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Continuous time models are very popular in finance, especially since they
can often provide closed form solutions for various quantities of interest,
e.g. option prices.

There are two main categories of continuous time models:

Models displaying continuous stock price paths (Brownian motion based
models)

Models displaying discontinuous stock price paths (jump diffusion models)
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The building block of the models: Brownian motion

Definition

Brownian motion is a stochastic process Bt on R with the following
properties

(i) If t0 < t1 < ... < tn then the random variables
Bt0 ,Bt1 − Bt0 , ...,Btn − Btn−1 are independent (independent increments)

(ii) If s, t ≥ 0, then

P(Bs+t − Bs ≤ x) =

∫ x

−∞

1

(2πt)1/2
exp

(
−| z |2

2t

)
dz ,

(iii) t → Bt is a continuous function with probability 1
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Example

If Bt is a Brownian motion with B0 = 0 then

E [f (Bt)] =
1√
2πt

∫ ∞

−∞
f (y) exp

(
−y2

2t

)
dy

Using that show E [B2
t ] = t.
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Example (A model for stock prices)

A model for the price of a stock at time t, is that St follows

St = S0 exp

(
(r − σ2

2
)t + σBt

)
where r , σ,S0 > 0 and Bt a Brownian motion.
What is the expectation E [St ];

Is St a martingale with respect to the filtration Ft generated by the
Brownian motion?
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We have

E [St ] =
1√
2πt

∞∫
−∞

S0 exp

(
(r − σ2

2
)t + σx

)
exp

(
−x2

2t

)
dx

=
S0√
2πt

exp

(
(r − σ2

2
)t

) ∞∫
−∞

exp

(
−x2

2t
+ σx

)
dx = S0 exp(rt)

This result shows that St is not a martingale, since for a martingale we
would expect E [St ] = E [S0] (not true since exp(r t) ̸= 1).
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Pathological properties of Brownian motion

Theorem

t → Bt is nowhere differentiable with probability 1

t → Bt is a function of infinite variation in any interval [0,T ]

t → Bt is a function of finite quadratic variation; Its quadratic
variation in any interval [0,T ] is equal to T .
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Integrating over Brownian motion: The Itō integral

How can we define
∫ b
a f (t, ω)dBt(ω)?

Definition

Consider the partition a = t0 < t1 < ... < tn = b of [a, b] and approximate
the function f (t, ω) as

f (t, ω) ≃
n−1∑
i=0

f (ti , ω)1[ti ,ti+1)(t),

The Itō integral can be defined as the L2-limit∫ b

a
f (t, ω)dBt(ω) = lim

n→∞

n∑
i=1

f (ti , ω)[Bti+1 − Bti ](ω)
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Note that

The value of f at t must depend on Bs for s ≤ t but not for s ≥ t
(i.e. f adapted!)

The limit is considered in the L2 sense and not for every ω
(pointwise).

In the same way we may define the integral
∫ t
0 f (s, ω)dBs(ω) for every t

and hence the stochastic process {Mt : t ∈ [0,T ]} where
Mt =

∫ t
0 f (s, ω)dBs(ω).

{Mt , : t ∈ [0,T ]} is a martingale!
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Properties of the Itō integral

Theorem

(1) Linearity: For any f1, f2 and λ1, λ2 ∈ R

I (λ1f1 + λ2f2) = λ1I (f1) + λ2I (f2)

(2) E
[∫ b

a fdBt

]
= 0

(3) E

∣∣∣∣∣ b∫a f (t, ω)dBt

∣∣∣∣∣
2
 = E

[
b∫
a
| f (t, ω) |2 dt

]

In all the above we assume that f belongs to the right function space M2.
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Itō processes

The Itō integral can be used to define a more general class of stochastic
processes called Itō processes

Definition

A process Xt is called an Itō process if it is of the form

Xt = X0 +

∫ t

0
u(s, ω)ds +

∫ t

0
v(s, ω)dBs

where u and v satisfy∫ t

0
v2(s, ω)ds < ∞ σ.β.,

∫ t

0
u(s, ω)ds < ∞ σ.β.

In differential form

dXt = udt + vdBt

A. N. Yannacopoulos (AUEB) Financial Mathematics Academic year 2023-2024 11 / 34



Itō’s lemma

Theorem

Let Xt be an Itō process

Xt = X0 +

∫ t

0
u(s, ω)ds +

∫ t

0
v(s, ω)dBs .

