or



skiing trips to the Alps. Goods whose consumption falls with wealth are called
inferior goods, while those whose consumption rises with wealth are called
superior. Moreover, when the percentage of income expended on a good rises as
wealth rises, the good is called a/uxury good; nonluxury goods are called
necessities.

Of course, most goods do not fall neatly into a single one of these
categories. Demand for public transportation by a given consumer rises as the
consumer moves away ffom improverishment, and then falls as the consumer
moves toward being rich. Indeed, since demand for all goods must be zero when
y = 0, only a good that is never consumed in positive levels could qualify for
always being inferior. Hence while a superior good is one the consumption of
which never falls with rising income, an inferior good is one where the level of
consumption sometimes falls with rising income.

As for the effect on the consumption of commodity i of a change in the price
of commodity j, there is (again) little the bare theory of preference maximization
can tell us. Demand for nails falls as the price of lumber rises, and the demand
for comn rises with increases in the price of wheat. Roughly speaking, nails and
lumber are complementary goods, while corn and wheat are substitutes. (This is
rough for reasons that are discussed in later chapters, when precise definitions
will be given.)

The best hope for a strong comparative statics prediction ffom the standard
theory concerns own-price effects; everyday experience suggests that a consumer
will demand less of a good as its own price rises. This is so strongly suggested
by most people’s experiences that goods for which this is true are called
normal, while goods that are not normal—the demand for which sometimes
rises as the price of the good rises—are called Giffen goods (named for Scottish
economist Sir Robert Gifen, to whom the notion is attributed by Alfred
Marshall).

The question is, if we look at demand by a preference-maximizing
consumer, will demand for a good inevitably fall as the price of that good rises,
holding everything else fixed? The answer, which you probably know from
intermediate microeconomics, is no. One can draw pictures of indifference curves
that support an increase in the consumption ofa good as its own price rises.

With Afiiat’s Theorem, we can rigorize these pictorial demonstrations. Fix
prices p, income y, and demand x at these prices and income. Choose some



commodity (index 7), and let p’ be a price vector where all the prices except for
good i are the same as in p, and p’; > p,. Let x’ be demand at p’ and y. Since

(assuming local insatiability) p - x = y and p'is greater than p, as long as x; > 0,

p"x > y. As long as p"x' =y it doesnt matter what x' is—in particular, it
doesn 't matter whether x'; < x; or x'; > x—GARP will not be violated by these

two data points. Afiiat’s Theorem tells us that convex, strictly increasing, and
continuous preferences can be found to support the existence of a Giffen good.
Indeed, if we have any finite sequence of demand data for a fixed income level y
and a succession of prices that involve (successive) rises in the price of good i
only, as long as the demanded bundles satisfy the budget constraint with
equality, GARP will not be violated.

A positive result

Consider the fllowing alternative comparative statics exercise. Ask the
consumer for her choice at prices p and income y. Suppose x is her choice. Now
replace p with p’, where p’ is the same as p, except that the price of good i has
been strictly increased, and simultaneously replace y by y' = p’ - x. Let x’ be the
chosen bundle at p’and y". Suppose x'; > x;.

Since x is feasible at (p’, ') by construction, we know that x' must be
weakly preferred to x. But at the same time,

L L ot ooy anp —p
p -1 —ZE-’H-;' + T = E iz + P =p' o
jdi i#

Rewrite the inner two terms as

) "’_-c"_ LT, 'I'_'\..
i it
invoking the fact that p’; = p; for j #i. Since p’; > p; and x; > x;, we know that
(@', —p)X'; > (p'; — p;)x;; subtract the larger lefi-hand term ffom the lefi-hand side



of the previous display, and the smaller right-hand term fiom the right-hand side
of the display, and we see that p - x’' < p - x. Therefore, for locally insatiable
preferences, x is strictly preferred to x’. Oops. This demonstrates the ©llowing
formal result.

Proposition 4.6. Suppose x is chosen by the consumer facing prices p and
income y, and x' is chosen at prices p' and income p' - x, where p' is p except
for an increase in the price of good i. If these choices are made according to
the standard model with locally insatiable preferences, then x'; <x;.

In other words, if we ask this pair of questions of a consumer and find the
consumption of good i rising, we have refuted (for this consumer) the standard
model, augmented with local insatiability.

Giffen goods must be inferior
Before commenting on the result just derived, let me gather up one more “ fact.”

Proposition 4.7. Suppose i is a Giffen good for some preference-maxiziming
consumer with locally insatiable preferences. That is, for some income level y,
price vectors p and p' such that p is identical to p' except that p; < p';, and

consumption bundles x and x' such that x is chosen at (p, y), x' is chosen at (p',
V), X'; > x;. Then good i must be (sometimes) inferior for this consumer. More
specifically, y'=p - x' <y and if x" is a choice by the consumer facing (p, '),
then x"; > x;.

Proof. Sincep' - x' =y and x’; > x; > 0, we know that )’ =p - x" <y. Now
suppose x” is a bundle chosen at (p, y). (To be completely rigorous about this,
we ought to have insisted on augmenting the standard model of complete and
transitive preferences with local insatiability and continuity, the latter to ensure
that some bundle is chosen at every price and income combination.) Comparing
x" and x", we have that x’ is chosen at (p’, y), and x” is chosen at (p, p - x'),
where p is p’ except for a reduction in the price of good i. By an argument
similar to that in the proof of Proposition 4.6, we conclude that x”; > x". But x’;

> x; by assumption; therefore x”; > x;.



Discussion

Why are Giffen goods possible? How could the consumption of good i rise with
increases in its price? Roughly, the reason is that when the price of good i rises,
two things happen. The relative price of good 7, relative to the prices of other
goods, is increased. Our expectations that the consumption of good i will fall
(or, at least, not rise) stems ffom this; as the relative price of good i rises, the
consumer ought to substitute other goods for it. But also the “level of real
wealth” of the consumer falls; her income y is no longer sufficient to purchase
the bundle x that she chose before the rise in p;. A poorer consumer may choose

more of good i because good 7 is inferior, and this implicit income effect may
overcome the effect ofthe increased relative price of good i.

Indeed, the first alleged instance of a Gifen good concerned potatoes in
Ireland during the great potato famine: The shortage of potatoes caused the price
of potatoes, the staple crop of the working class, to rise precipitously. This so
impoverished the working class that their diet came to consist almost entirely of
... potatoes; they could no longer afford to supplement potatoes with other
goods. The effect was so strong, it was claimed, that they purchased more
potatoes. (Careful empirical evidence has been offered to refute that this did in
fact happen.)

Proposition 4.7 supports this intuitive explanation, by showing that if a
good is Gifen, it must be inferior Or, to put it the other way around, if the
good is superior—if there is no chance that reduced income leads to an increase
in its consumption—then it cannot be Giffen; a rise in its price cannot lead to a
rise in its level of consumption.

And Proposition 4.6 pretty much clinches the argument. Recall how the
comparative statics exercise worked. We began with prices p, income level y,
and a choice x by the consumer. The price of good i was increased, giving new
prices p'. This makes the consumer worse off in real terms—she can no longer
afford x (ifx; > 0)—so to compensate her, we increase her wealth to y' = p' - x,
just enough so that she could purchase x if she wanted to. Now the income effect
of lower real wealth is controlled for, leaving only the relative price effect, and
the consumer must choose a bundle x’ with no more of good i than before.

Compensating the consumer in this fashion—giving her enough income so



that at the new prices she can purchase the bundle at the original prices—is
called Slutsky compensation. We pick up the story of compensated demand in
Chapter 10, but for now we conclude with a final proposition, which is left for
you to prove.

Proposition 4.8. For a consumer with locally insatiable, complete, and
transitive preferences, suppose that x is chosen at prices (p, y), and x' is chosen
at prices p' and income p' - x, for any other price vector p'. Then (p'—p) - (x' —
x) <0.

Coming attractions

We are far from finished with the classic theory of consumer demand, but we are
going to take a break ffom it for a while. My personal prejudices are to
undertake further foundations of models of choice—under uncertainty, dynamic,
and social—before finishing the story. You (or your instructor) may fel
diferently about this, in which case you may wish to move to Chapters 10 and
11, concerning the dual consumer’s problem, Roy’s identity, the Slutsky
equations, and integrability. But if you do this, a wamning: The mathematical
developments in Chapters 10 and 11 build on methods first employed in the
theory of the profit-maximizing firm, in Chapter 9. So you should probably
tackle Chapter 9 before Chapters 10 and 11.

Bibliographic Notes

Afiat’s Theorem is given in Afiiat (1967). The proof given here is taken
directly ffom Varian (1982). The axioms ofrevealed preference discussed here are
applied as well in the literature to demand functions, full specifications of
consumer demand for all strictly positive prices and income levels; this part of
the literature will be discussed in Chapter 11.

Problems

m *4.1. In a three-good world, a consumer has the Marshallian demands given
in Table 4.2. Are these choices consistent with the usual model of a locally
insatiable, utility-maximizing consumer?



Prices Income Demand
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1 20 10
1 20 3
2 25 13
2 20 15

Table 4.2. Four values of Marshallian demand.
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m 4.2. There are a fw details to clean up in the proof of Affiat’s theorem. First,
show that the minimum over a finite set of concave functions is concave, the
minimum over a finite set of strictly increasing functions is strictly increasing,
and the minimum over a finite set of continuous functions is continuous.
Second, show how to proceed if, in the proofof Lemma 4.5, you find that n(i) =
0 for all 7, and (hence) = J.

m 4.3. For a two-good world, create an indiference curve diagram that shows
the (theoretical) possibility ofa Gifen good.

| *4.4. Prove Proposition 4.8.

T 1

I A diferent way to try to make the story realistic is to suppose (1) that the
consumer shops, say, each week, (2) has a fixed budget for each week, and (3)
has preferences that are weakly separable ffom one week to the next and that are
unchanging ffom week to week. Then our three pieces of data could be the
results of three weeks of shopping. But suppositions 2 and 3 are rather
incredible.
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Econometrica, Vol. 50, No. 4 (July, 1982)
THE NONPARAMETRIC APPROACH TO DEMAND ANALYSIS

By HAL R. VARIAN!

This paper shows how to test data for consistency with utility maximization, recover the
underlying preferences, and forecast demand behavior without making any assumptions
concerning the parametric form of the underlying utility or demand functions.

THE ECONOMIC THEORY of consumer demand is extremely simple. The basic
behavioral hypothesis is that the consumer chooses a bundle of goods that is
preferred to all other bundles that he can afford. Applied demand analysis
typically addresses three sorts of issues concerning this behavioral hypothesis.

(i) Consistency. When is observed behavior consistent with the preference
maximization model?

(ii) Recoverability. How can we recover preferences given observations on
consumer behavior?

(iif) Extrapolation. Given consumer behavior for some price configurations
how can we forecast behavior for other price configurations?

The standard approach to these questions proceeds by postulating parametric
forms for the demand functions and fitting them to observed data. The estimated
demand functions can then be tested for consistency with the maximization
hypothesis, used to make welfare judgements, or used to forecast demand for
other price configurations. This procedure will be satisfactory only when the
postulated parametric forms are good approximations to the “true” demand
functions. Since this hypothesis is not directly testable, it must be taken on faith.

In this paper I describe an alternative approach to the above problems in
consumer demand analysis. The proposed approach is nonparametric in that it
requires no ad hoc specifications of functional forms for demand equations.
Rather, the nonparametric approach deals with the raw demand data itself using
techniques of finite mathematics. In particular T will show how one can directly
and simply test a finite body of data for consistency with preference maximiza-
tion, recover the underlying preferences in a variety of formats, and use them to
extrapolate demand behavior to new price configurations. Thus each of the issues
of concern to demand analysis mentioned above is amenable to the nonparamet-
ric approach.?

1. TESTING FOR CONSISTENCY WITH THE MAXIMIZATION HYPOTHESIS

Letp' = (p{, ..., pi) denote the ith observation of the prices of some k goods
and let x' = (x{, ..., x}) be the associated quantities. Suppose that we have n

'This work was financed by grants from the National Science Foundation and the Guggenheim
Memorial Foundation. I wish to thank Erwin Diewert, Avinash Dixit, Joseph Farrell, Angus Deaton,
and Sydney Afriat for comments on an earlier draft.

2 Another concern of applied demand analysis is the issue of testing for restrictions on the form of
the utility function or budget constraint such as homotheticity, separability, etc. I address these
questions in Varian [29, 30).
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observations on these prices and quantities, (p',x’), i=1, ..., n. How can we
tell if these observations could have been generated by a neoclassical, utility
maximizing consumer?

DEFINITION: A utility function u(x) rationalizes a set of observations (p’,x"),
i=1,...,n, if u(x’) = u(x) for all x such that p’x’ = p'x.

At the most general level there is a very simple answer to the above question:
any finite number of observations can be rationalized by the trivial constant
utility function u(x) = 1 for all x. The real question is when can the observations
be rationalized by a sufficiently well behaved nondegenerate utility function? The
best results in this direction are due to Sydney Afriat [1,2,3,4,5].

AFRIAT’S THEOREM: The following conditions are equivalent:
(1) There exists a nonsatiated utility function that rationalizes the data.
2) The data satisfies “cyclical consistency”; that is,
o4 24
px"zZpxt,  px’Zpx’, oy pIxTZpix”

implies

prxr =prxs, Psxs =psxt’ e, pqxq =pqxr.

(3) There exist numbers U\, \' >0,i=1, ..., n, such that
U'sU+NM/(x'—x))y  for i,j=1,...,n

(4) There exists a nonsatiated, continuous, concave, monotonic utility function
that rationalizes the data.

PrROOF: See Appendix 1.

There are several remarkable features of Afriat’s theorem. First, the equiva-
lence of (1) and (4) shows that if some data can be rationalized by any nontrivial
utility function at all it can in fact be rationalized by a very nice utility function.
Or put another way, violations of continuity, concavity, or monotonicity cannot
be detected with only a finite number of demand observations. Secondly, the
numbers U’ and A’ referred to in part (3) of Afriat’s theorem can be used to
actually construct a utility function that rationalizes the data. The numbers U’
and A’ can be interpreted as measures of the utility level and marginal utility of
income at the observed demands. This is described in more detail in Appendix 1.

Thirdly, parts (2) and (3) of Afriat’s theorem give directly testable conditions
that the data must satisfy if it is to be consistent with the maximization model.
Condition (3) for example simply asks whether there exists a nonnegative
solution to a set of linear inequalities. The existence of such a solution can be
checked by solving a linear program with 2n variables and n? constraints.
Diewert and Parkan [10] describe some of their computational experience with
this technique using actual demand data. Unfortunately the fact that the number
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of constraints rises as the square of the number of observations makes this
condition difficult to verify in practice for computational reasons.

Condition (2) seems rather more promising from the computational perspec-
tive. As it turns out, there is an equivalent formulation of condition (2) which is
quite easy to test. In addition this equivalent formulation is much more closely
related to the traditional literature on the revealed preference approach to
demand theory of Samuelson [24], Houthakker [12], Richter [21], and others. In
order to describe this formulation we must first consider the following defini-
tions:

DEFINITIONS: Given an observation x' and a bundle x:

(1) x' is directly revealed preferred to x, written x'R%, if )4 X'zp x.

() x' is strictly directly revealed preferred to x, written x'P%, if p'x' > p'x.

(3) x' is revealed preferred to x, written x'Rx, if p’x’ Zp'x/, p’x/
Zpix/,...,p™™ = p™x for some sequence of observations (x',x/, ..., x").
In thls case we say that the relation R is the rransitive closure of the relation R°.

(4) x'is strictly revealed preferred to x, written x 'Px, if there exist observations
x/ and x! such that x‘Rx/, x’P°%’, x'Rx.

Note that in the above definitions we do nor require x', x/, x', etc. to be
distinct observations. We also adopt the convention that xRx for all bundles x.

DEeFINITIONS: A set of data satisfies the:

(1) Strong Axiom of Revealed Preference, version 1 (SARP 1) if x'Rx’/ and
x’/Rx"' implies x' = x/;

(2) Strong Axiom of Revealed Preference, version 2 (SARP 2) if x'Rx’/ and
x' = x/ implies not x/Rx’;

(3) Strong Axiom of Revealed Preference, version 3 (SARP 3) if x'Rx/ and
x'# x/ implies not x/R %'

(40) Generalized Axiom of Revealed Preference (GARP) if x'Rx/ implies not
x/P°x'

The most common statement of the Strong Axiom is probably SARP 2.* It is
clear that SARP 1 is equivalent to SARP 2. It is not quite so clear that SARP 3 is
equivalent to SARP 2, but nevertheless they are equivalent. One can easily show
that SARP 1, SARP 2, and SARP 3 imply GARP, but not vice versa. Basically
SARP (in any of its formulations) requires single valued demand functions while
GARP is compatible with multivalued demand functions. For example, the data
in Figure 1 violate SARP but are quite compatible with GARP.

3One can always use the duality theorem of linear programming to construct an equivalent
problem with n? variables and 27 constraints, but this problem may also be computationally difficult.

4See Richter [22] for several variations on revealed preference axioms. Note that Richter considers
a framework where the entire demand correspondence is given, rather than only a finite number of
observations. This leads to a number of differences in the analysis.
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FIGURE 1.

This is why we refer to GARP as the Generalized Axiom of Revealed
Preference. It turns out to be a necessary and sufficient condition for data to be
consistent with utility maximization, and is in fact equivalent to Afriat’s cyclical
consistency condition.

FAct 1: A set of data satisfies cyclical consistency if and only if it satisfies
GARP.

PrROOF: Suppose that we have some data containing a violation of cyclical
consistency so that p’x" Z p'x*, ..., p/x/ > pix’, ..., pix9Z pix’. Then x'Rx/
by going around the cycle, and x/P%’ directly. Hence we have a violation of
GARP.

On the other hand, suppose we have some data that has a violation of GARP.
Then writing out the violation in the above form shows we have a violation of
cyclical consistency also.

The equivalency of GARP and cyclical consistency is trivial from the mathe-
matical point of view, but is quite important from the computational point of
view, since GARP is quite simple to check in practice, as we discuss below.

First, let us note that GARP can be restated as: if x'Rx/ then p/x/ = p/x’ for
i,j=1,..., n. Hence verifying that some data satisfies GARP is trivial once we
know the relation R—the transitive closure of the direct revealed preference
relation R°.

It is clear that the computation of the transitive closure of a finite relation is a
finite problem. The only issue is how one might compute it efficiently. This
question has been addressed in the economics literature by Koo [14,15,16],
Dobell [7], and Uebe [28], and in the computer science literature by Warshall [31]
and Munroe [20], among others.

Most of the algorithms in the economics literature compute the transitive
closure of a relation in time proportional to n*. The computer scientists, utilizing
the law of comparative advantage, do a bit better. Warshall’s algorithm computes
the transitive closure in n> steps, and Munroe describes a process that does it in
time proportional to n*7*. Warshall’s algorithm is especially easy to implement
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and quite ingenious. It seems fast enough for the problems encountered in
economics, as well. We therefore describe Warshall’s algorithm in Appendix 2.
At this point it might be worthwhile to be rather explicit about how one
represents the relations R® and R in a form suitable for computation and how
one actually verifies GARP in a systematic way.
Let us construct an n by » matrix M whose i — j entry is given by:

. = { 1 if p'x’ = p'x/, that is, x'R%/;
0 otherwise.

M is constructed directly from the data; it summarizes the relation R° Warsh-
all’s algorithm, described in Appendix 2, operates on M to create a matrix MT
where

mi, = { I if x'Rx/,
0 otherwise.

MT can be used to check GARP in the following way.

ALGORITHM 1: Checking data for consistency with GARP.

Inputs: (p’,x’),i=1,..., n, and the matrix MT representing the relation R.

Outputs: whether the data satisfies GARP or not.

1. Is mt; = 1 and p/x/ > p/x’ for some i and j? If so, we have a violation of
GARP.

Algorithm 1 is easily implemented on a computer. According to Afriat’s
theorem and Fact 1 we can use Algorithm 1 to simply and directly test a finite
amount of data with the utility maximization model. If some data satisfies
GARP then there is a nice utility function that will rationalize the observed
behavior. If the data contains a violation of GARP then there does not exist a
nonsatiated utility function that will rationalize the data. Hence we have a
straightforward and efficient way to check a finite amount of data for consis-
tency with the neoclassical model of consumer behavior.

2. RECOVERABILITY-—ORDINAL COMPARISONS OF
CONSUMPTION BUNDLES

Let us turn now to a somewhat different issue, namely the recoverability
question described in the introduction. The revealed preference relation R which
we discussed in the previous section summarizes all of the preference information
contained in the demand observations. Any complete preference ordering that
rationalizes the data must contain R, and every completion of R that rationalizes
the data is a possible preference ordering that generated the data.

However, economists typically assume certain regularity conditions on the
allowable preference orderings. For example we might restrict ourselves to
preference orderings representable by utility functions that are nonsatiated,
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monotonic, and concave. Afriat’s theorem implies that we can always impose
such restrictions with no loss of generality; and conversely, that it is impossible
to detect violations of these restrictions with a finite amount of demand data.

Suppose then that we are given two new consumption bundles x° and x’ that
have not been previously observed. Suppose that every continuous, nonsatiated,
concave, monotonic utility function u(x) that was consistent with (p‘,x‘),
i=1,...,n, implied that u(x°® > u(x’). Then we might well be justified in
concluding that x° was in fact preferred to x’.

Alternatively we could adopt the following viewpoint. Suppose that every price
vector p° at which x° could be demanded—and that was consistent with the data
(p',x"), i=1,..., n—also implied that x° was revealed preferred to x’. Then
certainly we could conclude x° would be preferred to x’ by any consistent
consumer. Let us consider this approach in a bit more detail.

