
   

2. MULTIPLE LINEAR REGRESSION 
 

The theoretical multiple linear regression model with k independent 

variables is of the form: 

 

 

0 1 1 2 2 ... k kY X X X    = + + + + +  , 

 

 

This model refers to the population. Y  is the dependent variable, i.e. the variable 

that we wish to explain or predict. The variables 1 2, ,..., kX X X  are the independent 

variables, 0 1 2, , ,..., k     the model parameters and finally   are residuals, the 

random factor in the model and therefore the only source of randomness in the 

behaviour of Y .  

 

As in the case of simple linear regression, our model is based on some theoretical 

assumptions. These are: 

 

1) for each value of Y , the residuals    are independent variables 

that follow the normal distribution with expected value zero and constant 

variance. This means that ,i j  , for each i j  are independent random 

variables,  

                
2~ (0, )i N      for all 1,2,...,i n=                              

         

      2) the variables jX  take fixed values, while in correlation analysis, are random 

variables. In any case, jX  are independent of the error terms  . Assuming 

that jX   take fixed values, we assume that these  variables jX  are not random 

and so, the only randomness in Y  result of the residuals  .  

             

For the case with 2k =  independent variables, the model becomes 

 



                          0 1 1 2 2Y X X   = + + +  

thus                                            

 

0 1 1 2 2( )E Y X X  = + +  

 

 These relationships are similar to those that apply in the case of simple linear 

regression. Here, instead of a straight regression, we have a plane. The model 

parameters can be estimated, as in the case of simple linear, using the method of 

least squares.  

 

As with the simple linear model, now we want to have estimates of the model 

parameters that correspond to the minimum possible value of the sum of 

squares: 
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The process can of course be extended to k independent variables. Where

2k = , there are three equations and their solutions are the least squares estimates 

0 1,b b  and 2b . These are the estimates of the intercept term, the slope corresponding 

to 1X  and the slope corresponding to 2X . 

 

The three equations for the case of two independent variables are: 

 

                                     0 1 1 2 2y nb b x b x= + +    

 

                                   
2

1 0 1 1 1 2 1 2x y b x b x b x x= + +                                         

 

                                   
2

2 0 2 1 1 2 2 2x y b x b x x b x= + +     

 

 



 The general model of multiple linear regression, contains the intercept 0  and 

the k  parameters are the regression coefficients for each of the k  independent 

variables.  

 

The value of each parameter , 1,...,j j k = , Corresponding to the average change 

(increase if the sign is positive, or decrease if it is negative) of Y when the 

corresponding variable 
jX  is increased by one unit of measurement, while all 

the other independent variables remain unchanged.  

 

A further assumption is that the variables  
jX  are  uncorrelated with each 

other, so that the value of the estimator of each parameter , 1,...,j j k = to reflect 

the change in ( )E Y  corresponding to an increase of the corresponding 
jX  by 

one unit (the unit of measurement), with all other independent variables being 

constant.  

 

Conversely if some of the jX  are lineary associated, then the parameter estimates 

of these variables lose their meaning. This is a problem that will occupy us in detail 

in the next section. 

 

 

The estimated regression relationship is of the form, 

 

             0 1 1 2 2
ˆ ... k kY b b X b X b X= + + + +

                                

 

where Ŷ is the predicted value of Y the observed one. The parameter 

estimates , 0,...,jb j k=  are the values of the estimators ˆ , 0,1,...,j j k =  of the 

corresponding parameters , 0,1,...,j j k = , as obtained by applying the least 

squares method. 

 

 

 So for the sample we have 

 
 

                 0 1 1 2 2 ... , 1, 2,...,i i i k ki iy b b x b x b x e i n= + + + + + = ,  



EXAMPLE  

 

Let us now return to the example of the previous chapter.  

 

For the twenty households in our sample, Table 2.1 shows the annual 

expenditures ( )Y  in 1000 euros, the annual income ( )1X , in 1000 euros, the number 

of members of the household ( )2X , home ownership (if  Yes = 1 if  No = 0) ( )3X  and 

the number of children living in the household ( )4X . With the last two variables we 

will deal later. 

