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Bonds (fixed income securities) are a fundamental class of assets related
to debt

In this lecture we will introduce fundamental concepts such as

the yield and the yield curve,

futures and futures returns

stochastic models for yields
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What is a bond?

A bond is essentially a loan:

The debtor issues (today) in the market contracts which guarantee
future payments (either one off F or in terms of coupons C ) for a
price

The total sum collected today is the loan that the deptor has amassed
(in return for the future payments)

The interest on the loan can be internally calculated in terms of the
connection of the price and the future payments (disounting)

Bonds are not personalized and can be traded at any time in well
organized markets (bond markets)
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A bit of history

Bonds are a rather old type of asset – essentially traced back to the 17th century
and used to fund various causes

Bond of the West Indies Company 1623
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Bond of the State of South Carolina 1888
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Bond of the Crakow Municipality (Poland) 1929
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Characteristics of bonds are:

The maturity T

The principal or face value: The sum payable to the holds at maturity

The coupons: Intermediate payments

Its price P at any time t before maturity

The above characteristics can be used to calculate the yields of the bond
and various risk measures (e.g. duration or convexity)
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Price and yield

Suppose that you buy a bond of maturity T at t = 0 for price P and you keep it
till expiry.

Discounting would give

P =
n∑

i=1

ci
(1 + y)i

+
Pp

(1 + y)n
(1)

where

Pp is the principal of the bond
ci are the coupons p.a.
P is the price of the bond in the market at time t = 0

The discount factor y that satisfies this equation is called the yield of the bond:
This is implicitly defined by the relation between the payments of the bond and the
price that the bond achieves in the market.

This equation can be only be solved numerically for y
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Example (How does price and yield vary)

Consider a bond of maturity T = 20y paying coupons biannually of 8% of its
principal value which is Pp = 1000.

Perform the following thought experiment: If you could affect the yield y of the
bond (which you can’t!) how would this affect the price P of the bond?
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If yields increase prices will fall: This is the basic type of risk a bond portfolio will
face

In actual practice what we know is the price and the payoff structure of the bond:
From these we calculate the yield
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Calculating the yield

Suppose that you known the price P of the bond (observed in the market today)
and you know the characteristics of the bond.

Define the function

f (x) = P −
T∑
i=1

ci
(1 + x)i

− Pp

(1 + x)T

To find the yield of the bond y you must solve the equation f (x) = 0.

This can be done numerically, e.g. by the Newton-Raphson scheme

xn+1 = xn −
f (xn)

f ′(xn)
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For zero coupon bonds ci = 0 we can get an analytic expression for the
yield

P(t,T ) =
Pp

(1 + y)T−t
⇐⇒ y(t,T ) =

(
1

P

) 1
T−t

− 1.

In the case of continuous discounting

P(t,T ) = Pp exp(−(T − t)y) ⇐⇒ y(t,T ) = − ln(P/Pp)

T − t
.

Often we simply use as a variable the time to maturity τ = T − t.

The short rate

r(t) = lim
T→t

y(t,T ) = y(t, t) ⇐⇒ P(t,T ) = exp

(
−
∫ T

t
r(s) ds

)
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The yield curve: Term structure

In a market at each time instance t more than one bonds from the same
issuer, with different maturities T are in circulation: Each of them has a
different price P(t;T )

The curve that plots y(t,T ) versus T for a given time t, is called the yield
curve for the market at time t
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These prices change daily!

Yield curves change daily and in a stochastic fashion
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Futures and futures returns

Futures is a very popular type of contracts:

A typical type of futures contract is one where at time t an investor pledges to
invest 1 euro at time T in return to the sum of e(S−T )F (t,T ,S) at time S , where
t < T < S .

A futures contract pre-determines at time t the (future returns) between times T
and S at level F (t,T ,S).

F (t,T , S) is called the futures returns and must be related to the bond prices

F (t,T ,S) =
1

S − T
ln

(
P(t,T )

P(t,S)

)
Why?

Two different ways to guarantee e(S−T )F (t,T ,S) at time S :
1 Buy at time t a quantity of e(S−T )F (t,T ,S) zero coupon bonds of maturity S ,

each of price P(t,S)
2 Buy at time t a zero coupon bond of maturity T of price P(t,T ) and use the

payoff of 1 euro at T from the bond to enter the futures contract

No arbitrage guarantees that the two strategies should be equally valued!
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Related quantities

Instantaneous forward returns at time t for investments at time T :

f (t,T ) = lim
S→T

F (t,T ,S) = − ∂

∂T
lnP(t,T ) ⇐⇒ (2)

P(t,T ) = exp

(
−
∫ T

t
f (t, s) ds

)

The short rate is related to the instantaneous forward returns by

r(t) = f (t, t)

Since forward prices and returns are related to the bonds prices and
returns, and the forwards market is a more liquid market, we often model
the forwards market and use the above formulae for obtaining results for
the bonds market.
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Risks associated to bonds

There are various risks associated with bonds (e.g. default, inflation etc).