First it is clear that if x° has already been observed—so we know the price at
which x° is demanded—there is no problem in verifying whether x°Rx’. Hence
we concentrate on the case where x° has not previously been observed. In this
case we do not know what price to associate with x° for purposes of the revealed
preference comparison. However, we do know what the set of possible prices
could be:

DEFINITION: Given any bundle x° not previously observed we define the set of
prices that support x° by:

S(x%={p°:(p'x"), i=0,..., nsatisfies GARP and p’x® = 1}.

This is simply the set of prices at which x° could be demanded and still be
consistent with the previously observed behavior. (The requirement that p°° = 1
is a convenient normalization.) We note that Afriat’s theorem implies S(x°) is
nonempty for all x*—just let po be the supporting price at x° of any concave
utility function that rationalizes the data.

V\ge can use the definition of GARP to provide a convenient description of
S(x%):

FAcCT 2: A price vector p° is in S(x°) if and only if it satisfies the following
system of linear inequalities:

M =1
2 px°=p%"  forall x' such that x'Rx°,
P < p%'  for all x' such that x'Px°.

Proor: Follows immediately from the definition of GARP.
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According to Fact 2, S(x°) is simply the solution set to a certain system of
linear inequalities constructed from the data (p',x’), i=1,...,n, and the
relations R and P.

We can use S(x) to describe the set of observations “revealed worse” than x
and “revealed preferred” to x’ in the following way.

0

RW(x°%) = {x :for all p°in S(x°), p°*° = p°’ for
some x'Px or p°° > p%’ for some x'Rx },

RP(x") = {x :for all p in S(x), px Z px' for some

x'Px’ or px > px' for some x'Rx'}.

More succinctly, and with only a slight abuse of our earlier definitions, we
might write:

RW(x°) = {x : for all p° in S(xo),xOPx},
RP(x") = {x :forall pin S(x),xPx'}.

These definitions formalize the idea described earlier: if x’ is in RW(x°), then
whatever the price at which x° is demanded—as long as it is consistent with the
previous data—that price will necessarily make x° revealed preferred to x’. Thus
every concave monotonic utility function that rationalizes the data must rank x°
ahead of x’. Of course RP(x’) has a similar interpretation. In fact it is clear from
the definitions that x° is “revealed preferred” to x’ if and only if x’ is “revealed
worse” than x°. We record this fact for future reference.

Facr 3: x°is in RP(x') if and only if x' is in RW(x°).

RP(x% and RW (x°) are extremely important to the rest of our discussion so it
is worthwhile presenting a few two-dimensional examples. The simplest case—
with one data point—is presented in Figure 2. Let us verify that Figure 2 is
correct.

First, we consider RP(x°). In this simple case, RP(x°) is simply the convex
monotonic hull of all points revealed preferred to x°: namely x' and x© itself. To
verify this, let x be any point in RP(x®), and let p be any (nonnegative) price
vector at which x could be demanded. It is geometrically clear that, whatever
budget line is chosen, x will be revealed preferred to x°—either directly, or
indirectly through the observation x'. (The reader might check his understanding
of this point by indicating the region where x will be directly revealed preferred
to x° by all supporting prices, and the region where x will only be indirectly
revealed preferred to x° for some supporting prices.) So much for RP(x°).

In order to verify the construction of RW(x®), we have to consider all of the
prices at which x° could be demanded and still be consistent with the previous
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data point (p',x"). In this case GARP imposes an important restriction on p°:
the budget line through x° can be no steeper than the indicated angle 4. If it were
steeper we would create a violation of GARP: we would have x'Rx?, and x°P%%".
RW(x°) is the set of points that lie below a// budget lines consistent with GARP
—exactly as illustrated in Figure 2.

Figure 3 presents a more complex example. As before RP(x°) turns out to be
the convex monotonic hull of all the points revealed preferred to x°. RW(x%) is a
bit more interesting. For all budgets that support x° and satisfy GARP, x° is
revealed preferred to x', and a fortiori to all the points beneath x'’s budget
set . . . including x2, x* and so on.

Now Figure 3 presents us with quite a bit of information about the indiffer-
ence curve passing through x°: it cannot intersect RP(x° or RW(x%—hence it
must lie in between the two. Put another way, the set of bundles preferred to x°
(using the true utility function) must always contain RP(x°), and must be
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contained in the complement of RW (x°). This last set, the complement of RW (x°),
will be useful later on; we will call it NRW (x°) for “not revealed worse” than x°.

It is clear from Figure 3 that RP(x°) and NRW (x°) are not only “inner” and
“outer” estimates of the set of bundles preferred to x° they are also the tightest
inner and outer estimates. If a point x’ is not contained in either of these sets
then there is a nice utility function that rationalizes the data for which u(x°)
= u(x’)...and there is a nice utility function that rationalizes the data for
which u(x’) = u(x°).

These statements are obvious for the two dimensional example given in Figure
3, but in fact they are true in general. In order to establish this we need the
following criterion for membership in RW(x°).

FACT 4: A bundle x' is in RW(x°) if and only if there does not exist a p®Z 0
that satisfies the following system of linear inequalities:
M px=1,

p’°=p°’  for all x such that x'Rx°,

@ A . ‘
px° < p’’  for all x' such that x'Px°,
px°=p%/  forall x/ such that x’Rx’,

©))

px° < p%/  for all X/ such that x'Px’.

PrOOF: Suppose x’ is in RW(x®). Then any p° that satisfies the first set of
inequalities is a supporting price for x° by Fact 2. By the definition of RW(x°) it
must therefore violate one of the inequalities in the second set.

Conversely suppose x’ is not in RW(x°). Then there is some supporting price
p° at which x° is not revealed preferred to x’ by any chain. That is, p° satisfies (2)
and (3).

Fact 4 gives us an explicit way to check whether x’ is revealed worse than x°.
And by Fact 3 we can see whether x’ is revealed preferred to x° just by checking
whether x° is revealed worse than x’. Hence we can recover all of the ordinal
information in the data by checking whether there exists a solution to a simple
set of linear inequalities. This is easily accomplished by solving a simple linear
program. Note that the number of constraints in this program will at most be
2n + 1—and generally be considerably smaller than 2x + 1.

We can now verify the intuitively plausible statements made earlier concerning
the relationship between RP(x%, RW(x%, P(x% = {x:u(x)> u(x%)}, and
W(x% = {x:u(x% > u(x)).

FAct 5: Let u(x) be any utility function that rationalizes the data. Then for all
x°% RP(x% c P(x% c NRW(x°).

PrROOF: Obvious from the fact that x°Px’ implies u(x°) > u(x’) for any utility
function that rationalizes the data.
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Fact 6: Suppose that x' is not in RW(xO); then there exists a nonsatiated,
continuous, concave monotonic utility function that rationalizes the data for which
u(x®) Z u(x’). An analogous statement holds if x' is not in RP(x°).

PROOF: Suppose x’ is not in RW(x®). Then by Fact 4 there exists a p°
supporting x° such that not x°Px’. Hence by using Fact 16 in Appendix 1, there
is a utility function with the stated properties.

FacT 7: Let x°Rx’. Then RP(x®) C RP(x’). Assume further that x' is observed
as a chosen bundle at some price p'. Then RW(x%) D RW(x’) and NRW(x°)
C NRW(x).

PRrOOF: Let £ be in RP(x"). Then for all p that support £ we have £Rx’. Since
by hypothesis x°Rx’, transitivity implies £Rx’. Hence £ is in RP(x’).

Let £ be in RW(x'). Since x’ is actually chosen at price p’ this implies x'RX.
Since by hypothesis x°Rx’, transitivity implies x°R%. Hence % is in RW(x°).

3. RECOVERABILITY—ORDINAL COMPARISONS OF BUDGETS

In many applications of demand analysis the natural objects of interest are not
bundles of goods but are budgets—i.e. prices and expenditures. For example, if
one wants to compare proposed changes in the tax structure, it is natural to
compare alternative price configurations: given two proposed lists of prices and
expenditures (p° »°) and (p’, y") we want to know which one is preferred by
some individual consumer.

If we had a measure of the consumer’s indirect utility function o(p, y) we
could simply compute v(p° »°) and v(p’, y’) and compare the two numbers. If
we have only a finite number of observations on a consumer’s behavior (p’, x"),
i=1,...,n, we could postulate a specification of an indirect utility function,
derive the associated demand functions, and estimate the parameters of the
resulting demand system. These estimated parameters of the demand system
translate directly back to parameters of the indirect utility function which can
then be used to make the welfare comparison between the two budgets.

However, the parametric specification necessarily involves an unwarranted
maintained hypothesis of functional form. How can we proceed to make a
nonparametric comparison of (p° »°) versus (p’, y)?

Let us recall the notion of indirect revealed preference of Sakai [23], Little [18],
and Richter [22].

DErINITION: Given an observed budget (p’, y') and a budget (p, y), we say:

(1) (p, p) is directly revealed preferred to (p', y"), written (p, y)R%(p’, y'), if
px'=y. o

(2 (p, y) is strictly directly revealed preferred to (p', y'), written (p, »)P°
(phyh) if pxt <y.
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(3) (p, p) is revealed preferred to (p', y'), written (p, y)R(p', y*), if R is the
transitive closure of R°.

(4) (p, p) is strictly revealed preferred to (p' p '), written (p, y)P(p’, y) if
there exist observed budgets (p/, y/) and (p yl) such that (p, y)R(p/, ),

(ph, yHP(p' »", (p', yHR(p, y).

Note that the indirect revealed preference relation works exactly opposite to
the way the revealed preference relation works. To tell whether x° is revealed
preferred to something we need to know the price po at which x° is demanded—
and then x° is revealed preferred to the infinite number of bundles beneath its
budget line. To tell whether (p°, y°) is revealed worse than some budget we need
to know the bundle x° that is demanded at (p° y®—and then (p° »°) is
revealed worse than the infinite number of budgets (p, y) for which px°=y.

Nevertheless we can apply the same approach to ordinal comparisons to
construct dual versions of the results in Section 3. This duality is most clearly
exhibited if we normalize prices by dividing through by expenditure so that
budgets are uniquely described by p° = (p° 1) and p’ = (p’, 1).

DEFINITION: Given any price p° not previously observed we define the set of
bundles that support p° by:

S(p°) = {xo :(phx"),i=0,..., n, satisfies GARP and p%° = 1}.

As before the requirement that p %% =1 is only a normalization.
We can now describe the set of budgets “revealed preferred” or “revealed
worse” than a given budget by:

RW(p°) = { p :forall x in S(p), 1 Z p°’ for some p'Pp,
or 1 > p°’ for some p'Rp },
RP(p')={p :forallx"in S(p’), 1 Z px' for some p'Pp’
or 1 > px' for some p'Rx’}.
Of course these definitions could also be stated as:
RW(p®) = { p :forall x in S(p), 1 Z p°’ for some x 'Px,
or 1 > p%’ for some xin},
RP(p = {p :for all x” in S(p'), 1 Z px' for some x 'Px’

or 1 > px' for some x'Rx’}.
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Or even more succinctly:
RW(p°) = { p :for some x in S(p), p°Rp},
RP(p") = {p :for some x" in S(p"), pPp’}.

We can now state the dual versions of Facts 2 and 4. The proofs are
completely analogous and are left to the reader.

FAcCT 8: A bundle x° is in S(p°) if and only if it satisfies the following system of
linear inequalities:

() px°=1,
px'=px°  forall p such that p°Rp’,

@ o A .
px'<px®  forall p* such that p°Pp’.

FACT 9: A budget p’ is in RP(p°) if and only if there does not exist an x°Z 0
that satisfies the following system of linear inequalities:

M pX=1

. px'=px®  forall p* such that p°Rp’,
px'<px®  for all p' such that p°Pp’,
px/ = p/x°®  for all p/ such that p’Rp’,

(€)
px/ < p/x°  for all p/ such that p’ Pp’.

Of course the dual versions of Facts 3, 5, and 6 are also true. The statement
and proofs of these are left to the reader as well.

Another type of comparison that is often useful is to be able to compare
bundles with budgets and vice versa. For example if we are given a direct and an
associated normalized indirect utility function, #(x) and v(p), we could consider:

(1) All budgets p preferred to a bundle x°:

PP(x%) = {p:o(p) > u(x%)}.

(2) All budgets p worse than a bundle x0:
PW(x%) = {p:o(p) <u(x")}.

(3) All bundles x preferred to a budget p°:

XP(p%) = {x :u(x)>0(p%}
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(4) All bundles x worse than a budget p°:

XW(p°) = {x:u(x)<o(p°}-

Each of these constructs has its “revealed preferred” and “revealed worse”
analogy:
(1) All budgets p revealed preferred to a bundle x°:

PRP(x°%) = { p :for all x in S(p), xPx°}.
(2) All budgets p revealed worse than a bundle x°:

PRW (x°%) = { p :for all p° in S(x°), and all x in S(p), x°Px}.
(3) All bundles x revealed preferred to a budget p°:

XRP(p®) = {x :forall pin S(x), and all x°in S(p°), xPx°}.
(4) All bundles x revealed worse than a budget p°:

XRW(p°) = {x :for all x° in S(p°), x°Px}.

If we want to verify whether p’ is in PRP(x°), etc. we simply have to write
down the associated system of linear inequalities following the general model of
Facts 2 and 4. In cases (2) and (4) above, these systems involve unknown p’s and
unknown x’s and are therefore somewhat involved. Cases (1) and (4) on the other
hand are rather simple. We record this fact for future reference.

Facr 10:
PRP(x%) = {p :1> px'for some x'Rx° or 1 Z px' for some x ‘Px°},

XRW(p°) = {x :1> p°%’ for some x'Rx or 1 Z px’ for some xPx}.

4. EXTRAPOLATION—FORECASTING DEMANDED BUNDLES

Suppose that we have observed choices (p',x’), i=1, ..., n, and that we are
given some new budget ( pO, 1) which has not been previously observed. What
choice will the consumer make if his choice is to be consistent with the
preferences revealed by his previous behavior? What is the best “overestimate” of
the demanded bundle at p®?

It turns out that we have already answered this question: it is simply the set of
bundles that support the budget p° namely S(p°). For S(p°) is by definition all
of the bundles of goods x° which make the data (p’,x"), i =0, ..., n, consistent
with GARP. It is therefore the tightest overestimate of the demand correspon-
dence at p°: every bundle in S(p° could be a chosen bundle at p° and any
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FIGURE 4.

bundle outside of S(p°) could never be chosen. Figure 4 gives a simple example
of S(p°.

In an analogous manner S(x°) gives us the tightest overestimate of the inverse
demand correspondence.

5. RECOVERABILITY—BOUNDING A SPECIFIC UTILITY FUNCTION

It is often desirable to know not only whether some bundle is preferred to
some other bundle, but by how much one bundle is preferred to another. Now of
course, there is no unique answer to this question: demand theory is completely
ordinal in nature and there is no unique cardinal representation of utility. On the
other hand it is a common practice to use certain specific cardinalizations of
utility in measuring economic welfare.

One particularly useful cardinalization is Samuelson’s “money metric” utility
function (Samuelson [25]). For reasons that will become apparent, I prefer to call
this function the direct income compensation function. We can define it in two
equivalent ways:

m(p,x°) = inf px
such that x is in P(x°)
where P(x% = {x: u(x) > u(x%) or,
m(p,x°) = e(p,u(x°)).

In the latter definition e(p,u) is the expenditure function and u(x) is the
associated utility function. It is obvious from this latter definition that m(p,x°)
behaves like an expenditure function with respect to p. It is also straightforward
to show that for fixed p, m(p, x°) behaves like a utility function with respect to
x: since the expenditure function is always increasing in utility, m( p,x% is a
monotonic transformation of a utility function and is therefore itself a utility
function.
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The direct income compensation function can be used to describe at least two
measures of “how much” one configuration (p°x°) is preferred to another
configuration (p’, x"), namely Hicks’ compensating and equivalent variations:

C=m(p',x") = m(p',x°),
E = m(p°%x’) — m(p°x°).

Since m(p® x) and m(p’,x) are each utility functions that represent the same
preferences, C and E must always have the same sign, but they generally will
have different magnitudes.

Let us accept for the moment that m(p,x) is a reasonable cardinalization of
utility. The question that then arises is how we might measure it. If we are given
a parametric form for the utility function or expenditure function it is always
possible to compute m(p, x) directly. However, in the spirit of the nonparametric
approach to demand analysis we ask how we might compare functions that
provide bounds on m(p,x) that are consistent with a finite set of observed
demands (p',x’),i=1,...,n.

In Section 2 we described the best inner and outer approximations to P(x°). It
is natural to define the upper and lower bounds on the compensation function
by:

m™ (p,x%) = inf px

such that x is in RP(x°),
m~ (p,x°) = inf px

such that x is in NR W(xo).

I refer to these as the overcompensation and the undercompensation functions
respectively.

Fact 11: Let m™ and m™ be defined as above. Then
() m™* (p%x)Z m(p%x) = m (p° x) for all p° x.
(i1) x'Rx implies m™* (p% x'yZ m* (p° x). If x'Rx’ and x’

is chosen at some price p’, then m~ (p% x") 2 m~ (p° x/).

Proor: (i) Follows from Fact 5. (ii) Follows from Fact 7.

Fact 11 shows that: (i) m™ (p,x) and m~ (p,x) do bound the compensation
function, and (ii) they are themselves utility functions that respect the revealed
preference ordering.



960 HAL R. VARIAN

Thus the overcompensation and undercompensation functions provide theoret-
ically ideal bounds to the compensation function. The problem with these two
functions is that they are rather difficult to compute in practice. Recall that Fact
4 gave us a way to verify whether any given bundle x was an element of RP(x?)
or RW(x®). However, I do not currently have any explicit description of these
two sets of the sort suitable for mathematical programming techniques. So
instead I have proceeded by defining two approximations to the overcompensa-
tion and undercompensation functions. These two approximations do provide
bounds, but they are just not the theoretically tightest bounds. We turn now to a
description of these approximations.

Let us define the convex, monotonic hull of {x’: x'Rx°}:

CM (x°) = interior of convex hull of {x : x Z x’, x'Rx°}.

Facr 12: RP(x%) D CM(x°) for all x°.

ProoF: Let x be a point in CM (x°) and let p be any price vector that supports
x. Then I claim px > px' for some x’Rch. For if not, p would separate x from
CM(x°), a contradiction. Since xRx’, x'Rx® we have that x is in RP(x°).

Then we can define the approximate overcompensation function by:
am™* (p,xo) = inf px
such that x is in CM (x°).

Since CM (x°) is a convex polytope whose vertices are precisely those x‘Rx?, we
can also describe this minimization problem by:

am™ (p,x°) =min px’,  such that x'Rx°.

Note that this function is quite simple to compute. Nevertheless, this approxi-
mate overcompensation function does share some desirable properties with the
true overcompensation function.

Facr 13:
0)) am* (p,x)Z m* (p,x)Z m(p,x).
) x°Rx implies am™ (p,x°) Z am™ (p, x).
(€) There exists a convex monotonic preference order = such that

am* (p,x°%) = m(p,x°) for all x°.

Proor: The first two parts are obvious. The third is rather detailed. First we
define the order and verify that it works; then we establish its properties.
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Let x=x’ if and only if am™ (p,x)Z am™ (p,x’). Let us show that the
compensation function that goes along with this order is in fact equal to
am™ (p,x).

Let px* solve:

px* = m(p,x)=min px
such that am™ (p,x) Z am™ (p,X)
and let pX solve
pX=am™ (p,X) =min px’, such that x‘Rx.

Now £RX so property (2) shows that am™ (p, %) Z am™ (p, x). Hence X is feasible
for the first problem and therefore px* = pXx.
On the other hand

px*Zam* (p,x*)Z am™ (p,X) = pX.

Next we examine the properties of the preference ordering =.
(@) {x:am™ (p,x)= k} is convex. To prove this, we suppose am™ (p,x")Z k
and am™ (p,x") Z k. Let

A= {x":xRx'},
B={x':xRx"},
C= {xi (xR(tx’ + (11— t)x”)} for some ¢ such that 0 = ¢ = 1.

I claim that if x is in C, then x‘is in 4 U B. For to say x’ is in C is to say that
there exists a finite sequence such that:

pixiZ pix,
PxTE prx,
pix'zpl(tx' + (1 = )x").
From the last inequality it is easy to show that either p’x’ = p/x’ or p’x' = p/x”,

which establishes the claim.
Now, since C C A U B, we have:

< 3 < M —_ + ’ - ”
k_xilﬂrtlwpx_;lil;ncpx am™ (p,tx’ + (1 = £)x").
(b) If x’ = x° then am™* (p,x’) = am™ (p, x°). This follows since {x': x'Rx’}
C {x': x'Rx%}.

Thus am™* (p° x) is a utility function that bounds the compensation function
and the bound is uniformly tight in the sense that there exists a “nice” prefer-
ence ordering that actually generates am™ (p° x) as its compensation function.
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However it must be pointed out that this ordering typically exhibits regions of
satiation, and is in general discontinuous. An example is given in Figure 5. Here
all the points in the shaded region are assigned am™ (p° x) = p°'. The approxi-
mate overcompensation function increases linearly as one moves out the ray tx,
then is constant, and then jumps discontinuously.

We turn now to the problem of computing an approximation to the under-
compensation function. The basic trick here is to get an “inner bound” to
RW(x% by eliminating the nonconvexities shown in Figure 3. We define this
inner bound by:

IRW (x0) = {x :for all p° in §(x°), x°Rx’, x # x° and p'x’ = px}.
The crucial difference between RW(x% and IRW(x°) is the requirement that

x'# x° This is made clear in Figure 3. The complement of IRW(x?),
NIRW (x®), is then given by:

NIRW(x%) = {x :p’x > p'x’ for some x’ # x° such that x°Rx’
for all p in S(x°%)}.
This is simply a set of a points defined by a finite number of linear inequalities.

Hence there is no problem in computing the “approximate undercompensation
function”:

am™ (p° %) = inf p
such that x is in NIRW (X).