Then given any function (t, x) 7→ g(t, x) in C 1,2:

g(t,Xt) = g(0,X0) +

∫ t

0

(
∂g

∂s
+ u

∂g

∂x
+

1

2
v2

∂2g

∂x2

)
ds +

∫ t

0
v
∂g

∂x
dBs

or in differential form

dg(t,Xt) =

(
∂g

∂t
+ u

∂g

∂x
+

1

2
v2

∂2g

∂x2

)
dt + v

∂g

∂x
dBt
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Geometric Brownian motion

The simplest model with a single risk factor

Between t and t + h the change in stock price is given by

S(t + h)− S(t)

S(t)
= µ h + σ(W (t + h)−W (t)), t ≥ 0

S(0) = S0,

where

µ is related to the mean return

σ > 0 is the volatility
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An equivalent form is

S(t + h)− S(t)

S(t)
= µ h + σ

√
hZ , ,Z ∼ N(0, 1), t ≥ 0

S(0) = S0,

In the limit h → 0, the model yields the stochastic differential equation
(SDE)

dS(t) = µS(t)dt + σ S(t)dW (t),

S(0) = S0,

or the Itō integral

S(t) = S0 +

∫ t

0
µS(r)dr +

∫ t

0
σS(r)dW (r).
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Define Y (t) := ln(S(t)) and use Itō ’s lemma to show

dY (t) =

(
µ− σ2

2

)
dt + σdW (t),

Integrate and exponentiate:

S(t) = S(0) exp

((
µ− σ2

2

)
t + σW (t)

)

We get the lognormal distribution (recall the binomial model)

ln

(
S(t)

S(0)

)
∼ N

((
µ− σ2

2

)
t, σ2t

)
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With a little effort (exercise)

E[S(t)] = S(0) exp (µt) ,

Var(S(t)) = S(0)2 exp (2µt)
(
exp(σ2t)− 1

)
.

To simulate GBM consider the partition t1 < t2 < · · · , < tn, and use

S(ti+1) = S(ti ) exp

((
µ− σ2

2

)
(ti+1 − ti ) + σ

√
ti+1 − tiZi+1

)
,

where Zi iid Zi ∼ N(0, 1).
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Checking independence of returns

Calculate the autocorrelation function

C (k) =
1

(n − k)v̂

n−k∑
i=1

(xi − µ̂)(xi+k − µ̂), k = 1, 2, · · ·

and check decay with respect to k .

µ̂, v̂ are the sample mean and variance of the time series of returns.
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Estimators for µ and σ

Maximum likelihood estimator – using independence of returns

X (ti ) = lnS(ti )− lnS(ti−1) ∼ N(a(ti+1 − ti ), σ
2(ti+1 − ti )), a = µ− 1

2
σ2.

The likelihood of returns x1, · · · , xn is of the form

L(µ, σ2) =
n∏

i=1

f (xi ;µ, σ
2),

f (xi ;µ, σ
2) =

1√
2πσ2(ti+1 − ti )

exp

(
−(xi − a(ti+1 − ti ))

2

2σ2(ti+1 − ti )

)
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The estimators µ and σ2 are then

m =

(
µ̂− 1

2
σ̂2

)
∆t,

v = σ̂2∆t, ∆t = ti+1 − ti ,

where

m =
1

n

n∑
i=1

xi ,

v =
1

n

n∑
i=1

(xi −m)2.
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Ornstein-Uhlenbeck process

The Ornstein-Uhlenbeck process is an Itō process displaying returns to the
mean.
This is a good model for modelling commodity prices, bond yields etc.

It solves the SDE

dX (t) = θ(ν − X (t))dt + σdW (t), θ > 0, ν ∈ R.

Using Ito’s lemma

X (t) = e−θtX0 + ν(1− e−θt) + σe−θt

∫ t

0
eθsdW (s).
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It is easy to see that

X (t) = e−θ(t−s)Xs + ν(1− e−θ(t−s)) + σe−θt

∫ t

s
eθudW (u),

leading to the discretized form

x(ti ) = c + b x(ti−1) + δϵ(ti ),

where

c = ν(1− e−θ∆t), b = e−θ∆t ,

δ = σ
√
(1− e−2θ∆t)/2θ.
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The Ornstein-Uhlenbeck is a Gaussian process with

E[X (t)] = e−θtE[X0] + ν(1− e−θt),

Cov(X (s),X (t)) =
σ2

2θ
e−θ(s+t)

(
e2θmin(s,t) − 1

)
,

Var(X (t)) =
σ2

2θ
(1− e−2θt).