However, the most important risk is associated to the fluctuations of the yields
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Duration

A common way to measure the sensitivity of the price of a bond with respect to
the yields is duration:

Definition (Macaulay duration and modified duration)

For a coupon paying bond of maturity T
(a) The Macaulay duration D is

D =
1

P

(
1× c

(1 + y)
+

2× c

(1 + y)2
+

3× c

(1 + y)3
+ · · ·+ n × (c + Pp)

(1 + y)T

)
(3)

or equivalently

∂P

∂y

1

P
= − D

1 + y
. (4)

(b) The modified duration is Dm = D
1+y

Qualitatively, the duration is a measure of the time required for a bond to “repay”
the initial investment – the smaller the duration the safer the bond

For y constant: Increased coupons → Lower duration
For zero coupon bonds D = T
Increased yields → lower D.
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Various interpretations of duration

A. Duration as an expected repayment time:

D =
T∑
t=1

wtt

wt =
1

P

c

(1 + y)t

w − T =
1

P

c + Pp

(1 + y)T
,

where the wt have the property

n∑
t=1

wt = 1, wt > 0,

i.e. can be interpreted as probabilities.

Hence, D can be interpreted as the average time at which the bond repays the
investment in terms of the intermediate coupon payments and the principal
payment
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B. Bonds as investment instruments:
We start from

P =
T∑
i=1

ci
(1 + y)i

+
Pp

(1 + y)T
⇐⇒ P(1 + y)T =

T∑
i=1

ci (1 + y)T−i + Pp =: FT (y)

LHS: Future value of the price of the bond
RHS: Payoffs from the coupon reinvestment in the market – FT (y) future
value of all payments at yield y .

P(1 + y)T = FT (y)

Horizon rate of return rH :

Assume that the investor buys the bond but does not intend to keep it until
maturity T but rather to sell it at some time H < T
Up to time H the investor will obtain payments from the coupons of total
future value FH
The horizon rate of return rH is defined by

P(1 + rH)
H = FH ⇐⇒ rH :=

(
FH
P

)1/H

− 1
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FH depends on the yields:

If yields fall that future value of reinvestment will fall

If yields rise then future value of reinvestment will rise

P also depend on the yields:

If yields fall then P will rise

If yields rise then P will fall

Hence rH depends on y : Can we choose H such that rH is insensitive to
small changes in y?

Such a choice would be related to the duration
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Example

Consider a bond of maturity 10 ye with principal 1000 euros paying annual
coupons of 40 euros. Suppose that the yield curve shows a decrease from
y = 8% to 7.8%.
What will be the change in the value of the bond?

A simple application of the formulae gives D = 8.1184 and P = 731.5967.

Hence

∆P = −D
1

1 + y
P∆y = −8.1184× 1

1.08
× 731.5967 (−0.002) = 10.9989,

i.e. we expect an increase in the price of the bond by roughly 11 euros.
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Convexity

Duration can be used to quantify the changes in bond prices due to small
changes in the yields (linearized approximation).

This approximation is not sufficient if the changes in the yields are large –
Convexity

Definition (Convexity)

Convexity for a bond is defined as

∆P = −Dm P∆y +
1

2
C P (∆y)2.

The change of the price of a bond ∆P due to the yield change ∆y is given
by

∆P = −Dm P∆y +
1

2
C P (∆y)2.

Convexity can be analytically obtained in terms of

C =
1

P

1

(1 + y)2

[
n∑

t=1

ci
(1 + y)t

(t2 + t) +
Pp

(1 + y)n
(n2 + n)

]
. (5)
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Example

Calculate the convexity for a bond of maturity 10 years with principal at 100 euros
paying coupons of 40 euros annually when the yields are at 8%
What will be the change in the bond price if the yields fall to 7/5%?

By direct calculation P = 731.5967, Dm = 7.5171, C = 71.2235.

Hence,

∆P = −Dm P ∆y +
1

2
C P (∆y)2

= −7.5171 × 731.5967 (−0.005) +
1

2
× 71.2235 × 731.5967 × (−0.005)2 = 28.1488

The exact calculation would give

∆P = P(0.075)− P(0.8) = 28.1604

while the linear approximation would underestimate the change

(∆P)lin = −Dm P∆y = 27.4974
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The following hold:

Low coupons → high convexity

High maturities → high convexity

High yields → low convexity
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Models for bond yields

When modelling bonds we may either model the yields, the short rate or
the forward rates.