This also shares some desirable features with the true undercompensation func-
tion:
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Fact 14:
¢)) m(p,x)ém"(p,x)iam"(p,x),

() x°Rx/  implies  am” (p,x°)Z am™ (p,x’).

Proor: Left to the reader.

Thus am™ (p, x) bounds the true undercompensation function and it respects
the revealed preference ordering, although it does not provide the theoretically
ideal bound.

6. RECOVERABILITY—BOUNDING A SPECIFIC
INDIRECT UTILITY FUNCTION

It is natural to extend the results of the last section to indirect utility
comparisons. The function one wishes to bound is the indirect income compensa-
tion function

1(q; p» y) = e(g:0(p» »))

where e(q,u) is the expenditure function and vo(p, y) is the indirect utility
function.® An equivalent way to define p(q; p, y) is:

u(g; p> y) = infgx
such that x is in XP(p, y) = {x :u(x) > v(p, y)}-
Applying the approach of the last section, it appears natural to define the indirect
overcompensation function and the indirect undercompensation function by:
" (g; p, y) = infgx
such that x is in XRP(p, y),
n™(g; p,y) = infgx
such that x is in NXRW (p, y).
Recall that XRP(p, y) consists of all bundles revealed preferred to the budget
(p, y), and NXRW(p, y) consists of all bundles not revealed worse than the

budget (p, y); formal definitions were given in Section 3.
It is by now straightforward to verify the following fact:

5The indirect compensation function was first discussed by McKenzie [19]. It has been extensively
treated by Hurwicz and Uzawa [13].



964 HAL R. VARIAN

FAct 15: The indirect over and under compensation functions have the following
properties:

@ bGP Y) S P Y) BT (G P )

G (PSIORPLY)  implies  pT (g p% Y Z 0T (G P )
If (p° »°) is the budget for some observed choice
then n* (g p°, y°) Z 1" (4 P2 ).

Let us now consider the computability of p* and p~. As before, we can verify
whether any given x’ is an element of XRP(p, y) by solving a set of linear
inequalities; however it seems difficult to get an explicit description of the sort
necessary for mathematical programming.

I therefore suggest the following approximation to p*:

au* (¢; p» y) = am™ (¢,x")
if (p, y)=(p', ') for some observed (p’, y'),
= max gx
such that x is in S(p, y) otherwise.

That is, if (p, y) is observed, we use the value of the approximate overcom-
pensation function. Otherwise, we adopt the most conservative estimate and
set au* (q; p, ) equal to the maximum expenditure over all bundles in the
“overestimate” of the demand correspondence. This clearly gives an upper
bound on the true overcompensation function.

The indirect undercompensation function is, on the other hand, quite simple to
compute. Since Fact 10 gives an explicit description of XRW(p, y), as the
solution set to a system of linear inequalities, we can simply compute p.~ (g; p, »)
by solving a small linear program. An illustration of XRW(p, y) and u(q; p, y) is
given in Figure 6.

P (@;%,y0)- //////////
\ NXRW (p2 217
\ Z (p/o/.f/g/f

q/ Xy

FIGURE 6.
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7. SOME APPLICATIONS

The algorithms described in the previous sections have been assembled in a
package of FORTRAN subroutines available from the author. Here I will briefly
describe some computational experience with these routines.®

First let us consider the issue of testing demand data for consistency with
preference maximization. I have applied the routines of Section 1 to several sets
of aggregate consumption data. In each case the aggregate consumption data was
consistent with GARP: that is, it could have been generated by a single
neoclassical “representative consumer.” At first glance this may seem somewhat
surprising given the negative theoretical results of Sonnenschein [27] and Debreu
[8]. However, upon reflection, it is not difficult to understand why this occurs.”

Most existing sets of aggregate consumption data are post-war data, and this
period has been characterized by small changes in relative prices and large
changes in income. Hence, each year has been revealed preferred to the previous
years in the sense that it has typically been possible in a given year to purchase
the consumption bundles of each of the previous years. Hence no “revealed
preference” cycles can occur and the data are consistent with the maximization
hypothesis. This observation implies that those studies which have rejected the
preference maximization using conventional parametric techniques are rejecting
only their particular choice of parametric form.

Given that a set of aggregate consumption data are consistent with preference
maximization, we can compute the over- and undercompensation functions
described in Sections 5 and 6. One can use these functions to provide some
interesting bounds on cost of living indices.

Let (p', »') be a budget in year i and (p° »°) be a budget in the base year.
Then the true cost of living index is defined by:

w5 )Y)
1= —0 .
Y

The true cost of living index measures how much money one would need in the
base year to be as well off as one was in the comparison year expressed as a
fraction of base year expenditure. In order to calculate i one needs the indirect
income compensation function which is equivalent to requiring complete knowl-
edge of the individual preference ordering over some range.

However, we can use the results of Section 6 to compute upper and lower
bounds on i that are consistent with any finite set of data. Table I presents the
results of such a computation using U.S. aggregate consumption data by nine
categories from 1947-78.

Note the tightness of the bounds. Typically the overestimate is within 15 per

SDiewert and Parkan [10] discuss their computational experience with some alternative nonpara-
metric techniques.

"For another independent recent application of revealed preference methodology to aggregate
data see Landsburg [17].
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TABLE I

UpPER AND LOWER BOUND ON TRUE CosT OF LIVING INDEX?
(CLASSICAL BOUNDS IN PARENTHESES)

Year Upper Bound Lower Bound
1947 .2496 .1841
1948 .2666 .2004
1949 2715 2024
1950 2906 2113
1951 3107 2237
1952 .3246 .2401
1953 .3409 .2548
1954 .3497 2634
1955 3744 .2886
1956 .3905 3013
1957 4096 3172
1958 4205 3324
1959 4500 .3596
1960 4682 3779
1961 .4806 .3903
1962 .5082 4208
1963 5342 4499
1964 5707 .4865
1965 6119 5342
1966 .6581 5864
1967 6906 6089
1968 7524 .6809
1969 .8089 7406
1970 .8553 .8104
1971 9174 .8906
1972 1.0000 1.0000
1973 1.0960 1.0409
1974 1.1900 1.0478 (0.9496)
1975 1.2994 1.0623 (1.0466)
1976 1.4354 1.1615
1977 1.5767 1.2764
1978 1.7330 1.4404

#PData are U.S. consumption data by 9 categories from the NBER Time
Series Database (Tables 2.3 and 2.4). The goods are motor vehicles, furniture,
other durables, food, clothing, gasoline and oil, housing, transportation, and
other services.

cent of the underestimate which allows for a fairly tight estimate of the true cost
of living. However, the accuracy of the table is slightly misleading in the
following sense.

Given only the information contained in the two observations (p° y° and
(p’, ) it is possible to construct the classical bounds depicted in Figure 7.
Improvements in these bounds are possible only when some budget set from
another sample observation intersects the budget set given by (p’, y’) as in
Figure 8.

Given the nature of the data, these intersections are quite rare, and in fact only
occur for two years 1974 and 1975. Again, the lack of variation in the price data
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FIGURE 7.
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limits the power of these methods in this case. However, the techniques proposed
here do provide an improvement on the classical bounds when sufficient varia-
tion in price data is present.

8. SUMMARY

We have shown how the nonparametric techniques of revealed preference
analysis can be used to: (1) test a finite amount of data for consistency with
preference maximization model; (2) construct a nicely behaved utility function
capable of rationalizing a finite amount of demand data; (3) compare previously
unobserved consumption bundles and budgets with respect to their ordinal
rankings; (4) compute cardinal bounds on the direct and indirect compensation
functions; and (5) compute estimates of the direct and indirect demand corre-
spondence consistent with previously observed demand data.

University of Michigan

Manuscript received August, 1980; final revision received August 1, 1981.
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APPENDIX I: A PROOF OF AFRIAT’'S THEOREM

In this appendix we give a proof of Afriat’s theorem. The proof we give is based on earlier proofs
by Afriat [4] and Diewert [9], but is somewhat more constructive. In fact we will exhibit an algorithm
which will actually compute a utility function which rationalizes any given finite amount of data. It
turns out that it is convenient to first describe the algorithm to do this computation and then verify
that it works in the course of the proof of Afriat’s theorem.

The algorithm that we describe below makes use of a subroutine which calculates a maximal
element of a finite set with respect to some binary relation.

Let us recall the following definition.

DEFINITION: An element x™ of a set S is maximal with respect to a binary relation B if x‘Bx™
implies x"Bx".

If x” is a maximal element then either there is nothing that is ranked ahead of it or the only things
that are “ahead” of it are things that are indifferent to it.

If we have a finite set with a reflexive and transitive binary relation then there is always at least
one maximal element; the following algorithm shows us how to find it. (See Sen [26, p. 11].)

ALGORITHM 2: Finding a maximal element.

Input: a reflexive and transitive binary relation B defined on a finite set S =(x',...,x")
indexed by 7 =(1, ..., n).

Output: an index m where x'Bx” implies x"”Bx'.

1. Setm=1, %= x".

2. Foreachi=1,...,n, if x'Bbi~'set b' = x', and m = i. Otherwise set b' = o'~ .

We will let max(7) be a routine that performs Algorithm 2; that is, given a set S indexed by I,
max(/) returns the index of a maximal element in S.

It is perhaps not immediately obvious that Algorithm 2 works. Hence we provide the following
proof.

FAcCT 15: The output of Algorithm 2 is the index of a maximal element of S.

Proor: First we note that by the transitivity and reflexivity of B, b"Bb/ for all j =0, ..., n. Also
note that x™ = b".

Now suppose we are given some x'Bx™; i.e. x'Bb". We must show that b"Bx'. First we observe
that since x'Bb", and b"Bb'~ !, then x'Bb'~!. Line 2 of the algorithm then implies ' = x'. But then
b"Bb', b' = x' gives b"Bx' as required.

We note that the revealed preference relation R is transitive and reflexive, so Algorithm 2 will
therefore correctly compute a maximal element. We can now present an algorithm which calculates
numbers that satisfy the Afriat inequalities:

ALGORITHM 3: Constructing the Afriat numbers.
Input: A set of demand observations (p',x'),i =1, ..., n, and the revealed preference relation R
that satisfy GARP.
Output: A set of numbers U,A' >0,i=1,..., n, that satisfy the Afriat inequalities.
.I={1,...,n),B=0.
Let m = max(7).
Set E= {iin I:x'Rx™). If B=@, set U™ =A™ =1 and go to 6. Otherwise go to 4.
Set U™ = min, ¢ pmin, ¢ gmin{ U/ + Mp/(x' — x/), U'}.
Set A" = max, ¢ pmax;e gmax{(V — U™)/p'(x/ — x"),1}.
. Set U'=U™ A=A"foralli €E.

. Set I =I\E, B= B U E. If I =0, stop. Otherwise, go to 2.

N AL~

bt

t is not at all obvious that Algorithm 3 does in fact compute numbers that satisfy the Afriat
inequalities; however that fact will be verified in the proof of Afriat’s theorem.
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AFRIAT’S THEOREM: The following conditions are equivalent:

(1) There exists a nonsatiated utility function that rationalizes the data.

(2) The data satisfies GARP: if x'Rx/, then p/x) = p/x'.

(3) There exist numbers U',\' > 0 such that U' = U/ + Mp/(x'—xI)fori,j=1,...,n.

(4) There exists a nonsatiated, continuous, concave, monotonic utility function that rationalizes the
data.

PROOF: (1)=(2). Let u(x) rationalize the data. If p 'z p "x/ then u(x’) Z u(x’) by definition so
that x'R %/ implies u(x= u(x/). If p'x* > px/ so that x’P%¢, then I clalm that u(x’) > u(x/) If
not, then u(x')= u(x’/). But by local nonsatiation there is then an x such that p'x’ > ? X and
u(x) > u(x’) But then u(x) could not rationalize the data point (p’, x7). Hence x'P%/ implies
u(x’) > u(x’/), and GARP follows.

(2)=(3). In order to prove this we need to verify that Algorithm 3 works; i.e., that the numbers it
calculates do indeed satisfy the Afriat inequalities.

At each pass through the algorithm a set of indices of “equivalent” elements, E, is removed from 7/
and added to B, a set of indices of “better” elements. We will show that after step 6 is executed, the
U’s and the X’s at that stage satisfy the Afriat inequalities for all the U’s and A’s calculated up to that
point. That is, we will verify the following three statements:

(a) U'=sU/ +Mp/(x! = x7) foralljin B andalliin E,
(b) V'S U +Api(x/ — x*) for alljin B and all i in E,
(©) U'= U/ + NMp/(x! — x7) for all i andj in E.

Proof of (a): By step 4 of the algorithm:
U'=U"=U/+NMp/(x'—x/)  foralljin Bandalliin E.

Proof of (b): First note that when the algorithm correctly executes statement 5, p f(x/ = x>0,
for all j in B. If not, x'Rx/ for some j in B. But then i would have been moved into B before j was
moved into B.
Hence, the division is well defined and

v —-U

AM=Amz ———
P~ x")

v

foralljin B and all i in E.

Cross multiplying:
Ap'(x) = xNz U/ - U’ foralljin Bandalliin E
which proves (b).
Proof of (c): First note that i, j in E implies p/ (x' = x/)Z 0. If not x/P%’, giving a violation of
GARP. Now for all i and j in E:
U=/ and M=A">0

)
U'S U+ Mp/(x' = x7).
(3)=(4). We define the function U(x) by
U(x) = miin {U +Ap'(x—x"))}.

It is clear from the definition that this piecewise linear function has the stated properties. Hence we
only need to verify that it rationalizes the data.
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First we note that U(x') = U' for all i =1, ..., n. For suppose the minimum is attained at x™;
then

U(x')=U"+A"p"(x™ - x")=S U’

since A"p"(x' — x') = 0. But if this inequality were ever strict we would violate one of the Afriat
inequalities.

Now suppose we are given some x such that p/x/ = p/x. We must show that U(x/) = U(x). This
follows directly from the following set of inequalities:

U(x)=min {U' +Ap'(x — x')}

S U+ Mp/(x — x7)
S U =U(x)

since AMp/(x — x/) = 0.
(4)=(1). This is obvious.

It is worthwhile giving a somewhat more heuristic argument for Afriat’s Theorem, which more
directly exhibits the meaning of the Afriat inequalities. Suppose that we have a differentiable concave
utility function that rationalizes some data (p',x'), i =1, ..., n. Then concavity implies

u(x") = u(x/) + Du(x))(x" — xJ)
and utility maximization implies
Du(x’) = Mp/.

Putting these together we see that the Afriat conditions are a necessary condition for utility
maximization in this differentiable framework. To motivate the sufficiency result we simply note that
by concavity we have n overestimates of the utility at some point x since

u(x)Su(x")+Ap'(x—x") for i=1,...,n.

Hence the minimum of the right hand side over all observation i—the lower envelope—should give us
a reasonable measure of the utility of x.

This interpretation of the U'’s as utility levels and the A’’s as the marginal utilities of income was
first suggested by Afriat [1] and further elucidated by Diewert and Parkan [10]. Varian [29, 30], has
used this sort of argument to derive finite necessary and sufficient conditions for a number of
specializations of the utility maximization model.

Finally we give a proof of one last fact concerning Afriat’s construction that was stated without
proof at one point in the text. If x' is not revealed preferred to x/, then it is intuitively plausible that
there is a nice utility function that rationalizes the data for which u(x/) Z u(x‘). This is verified in the
next statement.

Facr 16: If not x'Rx/, then there is a nonsatiated, continuous, concave, monotonic utility fum‘tion
that rationalizes the data for which u(x’) Z u(x").

ProoF: Simply ensure that max(7) returns the index j before the index i. Line 4 of Algorithm 3
then implies that u(x/) = u(x’).

APPENDIX II: COMPUTING THE TRANSITIVE CLOSURE
The following discussion concerning the computation of the transitive closure of a relation is taken

from Aho and Ullman [6], which in turn is based on Warshall [31]. Their results are very slightly
generalized in a way that is useful in some other applications (Varian [29]).
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Let M be an n by n matrix representing a binary relation; i.e. m, =1 if x'R%/ and my, =0
otherwise. We can also think of M as representing a directed graph as in Figure 9: there is an arrow
from vertex i to vertex j if and only if my=1. It is this interpretation that gives rise—somewhat
indirectly—to Warshall’s algorithm.

Suppose now that we have an arbitrary directed graph and some associated cost function c,; where
¢, = 0 measures the cost of transporting one unit of a good directly from vertex i to vertex j. If vertex
i and vertex j are not directly connected ¢, is by definition infinite. Now although the cost of moving
i to j directly is given by c,, the cheapest cost of moving i to j may be much less. Warshall’s algorithm
is concerned with calculating the least cost of moving from any vertex to any other vertex. We denote
the magnitude of this least cost by G-

I claim that if we can solve this “least cost problem” we can easily solve the “transitive closure
problem. We just create a cost matrix C where

1 ifm,j=1,
¢, = .
v 0 if m; = 0.

Now we run C through Warshall’s algorithm to compute the least cost matrix ( j) Then if
¢, =1 < oo we know that there is some path of length / that connects vertex / with vertex j. Hence a
method to solve the least cost problem gives us a method to solve the transitive closure problem.

()

ALGORITHM 4: Minimum cost of paths in a graph.

Input: ¢, = cost of moving from node i to node j; ¢, Z0.

Output: ¢,; = minimum cost of moving from node i fo node j.

(1) Set k= 1.

(2) Foralliandj, if ¢, Z ¢y + ¢y set ¢, = ¢, + ¢

(3 Ifk<nletk=k+1landgoto2 If k=n,setg =c, for all i and j.

It is not at all obvious that Algorithm 4 does indeed compute the minimum cost of moving from i
to j for all / and j. But the following argument shows that it works.

Facr 17: Let (i,1, ..., m, j) be a path from i to j. Then Ty = ¢y + - -+ + ¢y

Proor: Consider the algorithm when it has completed step (2). We will show that ¢, is the cost of
the cheapest path from i to j that passes through no intermediate vertex with index greater than k.
This is certainly true for & = 1, and we suppose it to be true for k — 1.

Let (i,/,..., m, j) be a path from i to j that passes through no intermediate vertex with index
greater than k. If it does not pass through vertex k we are done. If it does pass through k, we can
suppose it only passes through once, since removing a cycle cannot increase the cost. By the
induction hypothesis c, is the cheapest path from i to k with no intermediate vertex greater than
k — 1 and similarly for c,. Since step (2) of the algorithm ensures ¢, = ¢, + ¢, we are done.

Note that step (2) of the algorithm will be executed n> times; thus we can compute the transitive
closure of a relation in n> computer additions and comparisons. Of course, if we are using Warshall’s
algorithm only to compute the transitive closure of a relation we can improve a bit on that bound.
Consider for example the following FORTRAN subroutine which computes the transitive closure of
a relation represented by the matrix M.
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ALGORITHM 5: Computing the transitive closure.

Input: M(1,J)=1 if p'x' = p'x/, 0 otherwise. N = number of observations; nobs = maximum
number of observations.

Output: M(1,J)=1if x'Rx/, 0 otherwise.

SUBROUTINE TCLSR (M, N)
DIMENSION M (nobs, nobs)
DO30K=1,N
DO20/=1,N
DO10J=1,N
IF (M(1,K) .EQ.0.OR. M(K,J) .EQ. 0) GO TO 10
M(1,J)=1

10 CONTINUE

20 CONTINUE

30 CONTINUE
RETURN
END

This clearly computes the transitive closure by a straightforward modification of the argument
given in Fact 17.
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1. INTRODUCTION

In applied economics, it is common to assume that consumers maximize
continuous, strictly quasi concave, and monotone utility functions. Even
strict concavity is often assumed. What restrictions do these special
assumptions put on observable data? Can we test demand behavior to see
whether it maximizes such a special function?

For a finite number of observations, we will give a complete answer
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will imply that the special rationality is observationally equivalent to the
much weaker hypothesis that the demand function maximizes some
reflexive, transitive, and total preference: No finite set of data can distinguish
between those assumptions. In fact, our results imply that finite sets of data
cannot distinguish even much weaker types of rationality from the special
rationality (Theorem 3).

Our proof is based on a Theorem of the Alternative. This not only yields
a constructive proof, but also connects our result with others in revealed
preference theory that employ similar tools. It allows the direct construc-
tion of continuous, strictly concave, strictly monotone utility-rationaliza-
tions (Theorem 2).

In Section 5 we relate our results to work by Afriat, Diewert, and Varian.
That line of work—sometimes under the name of “nonparametric demand
analysis”—tested for the existence of a piecewise lmear utility, which could
only rationalize demand in a much weaker sense. We also relate our work
to the recent paper of Chiappori and Rochet on C* rationalizations for the
special case of invertible demand functions.

In Section 6 we note several applications of our theorems. They lead to
the strengthening of many results—in approximation theory [11], in
nontransitive consumer theory [10], in classical consumer integrability and
revealed preference theory [8,7,17], and in the theory of equilibrium
correspondences [2].

2. RATIONALITY

We study demand data for » commodity types, where each bundle of
commodities can be represented by a vector in some convex subset X of R".
(Commonly X is assumed to be a subset of R%, but we do not require
that.)

We are interested in competitive consumers, so we denote by B(p, m) the
budget set determined by price vector p=(py, .., p,)€ R? and income
me R, :

B(p,m)={xeX: p-x<m}. 2.1)

Often we wnte (p, m) for B(p, m). We denote by € the family of all such
budget sets. Sometimes we are interested in a particular subfamily Z = .
For example, in this paper, we study choices from a finite collection # of
budgets.

The set of bundles chosen under budget B(p, m) will be denoted by
h(p, m). 1t is reasonable to assume that A(p, m) < B(p, m). This defines
then a correspondence A, which we call a choice. Of course, 1n the classical
case of a demand funcrion, h is singleton valued
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Using the notions of Richter [15], we will call the choice 4 rational (on
(X, #)), if there exists a binary relation > on X such that, for all
(p, m)e A,

h(pam)= {XEB(p, m): vyyeB(p,m) X> y} (22)

In other words, the set of chosen elements under budget B(p, m) is exactly
the set of = -most preferred elements from B(p, m). We say that > is a
rationalization for h, and that >= rationalizes h.