For t → ∞, X (t) → Y in distribution with Y ∼ N
(
ν, σ

2

2θ

)
Moreover,

Es [X (t)] = ν + (x(s)− ν)e−θ(t−s),

Vars [X (t)] =
σ2

2θ
(1− e−θ(t−s)).
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The following estimators can be used for calibration

b̂ =
n
∑n

i=1 x(i)x(i − 1)−
∑n

i=1

∑n
i=1 x(i − 1)

n
∑n

i=1 x(i − 1)2 − (
∑n

i=1 x(i − 1))2
,

ν̂ =

∑n
i=1(x(i)− b̂x(i − 1)

n(1− b̂)
,

δ̂2 =
1

n

n∑
i=1

(x(i)− b̂x(i − 1)− ν̂(1− b̂))2.
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Connection with AR(1) models

The solution of the OU process

X (t) = e−tAX (0) +

∫ t

0
e−(t−s)ASdW (s),

if observed at discrete times ti = ih yields the AR(1) model

Yi = e−hAYi−1 + ξi ,

ξi =

∫ i

i−1
e−(kh−s)ASdW (s), i = 0, 1, · · ·
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The equivalent martingale measure

Definition

A market model is a Ft = σ(B(s) = (B1(s), · · · ,Bd(s)) : s ∈ [0, t])
adapted Itō process X (t) = (X0(t),X1(t), · · · ,Xn(t)), 0 ≤ t ≤ T , of the
form

dX0(t) = r X0(t), X0(0) = 1,

dXi (t) = µidt +
d∑

j=1

σijdBj , i = 1, · · · , d .
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Definition

A portfolio in the market {X (t)}t∈[0,T ] is a n + 1-dim Ft adapted process

θ(t) = (θ0(t), θ1(t), · · · , θn(t)), t ∈ [0,T ]

where θi (t) is the position of the investor in asset i at t.

The value of the portfolio θ at t is

V (t) =
n∑

i=0

θi (t)Xi (t).
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Definition

A portfolio is called self-financing if

V (t) = V (0) +

∫ t

0
θ(s)dX (s), t ∈ [0,T ].

In terms of the discounted processs

X ∗(t) =
1

X0(t)
X (t),

V ∗(t) =
1

X0(t)
X (t)

we can show

dV ∗(t) =
n∑

j=1

θj(t)dX
∗
j (t).
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Equivalent measures

Definition

The measure P is absolutely continuous with respect to Q, denote
P << Q, if for every A ⊂ Ω such that Q(A) = 0 we have P(A) = 0.

Definition

P and Q are equivalent, denote P ∼ Q, if

P << Q and Q << P.

Two equivalent measures have the same null sets
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Theorem (Radon-Nikodym)

If P << Q there exists a unique Z ∈ L1(Ω,F ,Q) such that

P(A) =

∫
A
ZdQ, ∀A ∈ F .

Z is called the Radon-Nikodym derivative of P with respect to Q, denote
Z = dP

dQ .

If P << Q and Z = dP
dQ then for any integrable r.v.∫

Ω
XdP =

∫
Ω
X
dP

dQ
dQ,

therefore,

EP [X ] = EQ [XZ ] = EQ

[
X
dP

dQ

]
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Definition

Q is called an equivalent martingale measure if Q ∼ P and

EQ [X
∗
j (t) | Fs ] = X ∗

j (s), j = 1, · · · , n.

If a portfolio is self-financing V ∗(t) is a Q-martingale

EQ [V
∗(t) | Fs ] = V ∗(s).
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Definition

An arbitrage opportunity is a self-financing portfolio θ such that V (T ) ≥ 0
a.s. and P(V (T ) > 0) > 0.

Theorem

There are no arbitrage opportunities for a market model if and only if
there exists and equivalent martingale measure
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Girsanov’s theorem

Theorem

Let Y (t) ∈ Rd be the Ito process

dY (t) = a(t, ω)dt + dB(t), Y (0) = 0, t ≤ T ,

where B(t) = (B1(t), · · · ,Bd(t)) is a d-dimensional Brownian motion and

M(t) = exp

(
−
∫ t

0
a(s, ω)dB(s)− 1

2

∫ t

0
a2(s, ω)ds

)
.

Assume the Novikov condition

EP

[
exp

(
1

2

∫ t

0
a2(s, ω)ds

)]
< ∞

and define the measure Q on (Ω,FT ) by

dQ

dP
= M(T ).

Then Y (t) is a d-dim Brownian motion with respect to the measure Q, for
t ≤ T .

A. N. Yannacopoulos (AUEB) Financial Mathematics Academic year 2023-2024 32 / 34



There exists a measure change from P toQ such that if under P the
process Y (t) is

dY = βdt + θdB,

then under Q, Y is the process

dY = αdt + θdB̄.

This is immediate as long as we find a measure Q under which

B̄(t) =

∫ t

0
u(s, ω)ds + B(t), t ≤ T ,

is a Brownian motion, for u which solves the linear equation

β(t, ω)− θ(t, ω)u(t, ω) = α(t, ω).
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The above observation can help us show the existence of an equivalent
martingale measure

If under P

dXi (t) = µidt +
d∑

k=1

σikdBk(t), i = 1, · · · , n

then to get to an EMM we need to get to a measure Q such that under it

dXi (t) = rXidt +
d∑

k=1

σikdBk(t), i = 1, · · · , n

The linear equation

β(t, ω)− θ(t, ω)u(t, ω) = α(t, ω).

will allow us to find the process u for the measure change.

Exercise: Do it for the GBM!
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