In the case of yields or forwards we must model continuous curves: e.g.
f (t,T ) as a function of maturity T

Function space valued random variables and processes – Infinite
dimensional stochastic processes

For the short rate we can just model the rate which is a real number –
Real valued stochastic processes
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Parametric models: The Nelson-Siegel family

fNS(t, τ ; z) = z1 + (z2 + z3 τ) e
−z4 τ , τ = T − t

where θ = (z1, z2, z3, z4) are time dependent parameters

This model allows to reproduce various types of yield curves – convex as
well as concave

The parameters θ can be estimated using various methodologies e.g.
maximum likelihood.

This family of curves is used by various banks e.g. in Italy or Finland.
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Stochastic models

An alternative is to use stochastic models that will generate as random
variables either the yields y(t,T , ω) or the short rate r(t, ω).

From the yields or the short rate we may generate the bond prices.

We may either used discrete or continuous time models e.g.

The binomial model for bond yields (discrete)

The Dothan model r(t, ω) ∼ N(αt, βt) for fixed T .

The Vasiseck model

etc
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The Vasicek model for the short rate

This is based on the Ornstein-Uhlenbeck process

dr(t) = a(β − r(t))dt + σdW (t), a, b, σ > 0.

It can be shown that

P(t,T ) = exp(A(T − t)− B(T − t)r(t)),

B(τ) =
1− e−aτ

a
,

A(τ) = (B(τ)− τ)

(
b − σ2

2a2

)
=

σ2

4a
B2(τ)

Moreover,

R(t,T ) = − 1

T − t
lnP(t,T ) = −A(T − t)

T − t
+

B(T − t)

T − t
r(t)
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The calculation of P(t,T ) is based on the relation (using the Markov property)

P(t,T ) = E[exp(−
∫ T

t
r(s)ds) | Ft ] = E[exp(−

∫ T

t
r(s)ds) | r(t)],

Using Itō’s lemma we can calculate this exponential moment in closed form,
obtaining the above result.

Alternatively, assuming that P(t,T ) = V (T − t, r(t)) for some function V
(Markov property) and applying Itō’s lemma for the process Y (t) = V (T − t, r(t))
we see that

dY (t) = −∂V (τ, r)

∂τ
dt +

∂V (τ, r(t))

∂r
dr(t) +

1

2

∂2V (τ, r(t)

∂r2
dr(t)2

=

(
−∂V

∂τ
+ (a(b − r))

∂V

∂r
+

1

2

∂2V

∂r2
σ2

)
(τ, r(t))dt +

∂V

∂r
(τ, r(t))σdW (t)

The expected change of P(t,T , r(t)) should satisfy
dP(t,T , r(T )) = r(t)P(t,T , r(t)) hence dE [Y (t)] = r(t)Y (t) and this implies(

−∂V

∂τ
+ (a(b − r))

∂V

∂r
+

1

2

∂2V

∂r2
σ2

)
= rV (τ, r)

A. N. Yannacopoulos (AUEB) Financial Mathematics Academic year 2023-2024 30 / 33



The function V solves the above PDE, and since P(T ,T ) = 1 it must
hold that V (0, r(T )) = 1 for any r(T ).

Looking for solutions of the form

V (τ, r) = exp(A(τ)− B(τ)r).

where A(τ),B(τ) are suitably chosen functions such that B(0) = 0 and
A(0) = 0

Substituting this ansatz into the PDE we obtain 2 ODEs for A and B the
solution of which provides the above results.
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The Cox-Ingersol-Ross model

According to this model

dr(r) = a(b − r(t))dt + σ
√

r(t)dW (t)

Then,

f (r(T ) | r(t)) = c χ2
2q+2,2u(2c r(t)),

q =
2ab

σ2
− 1, u = cr(t)e−a(T−t), c =

2a

σ2(1− e−a(T−t))
,

where χ2
n,m is the χ2 distribution.

It can be shown (using the properties of this distribution) that

E[r(T ) | r(t)] = r(t)e−a(T−t) + b(1− e−a(T−t),

Var(r(T ) | r(t)) = σ2r(t)

a
(e−a(T−t) − e−2a(T−t)) +

σ2b

2a
(1− e−a(T−t))2.
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We can then compute the bonds prices as

P(t,T ) = exp(A(T − t)− B(T − t) r(t)),

B(τ) =
2(eγτ − 1)

(γ + a)(eγτ − 1) + 2γ
,

A(τ) =
2ab

σ2
ln

(
2γe

1
2
(γ+a)τ

(γ + a)(eγτ − 1) + 2γ

)
,

γ =
√

a2 + 2σ2
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