There are many subsidiary types of rationality: one can talk of transitive-
rationality (for rationalization by a transitive relation > ) or total-
rationality (for rationalization by a total relation 3} ), etc. A very impor-
tant type of rationality is regular-rationality, in which there is a reflexive,
transitive, and total rationalization 2. And then, of course, one can
consider utility-rationality, in which there is a rationalization that is
representable by a numerical utility function U on X,

h(p’ m)= {XEB(p’ m): vyyeB(p, m) U(X) g U(y)}’ (23)

for all (p, m)e %. Even more demanding, of course, would be to seek a
rationalization that has a continuous, strictly concave, and strictly
monotone utility representation. For brevity, we will call this special-
rationality.

We say that a choice is exhaustive (on %) if it satisfies the budget
equality

p-x=m 24)

for all xe h(p, m) and all (p, m) e B. Of course, if only price vectors p and
commodity vectors x are observed, but not incomes m, then for each such
p and x we may define an m= p - x, and then A is automatically exhaustive.

The main result of this paper can be viewed in three ways. First, it gives
an empirical test for the existence of a continuous (and generically C*),
strictly concave, and strictly monotone utility-rationalization for any finite
set of demand data (Theorem 1). Second, it gives a procedure for construc-
ting such a rationalization (Theorem 2). Third, it shows that certain low
types of rationality are actually equivalent to the much higher special-
rationality type (Theorem 3).

3. REGULAR AND SPECIAL RATIONALITY

First we state some definitions. Following [15, 16] we define the binary
relation S on X by: for all x, ye X,

xSy <« 1B, ,xch(B) & x#yeB. (3.1)
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Let H be the transitive closure' of S. Then Houthakker’s Strong Axiom of
Revealed Preference can be stated as

H is asymmetric. (3.2)

It is known from Richter [14, 157 that, for demand functions, the Strong
Axiom is equivalent to regular-rationality.

We say that a set 4 < R” is generic if it includes an open dense set whose
complement is null (of Lebesgue measure zero). Equivalently, the comple-
ment of a generic set is small in the sense that it is a subset of a closed
nowhere dense null set. We say that a property holds generically, if it holds
on a generic set.

We will prove that a very high type of rationality follows from just the
Strong Axiom.

THEOREM 1. Let h be an exhaustive demand function defined on a finite
subset B of €. Then h has a special-rationalization U if and only if h satisfies
the Strong Axiom of Revealed Preference. Furthermore, when such a U
exists, it can be chosen to be defined on all of R, and be generically C*.

Remark 1. There is no hope, however, of obtaining differentiability of
rationalizations. In the two observations of Fig. 1a,% for example, we have
x=h(p,, p,, m)=h(p,, p,,m). If there were a differentiable utility
rationalization, then Lagrange’s theorem on constrained maximization
would guarantee the existence of 1 and 1 satisfying D,u(x,, x,) = Zp, = Ap,
for i=1,2. Both 7 and 1 must be zero; otherwise D, u(x,,x,)/
Dyu(x,, x,)= p;/P>= P1/p,, which contradicts Fig. la, since the budget
lines have different slopes. So D,u(x;, x,)=0 for i=1,2. Since u 1s
concave, x globally maximizes u, contradicting the strict monotonicity of u.

Of course, without monotonicity, the differentiable strictly concave
utility u(x,, x,) = (x; —1)2+ (x,— 1)* does rationalize Fig. 1a. But even

FIGURE 1

!The transitwe closure of a relation R s defined as the smallest transitive relation
including R

% The figure 1s essentially the same as in Chiappor: and Rochet [3] The interpretation is
different, since they use a weaker notion of rationality (cf Section 5 below)
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without requiring monotonicity, reasoning similar to the above shows that
no differentiable strictly concave utility can rationalize the four observa-
tions of Fig. 1b.

Nevertheless, despite Remark 1, we will show that a utility-ratidnaliza—
tion can be found that is generically C*.

Remark 2. Theorem 1 gives an empirical test (the Strong Axiom) for
determining whether a finite set of demand data can be rationalized by a
continuous, strictly concave, and strictly monotone utility function. For it
18 clear that one can design algorithms to test, on any finite data set,
whether the Strong Axiom holds. The next theorem also makes that clear,
since it shows that satisfaction of the Strong Axiom is equivalent to
solvability of a certain system of linear equalities and inequalities; and
algorithms to test such solvability, and obtain solutions, are well known.?
In addition, it should be noted that the proof of Theorem 2 below will
provide a constructive method for obtaining special-rationalizations from
the system’s solutions.

A proof of the main part of Theorem 1, for compact domains X, was
given in Matzkin [12]. Here we present a very different proof, based on
the fact that Theorem 1 is an immediate corollary of Theorem 2, which is
proved in Section 4.

THEOREM 2. Let h be an exhaustive demand function on a finite subset
B={(p", m"), ... (p*, m*)} of 6. Let x'e h(p', m') for i=1, .., k. Then the
Sfollowing statements are equivalent:

(a) h satisfies the Strong Axiom of Revealed Preference.

(b) There exists a continuous, strictly concave, and strictly monotone
Sunction U rationalizing h on (X, #). (Le., h is special-rational.) (Optionally,
U can be chosen to be defined on all of R", and be generically C*.)

(c) There exist real numbers w', w and )’ (i, j=1, ..., k) satisfying:

W+ Ap[x)—x"1>w  forall ij=1,..,kwithx'#x’ (3.3a)
A'>0 forall i=1,.,k (3.3b)
w=uw  forall i, j=1,..,kwithx'=x’. (3.3¢c)

(Optionally, the A’ can be chosen so that A'p'# A’p’ for i#j) (3.3d)

(d) & is regular-rational.

3 Cf. the discussion of Fourter elimmation mn Stoer and Witzgall [21, Theorem 1.1.9 and
Sects 12 and 13]
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Remark 3. Conditions (c) are a strengthening” of Afriat’s inequalities
[1, p. 73 (Theorem)]. To prove that (c) implies (b) we follow his method,
but modify his proof to obtain a stronger result. The modifications are
necessary because our definition of rationality is much stricter than this,
and because we insist on strict concavity of the rationalizing utility. See
Section 5 below for a more detailed comparison between his work and
ours,

4. PROOF OF THEOREM 2

Proof of Theorem 2. That (a) implies (c) is the assertion of Lemma 1
below. That (c) implies (b) is the assertion of Lemma 2 below. A fortiori,
(b) (even without the parenthetical options) implies (d). That (d) implies
(a) is known from Richter [14]. |

The statement and proof of Lemma 1 are complicated by the fact that we
can have data with x'=Xx’ even when the budget sets corresponding to i
and j are different. Indeed, the reader should note that the statement and
proof are much simpler in the special case where the demand function is
invertible, so that (4.1c), (4.2¢c), and (4.3b) disappear from the proof below.

In Lemma 1 we prove that «’, A’ exist as in (3.3): we show that otherwise
the Theorem of the Alternative would give choice cycles contradicting the
Strong Axiom.

LemMa 1. Under the hypotheses of Theorem 2, if h satisfies the Strong
Axiom of Revealed Preference, then there exist u', v/, A' satisfying (3.3).

Proof. We seek real numbers ', u/, A' (i, j=1, .., k) that solve

w—uw —Ap[x'—x’]>0 forall i j=1,..,k with x*#x’ (4.1a)
>0 forall i=1,.,k (4.1b)
u—u' =0 forall 4, y=1,.,kwith x'=x’/, (4.1c)

with A'p' # A/p’ for i+ j. Defining «? = p'[x*— x’], we can rewrite this as
w—uw — e’ >0 forall i j=1,.., k with x’ # x’ (4.2a)
A>0  forall i=1,..k (4.2b)
w—uw'=0 forall i j=1,.,k with x'=x/, (4.2¢)
with A'p'# A/pj for i+#j. Let K be the number of pairs (i, j) with x’# x’.

4 Afriat used a weak inequality 1n his analogue of (3 3a).
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Then we can rewrite this as
Ar>0 (4.3a)

Cr=0, (4.3b)

where r= (u', .., u¥, 1, .., A¥), and where 4 and C are matrices with 2k
columns, defined as follows. (An example of the matrices 4 and C follows
in (44). It may be helpful to refer to that example while reading the
defintions of 4 and C.)

Matrix 4 has K+ k rows. The first K rows correspond to the left hand
side of (4.2a), with 0 in all positions, except for a 1 in position i, and a —1
n position j, and —o” in position k +i; and the last k rows correspond to
the left hand side of (4.2b), with 0 in all positions, except for a 1 in position
k+i

Matrix C corresponds to the left hand side of (4.2c). (If C is not empty,
there are obvious redundancies we can eliminate without changing the
solutions of (4.3). For example, if u'—u’/=0 is one of the lines of (4.2¢),
then we can eliminate the row corresponding to u/—u') Let L be the
number of rows in C.

As an example, the matrices 4 and C for just four observations, with x,
x?, and x* distinct, and x> = x*, look like this:

[ 1 -1 0 0 —a2 0 0 0 7
1 0-1 0 —a 0 0 0
1 0 0-1 —a* o 0 0
-1 1 0 0 0 -« o0 0
0 1 -1 0 0 —o® o0 0
0 1 0-1 0 —o* 0 0
-1 0 1 0 o0 0 - 0
4=1 021t 1 0 0o 0 —a o (44a)
-1 0 0 1t 0 0 0 o
0-1 0 1 o0 0 0 —a®
00 0 0 1 0 0 0
0 0 0 0 0 1 0 0
00 0 0 0 0 1 0
L0 0 0 0 o 0 0 1]
T 0 0 1 -1 0 0 0 0 7
C=_ 0 0-1 1 0 0 0 o | 4

To prove that a solution vector r exists for (4.3), suppose not; we obtain
a contradiction as follows. Since no such r exists, then, by a Theorem of the
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Alternative’ there exist a K+ k-dimensional vector v and an L-dimensional
vector z such that®

VA+2C=(0, .., 0) (4.52)
v 0. (4.5b)

If some row i of C has a corresponding z,<0, then we can, without
changing the solutions of (4.3), replace that row by its negative, and
replace z, in (4.5a) by —z,. So in (4.5) we can without loss of generality
assume that

v=20 and z=0. (4.5¢)

We will refer to the rows of 4 according to their a-terms: thus Row”(i, 7)
is the row containing the term —aV. If a Row”(i, j) has a positive v-multi-
plier in (4.5), then we call Row"(i, ;) a weighted row. We will refer to the
ith column of matrix 4 or C as Col”(i) or Col“(i).

Define y, terms by

ZIC: (yla RENIT Oa ooy O) (46)

Since v >0, we can without loss of generality suppose v, >0. Then (4.5)
implies that we cannot have —o¢"“>0 for all :=1,.., K (since
v Col4(k+1)=0). So without loss of generality we can assume that
—o'2 <0, hence x'Sx2 We will now show that there exists a weighted row
1#£ 1 with —a* <0, hence

x2Sx". (4.7)

The second component, — 1, of the first row of 4 clearly guarantees (by
(4.5)) that either (i) there is some weighted row of 4 with 1 as 1ts second
component, or (i) y,>0. In case (i), say Row”(2, 1) is weighted and its
second component is 1. Then (4.5) clearly implies that we cannot have
—a¥ >0 for all , since v Col?(k +2) = 0. So there is some j with —a¥ <0,
hence x2Sx/, so (4.7) holds in case (i). In case (ii), we have y,>0. Then we
will prove below

There exists some j= 1, ..., k such that y, <0 and x/=x> (4.8)

*Since r=0 satsfies (4 3b), we can apply Rockafellar [18, p 198 (Theorem 222)-199],
after writing the equality (4 3b) as the pair of inequalities Cr £0 and Cr 2 0. (It can easily be
verified that the effect of this 1s to remove Rockafellar’s nonnegativity requirements on the
multiphers corresponding to (4.3b).)

By v>0 we mean v 0 and v#0
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It follows then from (4.5) that there is some weighted Row(j, i) of 4 with
1 in Col“(j). Again by (4.5), it cannot be that all such rows Row(j, i) have
—a>0. So we can choose an i such that —¢/' <0, hence x/Sx’. Since
x’ = x? by (4.8), this proves (4.7).

Continuing in this fashion by finite induction, we obtain x'Sx*Sx>S---.
Since there are only finitely many columns in the matrix 4, this forces a
contradiction of the Strong Axiom, which prevents any “cycling” back to
previous x'. And this contradiction completes the proof of Lemma 1,
subject to verification of (4.8).

To prove (4.8), let J be the set of j with x/ = x2 Then if (4.8) were not
true, we would have

2’ Col€(j)=0  forevery jel. (4.9)

By our hypothesis (ii),

2 Col(2)=7,>0. (4.10)
So (4.9) and (4.10) mmply
0<y y, (4.11a)
= Y 2/ Cal(j) (4.11b)
=Y ¥ z(Col®(j)), (4.11c)
= i z, Z (Col€(j)), (4.11d)
—0. (4.11¢)

The justification for (4.11e) 1s that, for each 4, 3, (Col€(})), =0, because
in each row i of C there are only two columns jeJ with nonzero entries:
one 1 and one — 1. The contradiction (4.11) proves (4.8).

Finally, because the inequalities (4.2a, b) are strict, the A’s can clearly be
chosen so that A'p’# A7p’ for 1#£j. |

Remark 4. Instead of basing our proof of Lemma 1 on a Theorem of
the Alternative, a proof could be obtained through an algorithm very much
in the spirit of Varian's algorithm [23].

In Lemma 2 we use the u', A’ from Lemma 1 to obtain a strictly concave,
strictly monotone, rationalizing utility on all of R".
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LemMa 2. Under the hypotheses of Theorem?2, if there exist ', uw’, A'
satisfying (3.3), including the optional part, then h has a special rationaliza-
tion U, defined on all of R".

Proof. Part A. Definition of U. Let u' and A’ (i=1, .., k) satisfy the
inequalities (3.3). Since there are only finitely many inequalities, clearly
there exists an ¢, >0 such that

u+ Apx)—x'] —eg>u’ forall i j=1,.. k with x's#x’ (4.12a)
A>0 forall i=1,..,k (4.12b)

u'=u’ forall i j=1,..k with x'=x’. (4.12¢)

Now let 7> 0, and define g: R" — R* by’

8(X1s s X,)= (X34 -+ +x24+T) -T2 (4.13)
Then
g(x)>0 < x#0 (4.14a)
gx)=0 < x=0 (4.14b)
og .
[0_96, (x)] <1 forall xandi=1,.,n (4.14¢)
g is strictly convex (4.14d)
g is differentiable. (4.14¢)

Then by (4.12) we can pick ¢ >0 so small that

u + AP [x) —x']—eg(x! —x")>u’ forall i, j=1,..,k with x'# x’

(4.15a)
A'>0 forall i=1,..,k%k (4.15b)

u' =u’ forall i j=1,..k with x'=x".
(4.15¢)

Now, for each i=1, .., k, define ¢,: R" > R' by
¢, (xX)=u'+Ap'[x—x"] —eg(x—x") (4.16)
Since g is strictly convex, each ¢, is strictly concave. And clearly

é,(x")=u' (i=1,..,k). (4.17)

7 Here the superscripts are exponents, not indices.



STRICTLY CONCAVE RATIONALITY 297

Now define U: R* — R' by
U(x)=min{d,(x): i=1, .., k} (4.18)

for all x € X. As the minimum of finitely many strictly concave functions, U
is strictly concave.

Part B. Monotonicity of U. We will choose ¢ to guarantee strict
monotonicity. Since (4.18) defines U as the minimum of finitely many ¢,
functions, it clearly suffices to show that each ¢, has everywhere a strictly
positive partial derivative. From (4.16), the partial derivatives are given by

D,$,(x)=A'p,~eD, g(x —x") forall j=1,..,n (4.19a)
> A'p;—el (by (4.14¢)). (4.19b)

Since there are only finitely many indexes i =1, ..., k, we can pick & so small
that this is positive for all i=1, ..,k and all y=1, .., n.

Part C. U rationalizes. As a first step in proving that U rationalizes
h, we will show that

Ux’')zuw’ forall j=1,..,k (4.20)
If (4.20) were not true, then we would have
w > U(x’) (4.21a)
=¢,(x’/) for some 1=1,..,k (by (4.18)) (4.21b)
=u' + A'p'[x/ —x'] —eg(x’ —x") (by (4.16)) (4.21c)
which contradicts mequality (4.15a) if x'# x’, and contradicts (4.15¢) if
x'=x’. So (4.20) holds.

(Although it is not needed in our proof, we note here that, in fact,
equality holds in (4.20). For

3, UKD =) (by (418)) (4.22a)
<¢,(x)  (by (418)) (4.22b)
=’ (by (4.17)). (4.22¢)

The equality then follows from (4.20) and (4.22).)
Next we show that U utility-rationalizes 4. It is clearly sufficient to show
that, for each i=1, ..., k,

V9 py 2 i 3= ) > U(). (423)
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Now for such y,

U(y)=min{g,(y): j=1, ... k} (by (4.18)) (4.24a)
=min{w/ + AMp/[y—x']—eg(y—x'): j=1, ., k}

(by (4.16)) (4.24b)
Sut+HApy—x']—eg(y—x") (4.24¢)
<u since y # x' (by (4.15b), the budget equality,

and (4.14a)) (4.24d)
S U(xX) (by (4.20)). (4.24e)

So (4.23) holds, and U utility-rationalizes 4.
Part D. Genericity of infinite differentiability. Define

E={xeR" Uisnot C” at x}. (4.25)
Clearly
Ec\J{E,: i, j=1,...k and i#}, (4.26a)
where
E,={xeR" ¢,(x)=4¢,(x)}. (4.26b)
Define
fy=4.-9, (4.27)
$0
E,=f;"(0). (4.28)

Now it is easily checked that for all small enough ¢ >0 (cf. (4.15, 16)) we
have, for all xe R" and i+ j,

Df,(x)#(0, ..., 0). (4.29)
So it follows from the Implicit Function Theorem ® that
fo 1(0) is an (n— 1)-dimensional C* submanifold of R", (4.30)

hence E, is the complement of an open dense subset of R". Then E, as a
subset of a finite union of such sets, is the complement of a generic set. ||

8 Cf Guillemm and Pollack [5, p 21, Preimage Theorem]; Kahn [9, p 69. Proposi-
tion 3 1].
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5. CoMPARISON WITH OTHER RESULTS

To put our results in context, we first mention two other notions of
rationality. If we replace the “=" in (2.3) by “<” or “2” we obtain two
defintions of semirationality which we call subsemirationality and
suprasemirationality, respectively. They are clearly much weaker concepts
than the rationality notion of (2.3). Note, for example, that every constant
function is a subsemirationalization of any demand correspondence.

We can use these definitions to clarify two main lines of research.
Although the terminology may have been different, the revealed preference
work of Samuelson [19, 20], Houthakker [6], Uzawa [22], and Richter
[14] has worked primarily with the stricter notion of rationality. On the
other hand, a line of work by Afriat [1, 4], Diewert [4], and Varian [23]
has used the weaker notion of subsemirationality.

Afriat [1] stated several conditions on finite sets of demand data from
which he proved subsemirationality (“utility consistency” or “utility
hypothesis” in his terminology). Afriat showed that his consistency condi-
tions were also equivalent to “normal utility consistency,” which m our
terminology would mean concave-utility-subsemirationality. Since only
weak concavity was required, any constant function would again be such
a subsemirationalization. °

Afriat was interested in not just proving existence of a utility subsemira-
tionalization, but also in providing a method for actually calculating such
a function. The particular method he used was further developed by
Diewert, who obtained such a function by solving a linear programming
problem. Varian restated Afriat’s result and construction in terms of a
Generalized Axiom of Revealed Preference, which is weaker than the
Strong Axiom; and he gave an algorithm to find a solution for the «’, A’
that, when the Generalized Axiom holds, satisfies Afriat’s inequalities.

Our conclusions sharpen these subsemirationality results. First, we
provide rationality in the full sense of (2.3).?° Second, we guarantee strict
concavity and strict monotonicity of some utility-rationalization. (The
earlier constructions were never strictly concave.) We use this to show that
special rationality is equivalent to regular rationality. As m the earlier
results, our conditions are algorithmically testable, and our proof also
shows how to actually construct a utility-rationalization.

Recently Chiappori and Rochet [3] have strengthened the Strong
Axiom hypothesis by adding what amounts to invertibility of the observed

? And would be a counterexample to the claim (Afriat [1, pp 69, 74 (Corollary)]) that
cyclical consistency 1s a necessary consequence of utility consistency ‘

190f course, even a subsemmrationalization by a strictly concave function would be a full
rationalization, since we are assuming that all budgets are convex
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demand function. Then they showed that one can obtain, on any compact
subset of R, a C*, monotone, subsemi-utility-rationalization. Although
their formal definition of rationality is only subsemi-rationality, their strict
concavity conclusion actually yields what we have called rationality.

After their results were published, we realized that the methods of our
Theorem 2 could be used to strengthen their conclusion: As we show in
Theorems 1° and 2%, under their special invertibility hypothesis, one can
obtain a C* utility-rationalization on all of R™.

We call a demand function h: @ — X (homogeneously) invertible when,
for all (p, m), (p', m')e B: if h(p, m)=h(p’,m’), then (p, m) is a positive
scalar multiple of (p’, m')—denoted (p, m) oc (p’, m’).

THEOREM 1%, Let h be an exhaustive demand function defined on a finite
subset B of €. Then h has a C* special rationalization defined on all of R"
if and only if h satisfies the Strong Axiom of Revealed Preference and is
invertible.

Theorem 1% is an immediate corollary of

THEOREM 2%. Let h be an exhaustive demand function on a finite subset
B={(p',m"), .., (p", m")} of 6. Let x'e h(p', m’) for (i=1, .., k). Then the
Sfollowing statements are equivalent:

(a) h satisfies the Strong Axiom of Revealed Preference and is
invertible.

(b) There exists a C*, strictly concave, and strictly monotone function
U rationalizing h on . (Le., h 1s special-rational.) And U can be defined on
all of R".

(c) There exist real numbers v', w and ' (i, j=1, .., k) satisfying:
u'+ Apx)—x']>u Jorall i, j=1,.., k with x"# x’ (5.1a)
A'>0 foral i=1, [k (5.1b)
xX'=x/=(p,m) oc(p/,m’) foral 1,j=1,..,k (5.1¢c)

(d) 4 is regular-rational and invertible.

Proof. To prove that (a) implies (c), note that (5.1c) follows from
invertibility; the rest follows as in Lemma 1, where the proof is now
simplified by assuming that the matrix C no longer appears (cf. (4.3b))
(this simplification is justified because, by mvertibility of 4, we can assume
that all budgets (p’, m*) are distinct). To prove that (c) implies (b), we first
obtain the function U as in the proof of Lemma 2 (4.18). Then, because
(5.1c) guarantees invertibility of 4, we can apply to our U the same



STRICTLY CONCAVE RATIONALITY 301

convolution methods that [3] applied to their W, and we obtain a C*
function V" that is strictly concave and monotone (because our U had those
properties) and is such that, for every i, DV(x')= A'p". Since V is strictly
concave, it is easy to check that it rationalizes the observations. 1

6. APPLICATIONS

Our results has many applications. We mention a few.

(i) As already noted, Theorems 1 and 2 give necessary and suf-
ficient conditions in empirically testable forms, for the existence of special
utility-rationalizations on finite data sets. And Theorem 2 shows one way
to construct such utilities.

(i1) Although Theorem 1 concerns just finitely many observations,
it can be used to deduce rationality properties for arbitrary sets of demand
data. This is demonstrated in Richter’s new rationality results for noncon-
tinuous and continuous demands [17].

(ii1) Our results can yield a very simple proof of the classical
Slutsky conditions [8. Theorem t]. This is shown in [17] by employing
our Theorem 1 to deduce rationality properties for arbitrary demand data,
as explained in (ii), and using those properties together with a general
convexity lemma.

(iv) Given a finite number of budget-demand observations, can we
interpolate between them a continuous demand function that comes from
a utility-rational consumer? Theorem 1 shows that this is possible if and
only if the observations satisfy the Strong Axiom. In particular, the Strong
Axiom is well known to be necessary for regular-rationality. And if the
Strong Axiom holds, then Theorem 1 shows that the demand can be utility-
rationalized by a continuous (strictly monotone, strictly concave) function,
which by standard results must generate a continuous demand function.
(This is a continuous analogue of the C* version for compact sets, given
in the Corollary of Chiappori and Rochet [3]).

(v) Theorem 1 also allows us to sharpen Mas-Colell’s approxima-
tion result for continuous demand functions. He showed that income
Lipschitzian demands satisfying a certain boundary condition can be
rationalized by a unique continuous preference; and furthermore, this
preference can be approximated by monotone, concave, subsemira-
tionalizations on finite subsets of demand data (Mas-Colell [11], remarks
preceding Theorem 4). Now we can replace his application of Afriat’s result
by an application of our Theorem 1; this strengthens his result so that the
approximating preferences are full rationalizations, and they have utility
functions that are strictly concave and strictly monotone.
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(vi) If we combine Theorem 1 with Kim’s recent result [10], that
the Strong Axiom is equivalent to semitransitive-rationality (and to
pseudotransitive-rationality), then we immediately obtain

THEOREM 3. Let h be an exhaustive demand function defined on a finite
subset B of €. Then h is special-rational if and only if h is semitransitive-
rational (equivalently, pseudotransitive-rational).

For finite sets of data, then, empirical tests cannot distinguish between
certain weak types of nontransitive rationality and the much stronger
spécial-rationality.

(vii) Theorem 2 has been used by Brown and Matzkin [2] to
characterize any finite set of endowment-price points lying on the graph of
the equilibrium correspondence of any economy in which consumers’
preferences can be represented by strictly concave and strictly monotone
utility functions.

(viii) Theorem ! and the technique employed in our proof of
Lemma 2 to construct a rationalization have been employed by Matzkin
[13] to characterize choice data generated by maximization of strictly
concave and strictly monotone functions, subject to a variety of nonlinear
choice sets.
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1. Introduction
1.1. Motivation

Our world is full of choices. Before we step outside the door in
the morning, we have already chosen what to eat for breakfast and
which clothes to wear. For the morning commute, we decide how
to travel, by what route, and whether we will pick up coffee along
the way. Dozens of small choices are made before it is even time
for lunch, and then there are the less frequent, but more important
decisions like buying a car, moving to a new home, or setting up
retirement savings. Neoclassical economists hypothesize that such
consumption choices are made so as to maximize utility. Given this
hypothesis, it follows that each choice tells us something about
the decision maker. In other words, choices reveal preferences, and
thereby provide information about an underlying utility function.
As we observe the choices of a decision maker over time, we can
piece together more and more information. Given this information
about choices made, a number of questions naturally arise:

i) Does there exist a utility function which is consistent with
the observed choices?
ii) When a consistent utility function exists, does there exist
one in a prespecified class?
iii) When no consistent utility function exists, how close are the
observed choices to being consistent?

* Corresponding author.
E-mail addresses: bart.smeulders@uliege.be (B. Smeulders), Yves.Crama@
uliege.be (Y. Crama), f.c.r.spieksma@tue.nl (F.C.R. Spieksma).

https://doi.org/10.1016/j.ejor.2018.04.026
0377-2217/© 2018 Elsevier B.V. All rights reserved.

These questions belong to the domain of revealed preference the-
ory, pioneered by Samuelson (1938, 1948). In this theory, it is usual
to formulate a minimum set of prior assumptions, also known as
axioms, which are based on a theory of choice behavior. Thus, re-
vealed preference characterizations are defined as conditions on
the observed choices of decision makers. This approach allows for
direct tests of the decision models, without running the risk that
excessively strong functional (mis)specifications lead to rejections
of the model.

Testing the axioms of revealed preference theory is a topic
at the interface of economics and operations research. We focus
on the algorithmic aspects of solving the corresponding optimiza-
tion/decision problems, and we highlight some of the issues of in-
terest from the operations research viewpoint. In particular, we ex-
amine algorithms that can be used to test whether observed con-
sumer choices satisfy certain revealed preference conditions. We
also look at the tractability, that is, the computational complexity
of algorithms for answering these questions. Following the classical
framework of computational complexity (see, for instance, Garey
& Johnson, 1979 or Cormen, Leiserson, Rivest, & Stein, 2001), we
focus on worst-case time-bounds of algorithms. We are especially
interested in whether a particular question is easy (that is, solv-
able in polynomial time) or difficult (NP-HARD), and what the best-
known method is for answering the question.

Let us first motivate this computational point of view. In a very
general way, it is clear that computational issues have become in-
creasingly important in all aspects of science, and economics is no
exception. This is reflected, in particular, in the economic litera-
ture on revealed preference, where computational challenges are
frequently and explicitly mentioned. We illustrate this claim with
three quotes from recent papers.
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Echenique, Lee, and Shum (2011) write:

“Given [that calculating money pump costs can be a huge com-
putational task], we check only for violations of GArP that in-
volve cycles of limited length: lengths 2, 3, and 4.”

Choi, Kariv, Miiller, and Silverman (2014) write (in the online
appendix):

“Since the algorithm is computationally very intensive, for a
small number of subjects we report upper bounds on the con-
sistent set.”

Kitamura and Stoye (2014) write:

“It is computationally prohibitive to test stochastic rationality
on 25 periods at once. We work with all possible sets of eight
consecutive periods, a problem size that can be very comfort-
ably computed.”

These quotes signify the need for fast algorithms that can test
rationality of choices made by an individual (or a group of indi-
viduals), or at least to better understand the tractability of these
underlying questions.

Another trend that emphasizes the relevance of efficient com-
putations in the domain of revealed preference is the ever-
increasing size of datasets. As in many other fields of social and
exact sciences, and as underlined by the pervasiveness of buz-
zwords such as “big data” and “data science”, more and more in-
formation is available about actual choices of decision makers. As
a striking example, it is now commonplace for brands or large re-
tailers to track the purchases of individual consumers or house-
holds. This activity yields numerous datasets with sizes far be-
yond those provided by laboratory experiments. This only rein-
forces the need for efficient methods, in order to be able to tackle
and to draw meaningful conclusions from huge datasets. For ex-
ample, Cherchye et al. (2017a) use revealed preference models to
study food choices. The sample they analyze contains records of all
grocery purchases of 3645 individuals over a period of 24 months.
It is extracted from the Kantar Worldpanel, which records the
purchases of 25,000 households. Long-running longitudinal stud-
ies actually provide large datasets of household consumption and
other economic indicators. Cherchye, Demuynck, De Rock, and Ver-
meulen (2017b) identify intrahousehold decision structures using
such large datasets.

In view of these considerations, there is a quickly growing body
of work on computation and economics. As mentioned above, our
objective is to give an overview of algorithmic problems arising in
revealed preference theory. Due to the wide range of choice situ-
ations to which revealed preference has been applied, providing a
comprehensive overview is not a realistic goal. In this paper, we
focus on algorithmic results concerning tests of rational behavior
in consumer choice settings. For different discussions of the topic,
we refer the reader to the recent monograph on the theory of re-
vealed preference by Chambers and Echenique (2016), and to a sur-
vey by Crawford and De Rock (2014) on empirical revealed prefer-
ence; an earlier overview can be found in Houtman (1995). Finally,
we should note that certain aspects of revealed preference theory,
as a way of explaining choice behavior, have also been criticized;
see, e.g., the works of Hausman (2000) and Wong (2006).

1.2. Preference modeling and utility theory

Before we close this introductory section, we find it useful to
formulate a few comments on the relations between the stream of
literature that we cover in this paper, and the literature on pref-
erence modeling and utility-based decision making, as they have
classically been handled in operations research (OR) and, more re-
cently, in artificial intelligence (AI). Our goal is obviously not to

survey these huge and active fields of research. Rather, we simply
intend to clarify some of the similarities and differences that ex-
ist between the “economic” setting of revealed preference theory,
and an “operations research” or “artificial intelligence” perspective
which may be more familiar to readers of this journal.

Many of the results surveyed in this paper express conditions
for the existence of a utility function which represents the pref-
erences revealed through the choices made by consumers. Most
of these results have been published by economists. On the other
hand, in operations research and in decision theory, there is a
long tradition of building utility functions (sometimes called “value
functions” in the deterministic setting) based on information pro-
vided by one or several decision makers. Classical references are,
for instance, Fishburn (1970), Keeney and Raiffa (1976). Typically,
in such settings, the preferences of the decision maker are ex-
pressed by a limited number of pairwise comparisons of alterna-
tives, or by rankings of the alternatives on several criteria. The ob-
jective is then to build a utility function which is coherent with
the expressed preferences, and which can be used, for instance,
in order to evaluate each and every alternative on a numerical or
ordinal scale, or to evaluate alternatives that have not yet been
seen. The utility functions under consideration may be as sim-
ple as a (weighted) sum of criteria, or may be selected within
a parameterized class of functions whose parameters are to be
determined. This type of approach has been extensively investi-
gated, in particular, by researchers interested in multiple crite-
ria problems with discrete alternatives (MCDA) (see, e.g., Greco,
Ehrgott, & Figueira, 2016, and in particular Bouyssou & Pirlot, 2016;
Dyer, 2016; Moretti, Oztiirk, & Tsoukias, 2016; Siskos, Grigoroudis,
& Matsatsinis, 2016 for recent surveys of closely related topics;
see also Corrente, Greco, Matarazzo, & Stowinski, 2016 for exten-
sions), or in conjoint analysis (see, e.g., Giesen, Mueller, Taneva, &
Zolliker, 2010; Gustafsson, Herrmann, & Huber, 2007; Rao, 2014).
More recently, similar questions have also been investigated in
preference learning, a subfield of artificial intelligence (see, e.g.,
Corrente, Greco, Kadzifiski, & Stowinski, 2013; Fiirnkranz & Hiiller-
meier, 2010).

Not surprisingly, all of these fields share a common theoretical
basis, as well as many methodological concepts: preference rela-
tions, transitivity, pairwise comparisons, to name but a few. Nev-
ertheless, they also all have their own specific purposes, assump-
tions, and applications, which lead to a variety of research ques-
tions and results. The objective of this survey is not to carry out a
systematic comparison of these various settings. However, in order
to avoid any confusion in the mind of the reader, we find it use-
ful to briefly outline some of the most striking differences between
revealed preference theory and other utility-based frameworks.

o The approaches proposed in OR and in Al are mostly prescrip-
tive or operational in nature. Their main objective is to help an
individual, or a group of individuals, to express and to structure
their preferences, so as to allow them to make informed decisions.
This is the case in MCDA, in conjoint analysis, and in prefer-
ence learning. In contrast, the revealed preference literature is
mostly normative (to the extent that it posits axioms of rational
choice behavior) and descriptive (to the extent that it attempts
to test whether actual consumer choices are consistent with the
stated axioms), but it is not meant to support any decision mak-
ing process. This is definitely a major distinguishing feature of
revealed preference theory.

As a corollary of the previous item, an objective frequently pur-
sued in OR and in Al is to explicitly build (“assess”, “elicit”)
a utility function which is compatible with the data; this
is the case in multiattribute utility theory or in conjoint
analysis, most noticeably. (Of course, some classical approaches
to multicriteria decision making do not explicitly attempt to
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build the utility function of the decision maker; this is the case,
for instance, of the interactive methods developed by Zionts
and Wallenius (1976, 1983), and of outranking methods such
as described by Roy (1991).) On the other hand, in the eco-
nomic literature, a main objective is to check the coherence of
consumer choices with rationality axioms proposed in the the-
ory. Hence, building a compatible utility function (sometimes
called the “recovery” issue in economics) is usually not viewed
as the primary outcome of the process. It should be noted,
however, that the existence proofs provided for instance by
Afriat (1967b) or Varian (1982) (see Section 3 hereunder) are
constructive and provide an analytical expression of the utility
function, when it exists. Predicting, or bounding the demand
bundles associated with future prices is also a topic in interest
in economics; see, e.g., (Blundell, 2005; Varian, 1982).

In utility theory and in MCDA, the alternatives are often con-
sidered as “abstract”, “unspecified” entities: most papers in this
stream start with the assumption that the decision maker is
facing “a set A of alternatives”, or potential actions, but the na-
ture of these alternatives is not directly relevant for the devel-
opment of the theoretical framework (although, of course, the
alternatives must be fully determined in any specific applica-
tion of the theory); see (Dyer, 2016; Fishburn, 1970; Keeney &
Raiffa, 1976). In conjoint analysis or in preference learning, the
alternatives are represented as multidimensional vectors asso-
ciated with product attributes or other measurable features. In
revealed preference theory, on the other hand, the observations
consist of bundles of goods and their associated prices: this as-
sumption is crucial for the definition of the preference relation,
as we explain next.

In OR or Al, preferences among alternatives can be formulated
in a variety of ways (e.g., through pairwise comparisons of al-
ternatives), but are solely based on declarations of the deci-
sion maker. In revealed preference settings, on the contrary,
the preferences between bundles are explicitly derived by the
analyst from pairwise comparisons of the prices of the bundles
purchased by the decision maker. As a consequence, goods and
their prices play a central role and provide another distinguish-
ing feature of the theory. In particular, many of the theorems
regarding the existence of utility functions can be stated in
terms of prices and quantities of goods.

In MCDA, in conjoint analysis, or in preference learning, the
procedure used to elicit the utility function often rests on the
formulation of questions that can be submitted to the decision
maker, possibly in an interactive, dynamic process; so, the de-
sign of the most appropriate experiments is an important issue to
be tackled by the analyst, as it influences the relevance of the
collected data and the efficiency of the elicitation process (see,
e.g., Gustafsson et al., 2007; Rao, 2014; Riabacke, Danielson, &
Ekenberg, 2012 for a discussion of such design issues). In re-
vealed preference settings, the analyst usually faces the results
of uncontrolled experiments, in the form of a database of obser-
vations which have been typically collected for other purposes
(although the issue of experimental design is also discussed, for
instance, in Blundell, 2005).

As a consequence of the previous point, the datasets consid-
ered in the OR literature on preference modeling are often quite
small, and computational complexity, or even algorithmic con-
siderations have not been a main focus of attention in this area.
(This is true, at least, for multiple criteria problems with dis-
crete alternatives, as opposed to multiple criteria optimization
problems which may feature an infinite set of feasible alterna-
tives, such as a polyhedron described by linear inequalities, and
which call for more efficient algorithmic approaches; see, e.g.,
(Wallenius et al., 2008) for a discussion of the growing impor-
tance of algorithmic issues in multicriteria decision making.) On

the other hand, the databases to be handled in revealed pref-
erence studies are potentially huge, so that complexity issues
naturally arise and have been considered, more or less explic-
itly, by various researchers. They provide the main theme to be
covered in this paper.

As previously mentioned, in spite of the inherent differences
outlined above, and in spite of the fact that the streams of re-
search on utility-based decision making and on revealed prefer-
ence have evolved in almost total separation, there remain some
obvious commonalities between these topics. The objective of our
survey, however, is not to establish a comparative study, but rather
to provide the reader with an overview of fundamental results and
of recent developments in the field of algorithmic revealed pref-
erence theory. We hope that this may lay the ground for future
cross-fertilization between operations research and revealed pref-
erence theory.

1.3. Outline of the survey

We begin this survey by introducing key concepts in revealed
preference theory, such as utility functions and preference rela-
tions, in Section 2. Next, in Section 3, we state the fundamental
theorems that characterize rationalizability in revealed preference
theory. We explicitly connect rationalizability with properties of
certain graphs, and we state the worst-case complexity of algo-
rithms that establish whether a given dataset satisfies a particu-
lar “axiom” of revealed preference. In Section 4, we look at vari-
ous kinds of utility functions that have been considered in the lit-
erature, and we provide corresponding rationalizability theorems.
Section 5 deals with goodness-of-fit and power measures, which
respectively quantify the severity of violations and give a mea-
sure of how stringent the tests are. In Section 6, we explore col-
lective settings, where the observed choices are the result of joint
decisions by several individuals. Finally, in Section 7, we look at
stochastic preference settings where the decision maker still at-
tempts to maximize her utility, but her preferences are not neces-
sarily constant over time. Instead, the decision maker has a num-
ber of different utility functions, and the function that she max-
imizes at any given time is probabilistically determined. We con-
clude in Section 8.

2. Preliminaries

In this section, we lay the groundwork for the remainder of this
paper: Section 2.1 introduces utility functions and their properties,
Section 2.2 states the different axioms of revealed preference, and
Section 2.3 shows how graphs can be built from a given set of ob-
servations.

2.1. Basic properties of utility functions

Let us first introduce the basic ideas of revealed preference, by
considering purchasing decisions and utility maximization. Specifi-
cally, consider a world with m different goods. The decision maker
selects a bundle of goods, denoted by the (mx 1) vector q € R
Throughout this paper, except where noted otherwise, we assume
this choice is constrained by a linear budget constraint. The (1 x m)
vector p € RT, denotes the prices of the goods, and b the avail-
able budget. Under the classical hypothesis of utility maximization,
the choice of the decision maker is guided by a utility function
u(q) : RT — R,. Thus, the decision maker selects (consciously or
not) an optimal bundle g by solving the following problem, for any
given price vector p and budget b.

Maximize u(q) (1)

subject to pq < b. (2)
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Following standard economic theory, we assume the utility
function to be concave, continuous and strictly monotone, a set of
properties we capture in the following definition:

Definition 1 Well-behaved utility function. A utility function
u(q) : RT — Ry is well-behaved if and only if u is concave, con-
tinuous, and strictly monotone.

Notice that in this survey, we restrict ourselves exclusively to
the deterministic setting where the utility function does not de-
pend on unobservable, random elements beyond the bundle q.

Another relevant property of a utility function is the potential
uniqueness of its optima. This is formulated as follows:

Definition 2 Single-valued utility function. A utility function
u(q) : R — Ry is single-valued if and only if, for each p, b, the
problem {Maximize u(q)subjecttopq < b} has a unique optimal so-
lution q.

Of course, there are many other properties that one may want
to require from a utility function; we come back to this issue in
Section 4.

2.2. Preference relations and axioms of revealed preference

In the remainder of the paper, we assume that data is col-
lected by observing, at n different points in time, the prices and
quantities of all goods that are bought. This yields a dataset S =
{(pi.q;)| ie N}, where p; e RT, is the vector of prices at time i,
g; € RT is the bundle purchased at time i, and N={1,2, ..., n}. We
use the word observation to denote a pair (p;, q;), i€ N.

Samuelson (1938) introduced the definition of the direct re-
vealed preference relation over the set of bundles.

Definition 3 Direct revealed preference relation. For any pair of
observations i, je N, if p;q; > p;q;, we say that g; is directly revealed
preferred over gj, and we write g; Ry g;.

The interpretation of Definition 3 is quite intuitive: indeed, note
that p;q; and p;q; respectively express the total price of bundle g;
and bundle g; at time i, that is, when the prices p; apply. If the in-
equality p;q; > p;q; holds, we thus observe that bundle g; was pur-
chased at time i in spite of the fact that q; was at least as expensive
as g; at time i. The natural conclusion is that the decision maker
prefers bundle g; over g; (otherwise, she would have bought g;),
and this is the meaning of the relation Rq.

Assume now that we wish to test the hypothesis of utility max-
imization. In the empirical setting, the budget available to the de-
cision maker at time ie N is generally unobservable, but it is nat-
ural to assume that it is equal to p;q;. (As a matter of fact, if the
decision maker maximizes her utility and if the utility function is
monotonic, then the bundle picked at each period must exhaust
the available budget, which is therefore equal to p;q; at time i.)

We now wish to test whether the given dataset is consistent
with the theory of utility maximization. For the data to be consis-
tent with that theory, there must exist a utility function such that
all purchasing decisions maximize utility under the budget con-
straints. We say that a utility function satisfying this requirement
rationalizes the data, and we call it a rationalizing utility function.

Definition 4. Rationalizability

A dataset S = {(p;. q;)| i € N} is rationalizable by a well-behaved
(single-valued) utility function if and only if there exists a well-
behaved (single-valued) utility function u such that for every ob-
servation i e N,

u(g;) = u(q;) for all j e N with p;q; > p;q;.

This rationalizability concept is key in revealed preference the-
ory, and goes back to the work of Antonelli (1886). In words,

Definition 4 expresses that, at each time ieN, the choice of the
decision maker was rational in the sense that she picked the bun-
dle which maximizes her utility among all (observed) bundles g;,
JjeN, whose total price p;q; (at time i) was within the budget p;q;.
Restricting the attention to the finite set of bundles {g;|je N} that
actually have been observed in the dataset, rather than consider-
ing the infinite universe R of all bundles that could potentially be
bought by the decision maker, will allow us to test Definition 4 in
an empirical setting, as we will find out in the next sections.

In terms of the direct revealed preference relation, the utility
function u(q) rationalizes the data if and only if u(q;)>u(q;) for
all i, je N such that g; Ry g;: in the terminology of Fishburn (1970),
this means that u(q) is order-preserving for Ry; see also Bouyssou
and Pirlot (2016). Therefore, it is natural to investigate conditions
on Ry which ensure that a data set is rationalizable. This observa-
tion led Samuelson (1938) to formulate the Weak Axiom of Revealed
Preference.

Definition 5 Weak Axiom of Revealed Preference (WARP). A
dataset S satisfies waRP if and only if, for each pair of distinct bun-
dles g;, g;, i, je N with g; Ry g, it is not the case that g; Ry g;.

WARP is the first rationalizability condition proposed in the lit-
erature. It requires the revealed preference relation to be asym-
metric. The intuition behind it is simple: if the decision maker
shows through her decision that she prefers bundle g; over g; at
time i, then she cannot at another time show that she prefers g;
over g; (assuming she behaves as a utility maximizer). In other
words, WARP is a necessary condition for rationalizability by a
single-valued utility function (see Section 3). On the other hand,
we notice that wARP does not require the direct revealed prefer-
ence relation to be transitive, so that warp is not sufficient for ra-
tionalizability.

The work of Samuelson was further developed by Houthakker
(1950), who noted that by using transitivity, the direct revealed
preference relation could be extended to an indirect relation.

Definition 6 Revealed preference relation. For any sequence of
observations iy, ip,.... i € N, if q;, Ry q;,Ro ... Ro gi,. we say that
qi, is revealed preferred over g;,. and we write g; Rg;, .

Using these revealed preference relations, Houthakker formu-
lated the Strong Axiom of Revealed Preference.

Definition 7 Strong Axiom of Revealed Preference (. SARP )
A dataset S satisfies sARP if and only if for each pair of distinct
bundles g;, g;, i, je N with g; Rgj, it is not the case that g;Rg g;.

In order to allow for indifference between bundles, Varian
(1982) introduced the strict direct revealed preference relation, and
using this relation, defined the generalized axiom of revealed prefer-
ence, GARP.

Definition 8 Strict direct revealed preference relation. For any
pair of observations i, jeN, if p;q; > p;q;, we say that g; is strictly
revealed preferred over q;, and we write g; Py g;.

Definition 9 Generalized Axiom of Revealed Preference (. GARP)
A dataset S satisfies Garp if and only if for each pair of distinct
bundles, g;, g;, i, j€ N, such that g; Rg;, it is not the case that g; Py ;.

Example 1. Consider the following small dataset consisting of four
observations.

p1=(2.2.2) g =(2.2.2)
p2=(1.2.4) 92 =(4.0.2)
p3=1(2.1.3) g3 = (4.4.0)
pa=(4.2.1) g4 =(0.1.4)

Table 1 contains the values p;q; fori,j=1,...,4.
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Table 1
pigj fori, j=1,....4

q q2 LE} qa

pm 12 12 16 10
pp 13 12 12 18
ps 12 14 12 13
ps 14 18 24 8

Fig. 1. Relations of the axioms of revealed preference.

Fig. 2. A revealed preference graph.

Clearly, there are direct revealed preference relations q; Ry gy,
G2Ro g3, 3Roq1 and a strict direct revealed preference relation
q1 Po q4. This dataset satisfies both wARP and GARP, but not SARP
since g1 Rq3 and q3 Ry q;.

Fig. 1 illustrates the relations between the different core axioms
of revealed preference theory (WARP, SARP, and GARP). Indeed, any
dataset satisfying SARP satisfies both wARP and GARP, and there ex-
ist datasets not satisfying sarp that satisfy both warRp and GARP
(see Example 1).

2.3. Graphs representing a dataset

We now describe how to build a directed graph that can be
used to represent a dataset; this construction originates from Koo
(1971). As we wil see in Section 3, such graphs are very useful
tools in deciding rationalizability. Given a datset S = {(p;,q;)| i e
N}, we build a directed weighted graph Gs = (Vs, As) as follows.
For each observation ie N, there is a node in Vs, i.e., Vs:=N. Fur-
ther, there is an arc from node i to node j in As exactly when
pigi > piqj and g; # q; (or equivalently, when g; Ry q; and ¢; # g;). Ob-
serve that in Gg there is no arc between distinct observations that
feature an identical bundle. Finally, the length of an arc (i, j) € Ag
equals p;(q; — g;). Notice that this length is always nonpositive.

Example 1 Continued. The revealed preference graph correspond-
ing to the dataset is given in Fig. 2. Notice that the direct, but not
strict, revealed preference relations correspond to an arc of length
0, while the strict revealed preference relations correspond to arcs
of strictly negative length.

An alternative version of this construction was proposed by
Talla Nobibon et al. (2016). These authors defined a directed graph
Gg, which is simply the graph of the direct preference relation Ry:
the node set of Gg, is again N, and there is an arc from node i

to node j if and only if g;Roq; (including when g; = q;). For the
dataset in Example 1, Gg, = Gs since no bundle appears twice.

3. Fundamental results

In this section, we connect the fundamentals given in Section 2,
and we formulate the theorems that characterize rationalizability.
Clearly, a main goal within revealed preference theory is to test
whether there exists a (particular) utility function rationalizing a
given dataset S.

3.1. Testing GARP

Necessary and sufficient conditions for rationalizability of a
given dataset by a well-behaved utility function are given in
Theorem 1.

Theorem 1. (GARP)
The following statements are equivalent:

1. The dataset S = {(p;, q;)| i € N} is rationalizable by a well-behaved
utility function u(q).

2. There exist strictly positive numbers U;, A; for i€ N satisfying the
system of linear inequalities

Ui <Uj+A;pj(gi—aq;) VijeN. (3)

3. S satisfies GARP.
4. Each arc contained in a cycle of the graph Gg has length 0.

The inequalities comprising system (3) are called the Afriat In-
equalities. It is not difficult to see that system (3) can be reformu-
lated as a linear program. Indeed, notice that multiplying a given
feasible solution (U;, A;: i€ N) by any positive constant gives again
a feasible solution; thus, one can require each of the variables to
be at least equal to 1, and not just strictly positive. The equiv-
alence of statements 1 and 2 in Theorem 1 was established by
Afriat (1967b), and their equivalence with statement 3 is due to
Varian (1982). Statement 4 is easily derived from the definition of
GARP. Thus, Afriat (1967b) provided a linear program, formed by
the Afriat Inequalities, that characterizes rationalizability by a well-
behaved utility function. This allows us to conclude that GARP can
be tested in polynomial time (although no polynomial time algo-
rithms for solving linear programming problems were known at
the time when Afriat published his work).

Rationalizability tests for consistency of datasets with GARP
have gone through a number of stages. Diewert (1973) states
another linear programming formulation. Varian’s formulation of
GARP (Varian, 1982) provides another algorithm for testing ratio-
nalizability. This formulation shows that rationalizability can be
tested by computing the transitive closure of the direct revealed
preference relation. This transitive closure yields all revealed pref-
erence relations, direct and indirect. Given the transitive closure,
GARP can be tested by checking, for each pair of bundles g;, gj, i,
JjeN, whether both ¢; Rq; and g; Py g; simultaneously hold. The bot-
tleneck in this procedure is the computation of the transitive clo-
sure. Varian suggests to use Warshall’s algorithm (Warshall, 1962),
which has a worst-case time complexity of O(n3); he also notes
the existence of faster algorithms based on matrix multiplication,
which at the time achieved 0(n%7*) complexity (Munro, 1971). By
now, these algorithms have improved, the best known algorithms
for general matrices having 0(n2373) time complexity (Coppersmith
& Winograd, 1990; Le Gall, 2014; Williams, 2012).

Recently, Talla Nobibon, Smeulders, and Spieksma (2015) de-
scribed an algorithm with a worst-case bound of O(n?) for GARP,
based on the computation of strongly connected components of
the graph Gs. An alternative, simple statement of the O(n?) test
is derived in Talla Nobibon et al. (2016) from the observation that
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a dataset S satisfies GARP if and only if p;q; = p;q; for each arc (i,
J) contained in a strongly connected component of Gg, (see Condi-
tion 4 of Theorem 1). Shiozawa (2016) describes yet another way
to test GARP in O(n2) time, using shortest path algorithms. Talla
Nobibon et al. (2015) prove a lower bound on testing GARP, show-
ing that no algorithm can exist with time complexity smaller than
O(nlogn).

3.2. Testing SARP

Analogously to Theorem 1, we now give a theorem that pro-
vides necessary and sufficient conditions relating to SARP.

Theorem 2. (SARP)
The following statements are equivalent:

1. The dataset S = {(p;,q;)| ie N} is rationalizable by a well-
behaved, single-valued utility function u(q).

2. There exist strictly positive numbers U;, A; for i€ N satisfying the
system of linear inequalities

Ui<Uj+kjpj(qi—qj) Vl,]eN (4)

3. S satisfies SARP.
4. The graph G is acyclic.

Houthakker (1950), extending the work of Samuelson, intro-
duced the formulation of sArRP and proved the equivalence of state-
ments 1 and 3. Statement 2 is an extension of Theorem 1.

Again, observe that system (4) can be cast into a linear opti-
mization format. Using a matrix representation of the direct re-
vealed preference relations, Koo (1963) describes a sufficient con-
dition for consistency with sarp. Dobell (1965) is the first to de-
scribe conditions which are both necessary and sufficient. Dobell’s
test is based on the matrix representation of direct revealed prefer-
ence relations. He proposes checking whether every square subma-
trix of the direct revealed preference matrix contains at least one
row and one column consisting completely of elements equal to 0.
Since there is an exponential number of such submatrices, this test
runs in exponential time. Koo (1971) later publishes another paper
where he observes that testing SARP amounts to checking whether
Gs is acyclic: this can be done in O(n?) time, and is to-date the
most efficient available method for testing consistency with SARP.
An alternative version of this test is provided by Talla Nobibon
et al. (2016). These authors observe that S satisfies sARrp if and only
if, within each strongly connected component of Gg,, all bundles
are identical. This condition can again be checked in O(n2) time by
relying on Tarjan’s algorithm to compute all strong components of
Gg, (Tarjan, 1972).

3.3. Testing WARP

For the sake of completeness, let us now state an easy result
which is in fact nothing but a restatement of the definition of
WARP.

Theorem 3. (WARP)
The following statements are equivalent:

1. The dataset S = {(p;, q;)| i € N} satisfies WARP.
2. The graph Gg does not contain any cycle consisting of two arcs.

As mentioned before, satisfying WARP is only a necessary con-
dition for rationalizability by a single-valued utility function. How-
ever, in the special case where the dataset involves only two goods
(i.e., m = 2), warP is both a necessary and sufficient condition for
rationalizability by a single-valued utility function (Little, 1949;
Samuelson, 1948).

Testing WARP can be done in O(n?) time, since it is sufficient to
test each pair of observations for a violation. More explicitly, after

having computed the quantities p;q; and p;q; for all distinct i, jeN,
WARP can be rejected if and only if there exists a pair of distinct i,
JjeN such that p;q; > p;q; and p;q; > p;q;.

Finally, let us point out that the graph characterization of GARP,
sARP and WARP allows us to easily conclude (using Fig. 2) that the
dataset given in Example 1 satisfies WARP (as there are no 2-cycles
in Gs), satisfies GARP (as the cycle 1-2-3 has length 0), and does
not satisfy sarp (as Gs is not acyclic).

Rationalizability questions are not limited to general utility
functions. In the next sections, we are interested in the question
whether datasets can be rationalized by utility functions of a spe-
cific form (Section 4), by collective choice processes (Section 6), or
by stochastic choice processes (Section 7).

4. Other classes of utility functions and their rationalizability

Besides the basic tests discussed in the previous paragraphs,
conditions and tests have been derived for testing rationalizabil-
ity by various specific forms of utility functions. In this section
we consider two additional classes of utility functions: utility func-
tions that are separable (Section 4.1), and utility functions that are
homothetic (Section 4.2). In addition, we assume from now on that
the utility functions are non-satiated. This is a concept used to
model the property that for every bundle q there is another bun-
dle ¢’ in the neighborhood of g that is preferred over q. Formally
(Jehle & Reny, 2011):

Definition 10 Non-satiated utility functions. A utility function
u(-) is non-satiated if, for each g € R™ and for each € >0, there
exists g e R™ with ||q’ — q|| < € such that u(q’) > u(q).

The property of non-satiatedness expresses that, in the absence
of a budget constraint, no particular bundle is preferred to all other
bundles. It also imposes some form of continuity to the preferences
over bundles.

4.1. Separable utility functions

Separability of a utility function refers to the property that dif-
ferent goods in a bundle may have no joint effect on the utility of
the bundle; then, goods can be regarded as independent of each
other. More generally, it is often assumed that there exists a parti-
tion of the goods into R subsets such that goods from different sets
do not interact. Hence, separability of a utility function is defined
with respect to a given partition of the goods. More concretely,
given a partition of the goods into R disjoint sets, we denote by
m; the number of goods in set j, 1<j<R. Any bundle of goods

can then be written as g = (q', ..., ¢%), with ¢/ € RTf denoting the
vector of quantities for the goods in set j, 1 <j<R.

There are two versions of separability: strong and weak. We
first provide the definition of a strongly separable (also known as
additive) utility function.

Definition 11 Strongly separable utility functions. A utility func-
tion u(q) is strongly separable with respect to a given partition of
the set of goods {1, 2, ..., m} if and only if there exist well-behaved
functions f; () : RTj — R, for each j e {1,...,R} such that

u(@) = f1(@") + (@) + -+ fr(@®).

The case where we partition the set of goods into two subsets,
i.e., the case R=2, allows the following theorem due to Varian
(1983):

Theorem 4. The following statements are equivalent:

1. There exists a strongly separable, well-behaved, non-satiated utility
function u(f(q!), q%) rationalizing the dataset S = {(p;, q;)| i € N}.
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2. There exist strictly positive numbers U;, V;, A; with ie N satisfying
the system of linear inequalities

Ui <Uj+2;pj(al —aj) Vi,jeN, (5)

Vi<Vi+A;p3 (@i —q}) Vi,jeN (6)

Varian (1983) also gives a linear programming formulation for
arbitrary R, allowing for a polynomial-time test of rationalizability
by a strongly separable utility function.

A weaker version of separability occurs when the utilities of the
different sub-bundles are not necessarily summed to obtain the
total utility; weak separability rather assumes that there exists a
function, denoted v/, that takes as input the utilities of the indi-
vidual groups of goods, and translates these into a total utility.

Definition 12 Weakly separable utility functions. A utility func-
tion u(q) is weakly separable with respect to q!,..., g1 if
and only if there exist functions fj(qj) :RTj — R, for each je
{1,...,R—1} and a function v/ (x, ..., Xg_1, q%) such that

u(q) =u'(fi(gh,.... fre1 (@), g%

Following his paper on general utility functions, Afriat also
wrote an unpublished work on separable utility functions (Afriat,
1967a). Varian (1983) built further on this, giving a non-linear sys-
tem of inequalities, reproduced below in Theorem 5, for which the
existence of a solution is a necessary and sufficient condition for
rationalizability by a well-behaved, weakly separable utility func-
tion with R = 2 sets of goods.

Theorem 5. The following statements are equivalent.

1. There exists a weakly separable, well-behaved, non-satiated utility
function u(f(q"), q?) rationalizing the dataset S = {(p;, q;)| i € N}.

2. There exist strictly positive numbers U;, Vi, A;, u; for ie N satisfy-
ing the system of non-linear inequalities

Ui <Uj+A;p5(a; —a7) + /i) (V; = Vj) Vi, j e N, (7)

Vi <Vj+u;pj(qi —qj) Vi, jeN. (8)

Diewert and Parkan (1985) extend this result to multiple sep-
arable subsets. Cherchye, Demuynck, De Rock, and Hjertstrand
(2015) prove that testing rationalizability by a weakly separable
utility function is NP-HARD even for R = 2. They also provide an
integer programming formulation which is equivalent to (7) and
(8). Several heuristic approaches have been formulated for testing
weak separability. Varian attempts to overcome the computational
difficulties by finding a solution to the linear part of the system of
inequalities and then fixing variables based on this solution, which
linearizes the remainder of the inequalities. This implementation
can be too restrictive, as the variables are usually fixed with values
making the system infeasible, even if a solution exists, as shown
by Barnett and Choi (1989). Fleissig and Whitney (2003) take a
similar approach, but improve on it by fixing variables with val-
ues that are more likely to allow solutions to the rest of the sys-
tem of equalities. Exact tests of (adaptations of) Varian's inequal-
ities are described in Swofford and Whitney (1994) and Fleissig
and Whitney (2008). Both use non-linear programming packages
to find solutions and are limited in the size of datasets they can
handle. Computational results in Cherchye et al. (2015) suggest
that the integer programming approach is feasible for moderately
sized datasets. Hjertstrand, Swofford, and Whitney (2016) use this
approach in an application testing separability of consumption,
leisure and money. When dropping the concavity assumption, the
rationalizability problem remains NP-HARD, even if the dataset is
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Fig. 3. A revealed preference graph for testing homotheticity.

limited to 9 goods (Echenique, 2014). Quah (2014) provides an al-
gorithm for testing separable utility functions without the concav-
ity assumption. Swofford and Whitney (1994) modify (7) and (8) to
account for consumers needing time to adjust their spending.

4.2. Homothetic utility functions

Another class of utility functions of interest are the homothetic
utility functions. Their definition is based on the concept of a ho-
mogenous function.

Definition 13 Homogenous functions. A function f{ - ) is homoge-
nous when f(Aq) = Af(q), for each g € R™ and for each A € R.

Definition 14 Homothetic utility functions. A utility function u(-)
is homothetic when there exist a homogenous function f and a
monotonic function ¢ such that u(q) = ¢(f(q)) for each g € R™.

In effect, if u is homothetic and if u(q;) > u(g;) for two bundles
gi» gj, then for any constant & > 0, u(eq;) > u(eeq;). Theorem 6 gives
necessary and sufficient conditions for rationalizability of a dataset
by a homothetic utility function. Notice that for tests of homo-
thetic utility functions described in the theorem, we assume the
price vectors are normalized so that p;q; =1 for all ieN. One
of these conditions is based on the following graph H = (Vs, As)
(whose construction is in the spirit of the construction described in
Section 2.3). For each observation i< N, there is a node in Vs, i.e.,
Vs :=N. Further, for each ordered pair of observations (i, j), there
is an arc of length log(p;q;) between the corresponding nodes.
Fig. 3 shows a graph to test homotheticity for the dataset given
in Example 1.

Theorem 6. The following statements are equivalent:

1. There exists a non-satiated homothetic utility function u(-) ratio-
nalizing the dataset S = {(p;, q;)| piqi =1, Vie N}.

2. There exist strictly positive numbers U; for ie N satisfying the in-
equalities

Ui < Ujqui Vl,] e N. (9)
3. For all distinct choices of observations (i, iy, ..., i), we have
(pi,95,) (P, qi,) - - - (i, qi,) = 1. (10)

4. The graph Hs does not contain a cycle of negative length.

The equivalence of statements 1, 2 and 3 was proven by Afriat
(1972, 1981). Based on statement 4, Varian (1983) proposes a com-
binatorial test which can be implemented in O(n3) time.
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Table 2
Complexity results for testing rationalizability by utility functions of specific
forms.

Type of utility function Type of test Time complexity

General Graph test 0(n?)
Single-valued Graph test 0o(n?)
Strongly separable System of linear ineq. Polynomial
Weakly separable System of non-linear ineq. NP-HARD

Graph test o(n3)
System of non-linear ineq. ~ Open

Homothetic
Homothetic and separable

Varian (1983) also provides a test for homothetic, separable
utility functions, which is again a difficult-to-solve system of
non-linear inequalities. Finally, utility maximization in case of
rationing (i.e., when there are additional linear constraints on the
bundles which can be bought, on top of the budget constraint) is
also handled by Varian. He provides a linear system of inequal-
ities whose feasibility is a necessary and sufficient condition for
rationalizability.

In summary, various forms of utility functions are usually asso-
ciated with a system of inequalities, for which the existence of a
solution is a necessary and sufficient condition for rationalizability
by such a utility function. The difficulty of these rationalizability
tests crucially depends on whether the systems are linear or non-
linear. General, single-valued and strongly separable utility func-
tions are easy to rationalize, as their associated systems of inequal-
ities are linear. The same holds true for utility maximization by
a general utility function under rationing constraints. For general
and single-valued utility functions, more straightforward tests have
been developed. A polynomial test also exists for rationalizabil-
ity by a homothetic utility function. On the other hand, for those
utility functions associated with non-linear systems of inequali-
ties, that is, weakly separable and homothetic separable functions,
no efficient tests are known. For weakly separable utility, formal
NP-HARDNESS results exist. For homothetic separable functions, the
complexity question remains open. Varian (1982, 1983) provides a
way to construct consistent utility functions for all of these set-
tings. Table 2 summarizes these results.

To complete our overview on rationalizability by general utility
functions, we mention some recent work on indivisible goods and
non-linear budget sets. More precisely, these are settings where
the optimization problems (1) and (2) are further constrained by
the conditions that (i) some components of g are integral, and (ii)
the budget constraint is non-linear (e.g., in the presence of quan-
tity discounts), and/or there are multiple budget constraints. Forges
and Minelli (2009) give a revealed preference characterization for
non-linear budgets, for which GaArp is a sufficient and necessary
condition for rationalizability by an increasing and continuous util-
ity function. Cherchye, Demuynck, and De Rock (2014) give condi-
tions for rationalizability by an increasing, concave and continu-
ous utility function for the setting with non-linear budgets. They
note that, together with the results by Forges and Minelli, this al-
lows for tests of the concavity of utility functions which are not
possible in the setting with linear budgets. Computationally there
is no obvious easy way to test the conditions laid out by Cher-
chye et al. in general. However, they show that if the budgets can
be represented by a finite union of polyhedral convex sets, a sys-
tem of linear inequalities provides conditions for rationalizability.
Fujishige and Yang (2012) and Polisson and Quah (2013) extend
the revealed preference results to the case with indivisible goods.
They find that GARP is a necessary and sufficient test for rationaliz-
ability, given a suitable adaptation of the revealed preference rela-
tions for their setting. Cosaert and Demuynck (2015) look at choice
sets which are non-linear and have a finite number of choice al-
ternatives. They provide revealed preference characterizations for

weakly monotone, strongly monotone, weakly monotone and con-
cave, and strongly monotone and concave utility functions, all of
which are easy to test, either by some variant of GARP or a system
of linear inequalities.

5. Goodness-of-fit and power measures

An often cited limitation of rationalizability tests is that they
are binary tests: either the dataset is rationalizable or it is not.
Thus, when violations of rationalizability conditions are found,
there is no indication of their severity. Likewise, when the ra-
tionalizability conditions are satisfied, this could be because the
choices faced by the decision maker make it unlikely that vio-
lations would occur. To refine this yes/no verdict inherent to ra-
tionalizability, so-called goodness-of-fit measures and power mea-
sures have been proposed in the literature. Goodness-of-fit mea-
sures (Section 5.1) quantify the severity of violations, while power
measures (Section 5.2) indicate how far the choices are from vio-
lating rationalizability conditions.

5.1. Goodness-of-fit measures

A first class of goodness-of-fit measures is based on the sys-
tems of inequalities which are used to establish rationalizability
of many different forms of utility functions (see Section 3). Slack
variables are added to these systems, so as to relax the constraints
on the data. An optimization problem can then be defined, for
which the objective function is the minimization of some appro-
priate function of the slack variables, such as their sum, under the
constraint that the system of equalities is satisfied. The goodness-
of-fit measure is then equal to the value of the optimal solution of
this optimization problem. Such an approach was first described by
Diewert (1973) and has since been used in a number of different
papers for various forms of utility functions (see Diewert & Parkan,
1985; Fleissig & Whitney, 2005; Fleissig & Whitney, 2008 for weak
separability, Fleissig and Whitney (2007) for additive separability).
Computing the goodness-of-fit measure is easy if the system of in-
equalities is linear, which is the case for general utility functions
and additive separable utility functions. In the case of non-linear
systems of inequalities, minimizing the sum of the slack variables
is at least as hard as finding a solution to the system without slack
variables. Since this is already NP-HARD for weakly separable utility
functions, the hardness result remains valid for these goodness-of-
fit measures.

A second class of goodness-of-fit measures is due to Afriat
(1973), and is based on strengthening the revealed preference re-
lations. In this case, revealed preference relations are assumed to
hold if the difference in price between the chosen bundle and an-
other affordable bundle is big enough. This is done by introducing
efficiency indices 0 <e; <1 for each observation i€ N, and defining
the revealed preference relation Ry(eq, ..., en) as follows:

. €n)q;. (11)

Obviously, when e; = 1, conditions (11) are the same revealed pref-
erence relations as in Definition 3; when e; <1, condition (11) can
be interpreted as defining a revealed preference relation between
two bundles for which the price difference exceeds a certain frac-
tion of the budget. As a result, there will be fewer revealed pref-
erence relations, and axioms such as WARP, SARP and GARP will be
easier to satisfy. A goodness-of-fit measure is then the maximum
value of the sum of the e; values, under the constraint that a given
axiom of revealed preference is satisfied by Ry(eq,...,en). Three
different goodness-of-fit indices based on this idea have been re-
spectively described by Afriat (1973), Varian (1990) and Houtman
and Maks (1985). Of these three, Afriat’s index is the simplest, as

for all i, j e N, if e;p;q; > piq;, then g;Ro(ey, ..
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it constrains the e; values to be equal for every observation (e; =
e, = ---=ep). Afriat’s index can be computed in polynomial time
(see Smeulders, Spieksma, Cherchye, & De Rock, 2014), although
for a long time the only published algorithm was an approxima-
tion algorithm due to Varian (1990). Varian’s index, in contrast,
allows the e; values to differ between observations. This makes
computation less straightforward and the computation of this in-
dex was thus perceived to be hard (as confirmed by Smeulders
et al. (2014) who showed that computing Varian’s index is NP-
HARD). This led to work on heuristic algorithms for computing Var-
ian’s index by Varian (1990), Tsur (1989), and more recently by
Alcantud, Matos, and Palmero (2010). Finally, Houtman and Maks
(1985) proposed to constrain the e; values to be either 0 or 1. In
effect, maximizing the sum of the e;’s then amounts to remov-
ing the minimum number of observations so that the remaining
dataset is rationalizable. Houtman and Maks established a link be-
tween the feedback vertex set problem (known to be NP-HARD) and
their index, thus informally showing its difficulty; see Hjertstrand
and Heufer (2015) for two methods computing the Houtman-Maks
index. The complexity of computing all three of the above in-
dices is addressed by Smeulders et al. (2014), who provide poly-
nomial time algorithms for Afriat’s index for various axioms of re-
vealed preference, and establish NP-hardness of Varian’s index, and
of the Houtman-Maks index. Even stronger, it is shown that no
constant-factor approximation algorithms running in polynomial
time exist for these indices unless P = NP. Boodaghians and Vetta
(2015) strengthen these hardness results, by showing that comput-
ing the Houtman-Maks index is already NP-HARD for datasets with
only 3 goods.

A third approach to the definition of goodness-of-fit measures
was introduced by Varian (1985). When a dataset fails to satisfy
the rationalizability conditions, the goal is here to find a dataset
which does satisfy the conditions and is only minimally differ-
ent from the observed dataset. The problem of finding these mini-
mally different rationalizable datasets can be formulated as a non-
linear optimization problem, which, in general, is hard to solve. To
avoid solving large scale non-linear problems, De Peretti (2005) ap-
proaches this problem with an iterative procedure. Working on
GARP, his algorithm tackles violations one at a time, also perturbing
only one observation at a time. If a preference cycle exists between
two bundles of goods g; and gj, i, jeN, he computes the mini-
mal perturbation necessary to remove the violation both for the
case in which q;Rg g; (in which case g; is perturbed) and for the
case in which g;Rog; (in which case g; is perturbed). The small-
est of the two perturbations is then used to update the dataset,
and the new dataset is checked again for GARP violations. While
this algorithm does not guarantee an optimal solution, it allows
handling large datasets, especially if the number of violations is
small.

A number of recent papers introduce new goodness-of-fit mea-
sures, thus showing continued interest in this topic. Echenique
et al. (2011) define the mean and median money pump indices.
In their paper, the severity of violations of rationality is measured
by the amount of money which an arbitrageur could extract from
the decision maker by exploiting her irrational choices. This is re-
flected by a money pump index for every violation of rationality.
Echenique et al. propose to calculate the money pump index of the
mean and median violation as measures of the irrationality of the
decision maker. Computing these measures is NP-HARD, as shown
in Smeulders, Cherchye, De Rock, and Spieksma (2013). In the lat-
ter paper, it is also shown that computing the money pump index
for the most and least severe violations can be done in polynomial
time. Furthermore, Apesteguia and Ballester (2015) introduce the
minimal swaps index. Informally, the swaps index of a given pref-
erence ordering over the alternatives is calculated by counting how
many better alternatives (according to the preference order) were

not chosen over all choice situations. The minimal swaps index is
then the swaps index of the preference order for which this in-
dex is minimal. Apesteguia and Ballester show that computing the
minimal swaps index is equivalent to the NP-HARD linear ordering
problem. Finally, Dean and Martin (2016) define the minimum cost
index. This index is the minimum cost of removing revealed pref-
erence relations, such that the remaining relations induce no vio-
lations. The cost of removing violations is weighted by the price
difference of the considered bundles. Dean and Martin show that
computing this index is NP-HARD by a reduction from the set cov-
ering problem.

5.2. Power measures

Power measures were first introduced by Bronars (1987), with
the following motivation. Consider a test that allows us to deter-
mine whether the observations in a dataset are coherent with the
choices of a utility-maximizing decision maker. If the outcome of
the test is positive for most datasets, including those where choices
were not made so as to maximize a utility function, then obviously
the test is not good at discriminating between utility maximizing
behavior and alternative behaviors. Power measures are numeri-
cal values indicating to what extent a test is able to discriminate
between samples coming from a rational or from an irrational de-
cision maker.

Bronars (1987) proposes to use random choices as an alterna-
tive model of behavior. The likelihood of this alternative model sat-
isfying the rationalizability conditions (that is, passing the test) is
determined by Monte Carlo simulation. The higher this likelihood,
the lower the power of the test. Andreoni and Miller (2002) use
a similar approach: they generate synthetic datasets by bootstrap-
ping from observed choices, and use these alternative datasets to
establish the power of their test.

Bronars’s Monte Carlo approach has also been applied to
goodness-of-fit measures. The value of a goodness-of-fit measure is
hard to interpret without context. There is no natural level which,
if crossed, indicates a large deviation from rational behavior. Fur-
thermore, the values of goodness-of-fit indices which point to large
deviations may vary from dataset to dataset, as the choices faced
by a decision maker may or may not allow large violations of ra-
tionalizability. One way to establish what values are significant, is
to generate random datasets by a Monte Carlo approach and to
calculate their goodness-of-fit measures. This yields a distribution
of the values of goodness-of-fit measures for datasets of random
choices. It can then be checked whether the goodness-of-fit mea-
sures computed for the actual decision makers are significantly dif-
ferent. Examples of this approach are found in Choi, Fisman, Gale,
and Kariv (2007) and Heufer (2012). As this framework requires
a large number of computations of the goodness-of-fit measures,
there is a strong incentive to use efficient algorithms and to favor
measures which are easy to calculate.

Beatty and Crawford (2011) propose to evaluate the power of
a test by calculating the proportion of possible choices which
would pass the test. Andreoni, Gillen, and Harbaugh (2013) give
an overview of power measures and introduce a number of new
power measures themselves. The measures they introduce are
adaptations of goodness-of-fit measures. For example, they intro-
duce a jittering index, which is the minimum perturbation of the
data such that the rationalizability conditions are no longer satis-
fied, in line with the work of Varian (1985). They also introduce
an Afriat Power Index, which is the converse of Afriat’s goodness-
of-fit measure; that is, instead of considering the maximum value
of e<1 in (11) such that the dataset satisfies the considered axiom
of revealed preference, they propose to determine the minimum
value of e>1 such that the dataset does not satisfy the conditions.
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6. Collective choices

In the preceding sections, datasets are analyzed as if a sin-
gle person buys or chooses goods, so as to maximize her own
utility function. However, in many cases purchasing decisions are
observed at the household level that consists of multiple deci-
sion makers. The choices that result from collective decision mak-
ing may appear irrational, even if all individual decision makers
have rational preferences. For example, Arrow’s impossibility theo-
rem (Arrow, 1950) shows that for non-dictatorial, unanimous pref-
erence aggregation functions, independence of irrelevant alterna-
tives cannot be guaranteed. As a result, the group can exhibit
choice reversals if more choice alternatives are added. Moreover, a
group can use different choice mechanisms at different times, giv-
ing more or less power to different group members, also leading
to choices that appear irrational. Analyzing datasets resulting from
collective choices thus calls for collective models, which account
for individually rational household members, and in addition, some
decision process for splitting up the budget. Example 2 shows how
the joint purchases of two rational decision makers can appear ir-
rational when they are analyzed as if there was a unique decision
maker.

Example 2. Consider the following dataset with 2 periods and 3
goods.

p1= (3’2’ 1) q1 = (5’497) (]2)

p2=(2.31) q2=3.5.9) (13)

Then, bundle 1 would be strictly revealed preferred over bundle 2,
since p;q; =30 > 28 = p;q,. Likewise, bundle 2 would be strictly
revealed preferred over bundle 1, since p,q;, = 30 > 29 = p,q;. The
dataset thus does not satisfy Garp. However, consider the following
datasets.

pi=(3.2.1) qi = (5.0,0)
p2=(2.3.1) g =(3.0,0)
and

pr=@3.21 ¢ =(0.4.7)
p2=(2.3.1) 0 =(0.5.9)

It is clear that both of these satisfy GaRrP, since for the first dataset
q} > g}, and for the second dataset g3 > 2. Furthermore, notice
that q; = q] + ¢? and g, = q} + ¢2. The datasets (12) and (13) thus
represent the joint purchases of two rational decision makers.

The initial contributions in revealed preference theory dealing
with collective choice are published by Chiappori (1988), for the
so-called labor supply setting. This setting corresponds to a situa-
tion in which there are two goods, namely leisure time and aggre-
gated consumption, which are observed for each member in the
household. Also, we assume that the household consists of two
decision makers. The behavior of this household is then rational-
izable if the consumption can be split up so that the resulting
individual datasets of leisure and consumption are rationalizable
for all individual household members. Chiappori provides condi-
tions for rationalizability, both for the cases with and without ex-
ternalities of private consumption. To model the labor supply set-
ting in the collective choice model, we use a dataset of the form
S={w! . w? Ll I12,G)| ieN}, with w! and w? corresponding to
the wages of household members 1 and 2, with Li1 and Ll.2 cor-
responding to their respective leisure time, and with C; denoting
the level of (collective) consumption in the household (i e N). No-
tice that, since wages can be seen as the price of leisure time, and
there is a unit price for aggregated consumption, we can write

pi=w}.1) and g; = (L}, fG;) (for some fraction 0 <f<1). Hence,
the dataset S can still be seen as a set of observations consisting of
price vectors and bundles.

Theorem 7. (Chiappori’s Theorem for collective rationalization by
egoistical agents)
The following statements are equivalent.

1. There exists a pair of concave, monotonic, continuous non-satiated
utility functions which provide a collective rationalization by ego-
istical agents.

2. There exist numbers Z; with 0<Z; <C; such that the following
(equivalent) conditions are satisfied.

(a) The datasets {(w].1).(L}.Z)| ieN} and {(W?.1),(L3.G -
Z;)| i € N} both satisfy SARP.

(b) There exist strictly positive numbers Ul, U2, A;, u; for ieN sat-
isfying the non-linear inequalities

Ul U] +awilf —L}) +Aj(Zi - Z)) Vi, jeN,

U2 <U7 + Wi (L7 —15) + (G —Z —Cj—Zj) Vi jeN,

1

with equality holding in the first (respectively, the second) in-
equality only if L} = L} and Z; = Z; (respectively, L? = L? and
Z,=2;).

Theorem 7 states Chiappori’s result for collective rationalization
by egoistical agents. (The agents are egoistical in the sense that
they each spend their own personal wages, so that the observed
consumption is just the sum of the individual ones.) No straight-
forward method is included in the paper to test the first condi-
tion; the second condition requires solving a system of non-linear
inequalities. Similar conditions hold for the case with externalities.
Snyder (2000) provides a reformulation of Chiappori’s conditions
for two periods and uses it in empirical tests. Thanks to the limit
on the number of periods, this test is very easy: it requires solv-
ing four small linear systems of inequalities. Cherchye, De Rock,
and Vermeulen (2011) depart from the labor supply setting by for-
mulating a collective model with an arbitrary number of goods.
In their model, each specific good is known to be either publicly
or privately consumed. Given this information, rationalizability is
tested by checking whether there exists a split of prices (for pub-
lic goods) or quantities (for private goods), such that the dataset of
personalized prices and quantities for each household member sat-
isfies Garp. Cherchye et al. (2011) provide an integer programming
formulation to test their model. Talla Nobibon et al. (2016) provide
a large number of practical and theoretical computational results
for this problem. First, they prove it is NP-HARD. Furthermore, they
describe a more compact integer programming formulation, and
provide a simulated annealing based metaheuristic. They compare
the computational results with these different integer program-
ming formulations and heuristics; they observe that the heuristic
approach is capable of tackling larger datasets and seldom fails to
find a feasible split when one exists. Smeulders, Cherchye, De Rock,
Spieksma, and Talla Nobibon (2015) give further hardness results
for a collective version of wARP: they find that the problem re-
mains NP-HARD when testing for transitivity is dropped. All hard-
ness results for these problems assume that the number of goods
is not fixed a priori. It remains an open question whether the prob-
lems become easy for a small, fixed number of goods. In particular,
the labor supply setting only requires one good to be partitioned
over members of the household.

The work by Chiappori is generalized by Cherchye, De Rock, and
Vermeulen (2007). Leaving the labor supply setting, they provide
conditions for an arbitrary number of goods and without any prior
allocation of goods, as was the case with leisure time in Chiap-
pori’s work. Cherchye et al. (2007) derive separate necessary and
sufficient conditions for collective rationalizability by concave util-
ity functions. In a later paper, Cherchye, De Rock, and Vermeulen
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(2010) show that the necessary condition given in their earlier
work is both necessary and sufficient, when dropping the assump-
tion of concave utility functions. However, testing this condition
is NP-HARD, as shown by Talla Nobibon and Spieksma (2010). Due
to the hardness of rationalizability in collective settings, a num-
ber of papers have appeared on how to test this problem. An
integer programming formulation is given by Cherchye, De Rock,
Sabbe, and Vermeulen (2008) and an enumerative approach is pro-
vided by Cherchye, De Rock, and Vermeulen (2009). Talla Nobi-
bon, Cherchye, De Rock, Sabbe, and Spieksma (2011) take a differ-
ent approach and propose a heuristic algorithm. The goal of this
algorithm is to quickly test whether the rationalizability condi-
tions are satisfied. If this heuristic cannot prove that the condi-
tions are satisfied, then an exact test is used. Using this heuris-
tic pre-test, many computationally demanding exact tests can be
avoided. Deb (2010) strengthens the hardness results by proving
that a special case of this problem, the situation dependent dicta-
torship setting, is also NP-HARD. In this setting, the household de-
cision process is such that each purchasing decision is made by a
single household member, called the dictator. At different points in
time, different household members can assume the role of the dic-
tator; the goal is thus to partition the observations into datasets,
so that each dataset is consistent with (unitary) Garp. Crawford
and Pendakur (2013) also consider this problem in the context
of preference heterogeneity, and provide algorithms for comput-
ing upper and lower bounds on the number of ‘dictators’. Cosaert
(2017) links this to the problem of computing the chromatic num-
ber of a graph. Furthermore, Cosaert formulates an integer program
to partition the observations into sets, so that the observed charac-
teristics within each set are as homogenous as possible. Smeulders
et al. (2015) give further hardness results for a collective version of
WARP: they find that dropping transitivity makes the test easy for
households of two members, but the problem remains open for
three or more members.

7. Revealed stochastic preference

In the previous sections, we have looked at methods that decide
whether a set of observations can be rationalized by one or more
decision makers, using different forms of utility functions, or dif-
ferent ways in which the choice process can be split over several
decision makers. However, we assumed that utility functions and
preferences are fully deterministic. As a result, if a choice situation
repeats itself, we expect that the decision maker always chooses
the same alternative. However, it is commonly observed in experi-
ments on choice behavior that if a person is given the same choice
situation multiple times, her decision may change. One possible
way of explaining this behavior is by stochastic preferences, as pi-
oneered by Block and Marschak (1960). Theories of stochastic pref-
erences posit that, while at any point in time a decision maker has
a preference ordering over all alternatives, these preferences are
not constant over time and may fluctuate randomly. An observed
behavior is rationalizable by stochastic preferences if and only if
there exists a set of utility functions and a probability distribution
over these utility functions, such that the frequency with which
an alternative is chosen in any given choice situation is equal to
the probability that this alternative has the highest utility in that
situation. We note that many results on stochastic preferences are
established for the case of finite choice sets, as opposed to the con-
sumption setting, where there exists an infinite number of bundles
that can be bought for a given expenditure level and prices. For an
overview, we refer to McFadden (2005).

A very general result was established by McFadden and Richter
(1990), namely, the axiom of revealed stochastic preference (ARSP),
which states a necessary and sufficient condition for rationalizabil-
ity of choice probabilities by stochastic preferences. The general-

ity of this axiom allows it to be used for any form of choice sit-
uation, and all classes of decision rules. Besides the axiom, Mc-
Fadden and Richter also provided a system of linear inequalities
whose feasibility is a necessary and sufficient condition for ratio-
nalizability. Neither of these characterizations can be easily opera-
tionalized, since ARSP places a condition on every possible subset
of observations, so that the resulting number of conditions is ex-
ponential in the number of observations. Furthermore, each con-
dition requires finding a decision rule among all allowed decision
rules which maximizes some function, and this can in itself be an
NP-HARD problem (for example when the class of decision rules be-
ing tested are based on linear preference orders, this means solv-
ing an NP-HARD linear ordering problem; Karp (1972)). The linear
system of inequalities, on the other hand, contains one variable
for every possible decision rule within a class of decision rules,
a number which is often exponential in the number of choice
alternatives.

For the setting of consumer purchases (and thus infinite choice
sets), Bandyopadhyay, Dasgupta, and Pattanaik (1999) formulate
the weak axiom of stochastic revealed preference (WARSP). This axiom
provides a necessary condition for rationalizability by stochastic
preferences. Analogously to WARP, WARSP compares pairs of choice
situations. Since the condition placed on these pairs is easy to
test, WARSP allows for a polynomial time test. Heufer (2011) and
Kawaguchi (2016) build further on this work. Heufer provides a
sufficient condition for rationalizability in terms of stochastic pref-
erences. Kawaguchi (2016) proposes the strong axiom of revealed
stochastic preference (SARSP), a necessary condition for rationaliz-
ability by stochastic preferences. Both of these conditions seem dif-
ficult to test, requiring in the case of Heufer a feasible solution to
a linear program with an exponential number of constraints and
variables. Kawaguchi’s saArsp likewise requires checking an expo-
nential number of inequalities. Despite these challenges, Kitamura
and Stoye (2014) develop a test which can be used to test ratio-
nalizability by stochastic preferences on consumption data, though
for relatively small datasets. A key element in their approach is
discretizing the dataset, so as to return to a setting with a finite
number of choice options.

8. Conclusion

In this final section, let us summarize our discussion, and
outline perspectives regarding possible future developments in
the field. It is indisputable that revealed preference theory has
established itself as an important tool in economics. On the other
hand, testing revealed preference axioms on large datasets gives
rise to numerous algorithmic challenges that should appeal to the
operations researcher community. While a thorough understanding
of individual rational choice, as it relates to revealed preference,
has been achieved, we see (at least) three research directions
emerging:

1. Economists are increasingly extending the revealed preference
setting to more complex theories of choice behavior, such as
collective decision making, or non-deterministic choices. The
testing problems emerging in these cases are likewise more
complex. Much work, both theoretical and algorithmically re-
mains to be done in this area.

2. Many complexity hardness results have been established un-
der the assumption that the number of goods can be arbitrarily
large, as opposed to assuming that this number is limited and
fixed (e.g., m=2 or m=3). We have mentioned in this sur-
vey a few results that hold when the number of goods is fixed,
but many questions remain open in this direction. Beyond its
theoretical interest, this setting has practical relevance, since in
many empirical studies the number of goods is quite small, or
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goods are aggregated into a limited number of classes. Tests
that are difficult in general may turn out to be polynomially
computable in these cases.

3. The relevance of efficient revealed preference tests for large
datasets (see Section 1.1) continues to increase due to the
ever growing size of available datasets. Better algorithms, both
heuristic and exact, are required in order to be able to cope
with this phenomenon. Thus, we need to further increase our
understanding of the achievable running times for different ver-
sions of the rationalizability question.

Answering these questions will not only reveal the inherent dif-
ficulty of testing rationalizability of a given dataset by a utility
function from a particular class, it will also shed light on the in-
centives and properties of human behavior.
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Summary. We provide two new, simple proofs of Afriat’s celebrated theorem stat-
ing that a finite set of price-quantity observations is consistent with utility maxi-
mization if, and only if, the observations satisfy a variation of the Strong Axiom of
Revealed Preference known as the Generalized Axiom of Revealed Preference
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1 Introduction

The neoclassical theory of demand supposes that a consumer, facing a price vector
p € R | and with income I > 0, chooses his demand bundle z € R/, to maximize
some utility function u : R — R overhis budgetset B(p, I) := {z € R, : p-x <
I}. We assume we have been presented with a finite data set D := {(p;, x;) : i €
N}, where N := {1,2,...,n}, of price vectors p; € R, and corresponding
demand vectors x; € Rﬁ. The basic question raised by Afriat is whether this data
set is consistent with the maximization of a locally non-satiated utility function
in the sense that for each ¢ € N, x; maximizes u over B(p;,p; - x;). A locally
non-satiated utility function is one for which every neighborhood of a commodity
bundle contains another bundle with a higher utility. With such a utility function
the consumer will have spent all his income, so that we can use p; - x; as the income
for situation .

Correspondence to: H.E. Scarf
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If the set of price and quantity observations is derived from utility maximization
it will surely satisfy the variation of the Strong Axiom of Revealed Preference,
known as the Generalized Axiom of Revealed Preference, which states that, for any
list (z1,p1),- - - , (Tn, pn) with the property that

Py Tjp1 < pj -y, forallj <n—1,

we must have p,, - £1 > pp - Tp,.!

The argument for the Generalized Axiom s straightforward. If p;-z; 41 < p;-x;
then x4, could have been purchased at prices p;. Since x;; was not purchased
it cannot be strictly preferred to z; so that x; - x;41. The entire sequence of
inequalities therefore implies that z1 - x,,. If, on the other hand, p,, - 1 < pp - Tn
and the utility function is locally non-satiated, we could find a commodity bundle
¢ close to x1 with p,, - € < py, - &, and € > z,,, violating the assumption that z,,
maximizes utility at prices p,, and income p,, - T,.

The Generalized Axiom may be stated in a slightly different fashion which is
more appropriate for our needs. If the inequalities

Dj - Tj+1 < pj - xj, hold forall j < n —1andif

Pn -1 < P - xpy as well,

then we must have p,, - ©1 = p,, - T,,. Butin this form there is no distinction between
the last observation and any of the other observations, so that

Pj Tj+1 =Pj T

holds for all j. This is the variation of the Strong Axiom which we shall adopt, not
only for the full set of n observations but for any ordered subset as well.

Definition 1 We say that the observations satisfy the Generalized Axiom of Re-
vealed Preference (GARP) if for every ordered subset {i,j,k,... ,v} C N with

Di Ty S Pit &
Dj Tk SDj Ty
Dr - Zi < Pr- Ty

it must be true that each inequality is, in fact, an equality.

! There is a great variety of terminology associated with the concept of revealed preference. The
original definition offered by Samuelson [4], now known as the Weak Axiom of Revealed Preference
(WARP), was thought by the author to be sufficient to recover a utility function generating the data.
Houthakker’s definition of the Strong Axiom (SARP) [3] provided the additional conditions necessary
for recovery. But Houthakker’s statement of the Strong Axiom is motivated by a single valued demand
function rather than a finite list of observations and is, as a consequence, somewhat awkward. Afriat [1]
used the terminology Cyclical Consistency (CC) for the simpler concept of the current paper. Cyclical
Consistency is identical with the Generalized Axiom of Revealed Preference (GARP) introduced by
Varian [5]. This does not exhaust the list of variations in terminology.

We have chosen to use the term GARP rather than Cyclical Consistency. Our purpose is to use a
definition in which the phrase “"Revealed Preference” actually appears rather than the earlier, equivalent
terminology used by Afriat.
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From the data set we can compute the square matrix A of order n defined by
a;j =p; - (x; —x;) foralli,j € N.

Hence, a;; negative means that x; is revealed preferred to x;. In this more con-
densed notation, the observations satisfy the Generalized Axiom if for every chain
{i,5,k,...,r} CN,a;; <0,aj, <0,...,a <0 implies that all the terms are
zero. It is clear that this condition is necessary for observations arising from utility
maximization. What is less clear, and indeed surprising, is that it is also sufficient.

Theorem 2 (Afriat’s Theorem) If the data set D satisfies the Generalized Axiom
then there exists a piecewise linear, continuous, strictly monotone and concave
utility function that generates the observations.

This is a remarkable result because it gives succinct, testable conditions that a
finite data set must satisfy in order to be consistent with utility maximization. More-
over, from the result, it follows that the assumptions of continuity, monotonicity
and concavity are not refutable by a finite data set.

Afriat’s original argument begins by asserting the existence of numbers ¢1,
cevy On,and Ay, ..., A, > 0 that satisfy the following unusual system of linear
inequalities (from now Afriat inequalities)

¢; < ¢i + Nia;j, foralli,j € N .
He then defines the utility function

’U,(:l?) = min{¢1 + )\1101 : (CE - xl)w .. 7¢n + )\npn ' (.’E - (En)} .

We notice that each term in this expression is linear (and hence continuous and
concave) and strictly monotone. Therefore, u, as their pointwise minimum, is con-
tinuous, concave, and strictly monotone as well. Finally, as is shown in the next
two steps, u indeed generates the observations in the data set D.

1. u(z;) = ¢;, forall j € N.

Bydeﬁnitionu(xj) = mini{@-—l—)\ipi-(xj—xi)} = qu—i—)\jpj-(a:j—xj) = (ﬁj,
where the minimum is taken by the index j from the Afriat inequalities.
2. pj-x<pj-z;=ulx) <ulz)).

u(z) < ¢+ A\jp; - (x — z;) < ¢; = u(x;), where the first inequality follows
from the definition of u, the second from the fact that x is feasible at prices p;
and the last equality from Step 1.

2 A simple case

We have shown that the Afriat inequalities imply the existence of a nice utility
function that generates the data. What is less straightforward is to show that if
the observations satisfy the Generalized Axiom then the Afriat inequalities have a
solution. Afriat’s original proof is an inductive one, which is correct in the case in
which a;; # 0, i # j. Indeed in this case the proof is quite simple.?

2 A similar version was presented in an informal communication by M. Weitzman.
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Claim 1. Thereis anindex i € N with a;; > 0 forall j € N.

Proofof Claim 1.  If this were not so, then every row would have a strictly negative
entry. Start with row i, say, and suppose that a;; < 0. Now consider row j, and
identify a negative entry, say a;; < 0. Continue to generate the sequence 4, j, k, ...,
until an index is repeated. Then a subsequence of this sequence yields a contradiction
to the Generalized Axiom. O

The existence of \; and ¢; is trivially true for n = 1; we can choose A; = 1 and
¢, arbitrarily. For the induction let us begin by renumbering the observations (and
hence the rows and columns of A) so thata,,; > Ofor j = 1,...,n—1 (using Claim
1). Now suppose, by induction, that there exist ¢1, ..., dp—1; A1, ---; An—1 > 0 such
that

¢; < @i+ Nagg, 1 £ 4, 4,5=1,...,n—1
Let us select ¢,, such that

¢n < min 1¢i + Niin,

i=1,...,n—
and then choose A\, > 0 so that
b; < dn + Anan;, forj=1,..,n—1.

Since all the non-diagonal elements of the nth row are strictly positive, A,, can be
chosen large enough so that these n — 1 inequalities hold. Note the difficulty that
arises if any a,,; is zero: increasing A,, will not help to fix the inequality for this n
and j. This completes the proof that the Afriat inequalities have a solution in this
simple case.

The general case, in which non-diagonal elements are allowed to be zero, is
related to the issue of indifference classes in the revealed preference ordering. Two
authors, Varian [5] and Diewert [2], have given correct proofs in this general case.
They prove the result using an inductive argument which manages to handle the
subtle issue of indifference classes. Unfortunately, the induction in each of these
presentations is complex and may involve the introduction of more than one price-
quantity observation at each step.

3 A general inductive proof

We now provide a simple proof for Afriat’s theorem in the general case where
an; > 0for j = 1,...,n — 1, but with some of these entries possibly zero. The
argument is inductive, and as in the simple case, the inductive step introduces a
single observation at a time.

The key is to apply the inductive hypothesis to a different (n — 1) x (n — 1)
matrix A’. Specifically, for j = 1,...,n — 1, we define

- Qij if an; >0,
g 1= {min{aij, ain} if an; = 0. (D
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Claim 2. A’ satisfies the Generalized Axiom.

Proof of Claim 2.  First note that, if a,,; = 0, then a;, > 0 by the Generalized
Axiom, so that a’;; = a;; = 0 for j = 1,... ,n — 1. Now suppose that A has a
cycle (¢, 7, k,...,r, i) with

<0

li
(Z,ij <
!/

a,; <0

and at least one term strictly negative. Since A does satisfy the Generalized Axiom
by hypothesis, there must be a term, say that for (p, ¢), with

!
pq # Gpq -

But if a;,, = a,, and a,, = 0, then we can replace the cycle (...,p,q,...) by

(...,p,n,q,...) with two new terms
apn <0

Gng =0

and, as before, at least one of the terms in the new sequence is strictly negative.
Continuing in this way we can construct a cycle in A that violates the Generalized
Axiom, contrary to our assumption. Hence A’ must satisfy the Generalized Axiom.

O

We can therefore apply our inductive assumption to A’ to guarantee the existence
of ¢; and positive A; fori € N_ := {1,2,...,n — 1} so that

bj < ¢i + Niaj; ()

for ¢,7 € N_. Since a;»j < a4 from (1), this ensures that the Afriat inequalities
hold also for A for ¢, j € N_. Next, set

On = lfen]lvfi{éﬁz + Niain}

(note that we choose equality, not less than or equal to), to achieve the inequalities
for ¢ < m, 7 = n. Finally, set

i {1, (6, 6,)fan |

FEN_ ;>0

As in the simple case, this choice makes sure that the inequalities hold for ¢ = n
and j < n in the case that a,; > 0. To complete the proof, suppose that a,,; = 0.
Then we have

¢; < minjen_{d; + \iaj;} (by (2))
< mingen_{di + Niain} (by (1)
= On by definition of ¢,,
= ¢n + )\nanj since Anj = 0.
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Clearly the inequality holds for ¢ = j = n, and so the inductive step is complete.
This finishes the proof.

4 A proof using linear programming

Diewert’s proof [2] relates the Afriat inequalities to a particular linear programming
problem. However the programming problem is not directly used in his proof. The
argument presented here makes use of a linear program which is essentially identical
to Diewert’s, but uses the Duality Theorem of Linear Programming to show that
the Afriat inequalities have a solution.?

Consider the following linear programming problem:

min,\7¢ 0)\+0¢
Y > 1, foralli € N,
aij)\i—i—@—(bj >0, fOI'aHZ,]GNWlch#]

in which the objective function is zero and the constraints are the Afriat inequalities.
We shall show that the dual linear program is feasible and has a maximum of zero.
The Duality Theorem then implies that the original problem is also feasible, and
therefore the Afriat inequalities have a solution. Although the argument may seem
a bit eccentric, the procedure is a standard trick to verify that a system of linear
inequalities is consistent.

The matrix associated with the linear program is

objective [ O 0 --- 0 0O 0 --- 0 0 RHST
1 0--- O o 0-- 0 0 1 U1
0 1--- 0 0 0 - 0 0 1 Y2
00 1 o 0-- 0 0 1 Yn
a2 0 0 1 -1-- 0 0 0 12
a1n 0 -+ 0 1 0-- 0 -1 0 T1n
0O 0 --- QAn1 -1 0 --- 0 1 0 Tni
0 0--aup100-- -1 1 0 Tpon—1

variables | A1 A2 An @1 P2 v Pp1 Pp _

In this matrix the top row describes the coefficients of the objective function, the
bottom row the variables associated with the columns and the last column the right
hand side of the inequalities. The slack variables have been omitted.

3 Our colleague, John Geanakoplos, has shown us an elegant proof that the Afriat inequalities have
a solution using the Min-Max Theorem for two-person zero-sum games.
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If the dual variable associated with the inequality A; > 1 is y;(> 0) and the
dual variable associated with the inequality a;;\; + ¢; — ¢; > 0, for i # j, is
x;;(> 0), the dual problem can be stated as

maxy ; ZieN Vs
2_heN Thi — ZjeN 245 = 0, foralli € N,
Yi + D jen @ijTij =0, foralli € N,
with y;, z;; > 0 for all 4, j.

The dual variables z;; can be viewed as the entries in an n X n matrix X, whose
diagonal entries are zero and whose off-diagonal elements are non-negative. The
first set of constraints in the dual problem state that for each ¢ the sum of the entries
in row 7 of X equals the sum of the entries in column <.

In order to use the Duality Theorem to prove that the Afriat inequalities have
a solution, we need to show that z = 0, y = 0 is the optimal solution to the dual
problem. Clearly x = 0, y = 0 is feasible for the dual and 0 is an lower bound for
the optimal value of the dual objective function.

Claim 3. Let (x,y) be a feasible solution to the dual linear program. Then there
is a feasible solution, possibly different, with the same objective function value and
with no cycle (4, j), (4,k), ..., (r,i) on which all z,,’s are positive and all a,,’s
zero.

Proof of Claim 3. 1If there is such a cycle in a feasible solution, we can decrease
each z,, on the cycle by the minimum value of these x,,,’s, so that at least one
such value becomes zero. In this procedure, the perturbed matrix X will still satisfy
the constraints of the dual problem and the variables y,,, and hence the objective
function value, are unchanged since we are only modifying those x,,’s whose
corresponding a,, coefficient is zero. O

Now let us show that an optimal solution to the dual problem is x = 0, y = 0.
Suppose, to the contrary, that yy; > 0 in some feasible solution (z, i), which without
loss of generality we can assume satisfies the property of Claim 3. Then the sum

E QiqTiq < 0
geEN

and at least one term is negative, say a;;x;;. Therefore a;; is negative and x;;
positive. By the first set of constraints,

Z Tjq > 0,
qeEN
while

Z UjqTjq <0

qEN:x ;>0
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by the second set of constraints. We can therefore choose k # j with x;;, positive
and a1, nonpositive. Continuing in this way, we must eventually repeat an index,
and therefore we construct a cycle (¢,m,...,r,£) on which all z,,’s are positive
and all ap,’s nonpositive.

If the index we repeat is the first one with which we started, we immediately
get a contradiction since the Generalized Axiom implies that all the terms in the
cycle must be zero, but the first one is strictly negative by construction.

In the case that the cycle we construct does not include the first term, again, the
Generalized Axiom implies that all terms must be zero, but this was already ruled
out by our assumption that (x, y) satisfies the property of Claim 3.

We have demonstrated that the dual linear program is feasible and its maximum
value is 0. By the Duality Theorem of Linear Programming the original problem is
feasible, which means that the Afriat inequalities have a solution.

5 Complexity

Here we discuss the complexity of determining whether the data D is consistent
with utility maximization and, if so, computing a possible utility function .

We remarked in the introduction that the Generalized Axiom gives testable
conditions for the data D to be consistent with utility maximization. But how
hard is it to check whether the axiom holds, and if so, to find a possible utility
function? At first sight, we need to check every possible cycle, and while this is a
finite procedure, there are exponentially many cycles. If we knew the 2n numbers
O1,-..,0n and Ay, ..., A\, > 0, potentially satisfying the Afriat inequalities, then
we would merely have to check these n? relations, and from these a suitable utility
function is at hand. Diewert [2] proposed to find these numbers by solving a linear
programming problem, but this is computationally burdensome. Varian’s proof [5]
gives an O(n?) algorithm to find the ¢’s and \’s. Indeed, Varian first defines x;
to be directly revealed preferred to x; if p; - ©; < p; - ;, and then computes
the transitive closure R of this relation by a graph-theoretic algorithm in O(n?)
time. Then the Generalized Axiom can be checked simply: for each ¢ and j, see if
x;Rx; and p;j - x; < pj - ;5 if so the Generalized Axiom is violated. If this does
not occur for any such pair, the Generalized Axiom is satisfied. Armed with the
transitive closure, Varian finds the ¢’s and \’s by an algorithm that must consider
together every subset of observations with each pair related by R. Our inductive
proof in Section 3 provides a simple alternative O(n?) method that determines
these parameters one by one. (Of course, we also need O(n?) work to compute the
entries of A from the data D.)

At each step of the inductive process, we search the current matrix A to find a
nonnegative row, say the ith, which takes O(n?) time. (If there is no such row, then
we can find a cycle violating the Generalized Axiom by the argument in the proof
of Claim 1, also in O(nz) time.) We then interchange the ith and nth rows of A, in
O(n) time, and calculate the reduced matrix A’, in O(n?) time. When we receive
information back from the smaller problem, we can find ¢,, and A,, each in O(n)
time. (If the smaller problem returns a cycle violating the Generalized Axiom in
A’, we can expand this to a cycle violating the Generalized Axiom in A using the
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argument in the proof of Claim 2, also in O(n) time.) This gives a total amount of
work at each stage of O(n?), for a total complexity of O(n?).

However, if at each stage we can find a positive row (except for its diagonal
entry), then we can avoid the per stage O (n?) work and complete all the computation
in a total of O(n?) time. Clearly we do not require the O(n?) work to calculate A’
so we only need to show how the search for a positive row can be performed in
only O(n) time at each stage. Initially, let us compute the number of negative and
zero entries in each row, at a one-time cost of O(n?). Then at each stage we can
scan these counts to find a positive row, and then after permuting that row and the
associated column to the end, we can update the counts for the submatrix containing
all but the last row and column in just O(n) work. Hence there is only O(n) work
per stage for a total of O(n?). (This complexity also holds if there are only a fixed
number of times that a positive row cannot be found.)

When can we use this simplified algorithm? Clearly, if A contains no zero
elements outside its diagonal, then the Generalized Axiom implies the existence of
apositive row. More generally, note that, if the Generalized Axiom holds vacuously,
i.e., there are no cycles with all a;;’s nonpositive at all, then the argument of the
proof of Claim 1 shows that a positive row exists. This condition (assuming that
all demand vectors x; are distinct) is usually called the Strong Axiom of Revealed
Preference (see, e.g., Varian [5]). Thus either the simple case considered in Section 3
or the Strong Axiom leads to the reduced complexity of O(n?) time to compute the
¢’s and \’s satisfying the Afriat inequalities and hence a possible utility function.
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