 

We saw in Chapter 1 that the relationship between expenditures ( )Y  and 

income ( )1X , of the 20 households in the sample, is strongly linear (correlation 

coefficient 0,886r = ). Thus the simple linear model would be appropriate to 

describe their relationship. 

 

Let us consider now, as another independent variable, the number of 

household members, and let's assess  how suitable it would be a model that would 

show the annual expenditures ( )Y  of the household, as a linear function of two 

independent variables, the annual income  ( )1X and the number of members 

( )2X  of the households.  

 



Table 2.1: Expenditures (Y) , income ( )1X , number of household members ( )2X , 

residential property ( )3X and number of children ( )4X , in a random sample of 20 

households. 

 

 

 i  
Y  

Expenditures 

(in 1000 euros) 

1X  

Income 

(in 1000 euros) 

2X  

Menbers 
3X  

Property 

residential 

4X  

Children 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

5 

6.5 

6 

5 

6 

10 

9 

8.5 

6.5 

8.5 

9 

12 

11 

11 

14.5 

14 

12 

16 

3 

10 

5 

5 

6 

7 

5 

8 

9 

9 

10 

10 

11 

12 

13 

14 

15 

16 

15 

14 

6 

10 

2 

4 

2 

1 

2 

3 

2 

1 

1 

2 

3 

3 

4 

2 

4 

4 

2 

2 

1 

3 

1 

0 

0 

1 

0 

0 

0 

1 

1 

1 

1 

0 

1 

1 

1 

1 

1 

0 

1 

0 

1 

1 

1 

0 

1 

2 

0 

0 

0 

1 

1 

2 

2 

0 

2 

2 

1 

1 

0 

1 

 

 

For the simple linear regression model, we have: 

 

XY += 844,073,0ˆ
                  where X: income 

 



For the multiple linear regression model using 1X and 2X  we have, 

 

                   1 2^ 0,299 0,763 0,770Y X X= − + +                                     

 

According to the values of the parameter estimates in the model, an income 

increase by 1,000 euros, for households of the same size, the expected (mean) 

increase of the annual expenditures is estimated to be 763 euros, while 

 

An increase in household size by one member without changing the annual 

income is expected to increase the annual expenditure of 770 euros. 

 

2.1. CHECKING THE SUITABILITY OF THE MODEL 

 

A general way to access the suitability of the model is to investigate whether 

there is a linear regression relationship between the dependent variable and at least 

some of the explanatory independent variables iX  included in the regression model.  

 

  

 
 

 

If the null hypothesis is not rejected, it is an indication that there is no linear 

relationship between the Y and anyone of the independent variables in the proposed 

regression relationship. In such a case, the model is clearly totally unsuitable. If on 

the other hand, the null hypothesis is rejected, there is statistical evidence linear 

relationship betweenY  and at least some of the independent variables included in 

the model.  

 

 To conduct this test is useful to calculate the Analysis of Variance table 

(ANOVA), which are of similar form to that of a simple linear regression as 

presented in the previous section, except that here we k  independent variables 

instead of only one.  

The statistical hypothesis test for a linear relationship between the Y    

and at least some of the independent variables iX  They are: 

0 1 2 3: ... 0kH    = = = = =                                                                                    (2.9) 

   1 :H   at least one of the ( 1,..., )j i k =  ≠ 0 



Let us now consider the deviation of each observed value from the 

corresponding assessment under the model, the error is, ˆy y− , The deviation of the 

estimate of the average of the observations Y , ŷ y−  and the total deviation (the 

deviation of the observed price Y  the average) y y− . These three deviations satisfy 

the relation: 

 

 

( )y y−   =  ( )ŷ y−    +  ( )ˆy y−  

 

As in the case of simple linear regression, when squaring the deviations and 

we sum all the data, we take the ratio of the sums of squares.  

 

  −−−=− 222 )()()( YYYYYY


 

  

   T R ESS SS SS= +                                        

                                                    

Where TSS  the total sum of squares, RSS  the sum of squares of regression and ESS  

the sum of error squares of the errors (residuals). 

 

In simple linear regression, the degrees of freedom of the errors were 2n −

Because two parameters were estimated using our data ( n ). In multiple regression 

estimated we have 1k +  parameters to be estimated. Therefore, the degrees of 

freedom for error are ( )1n k− + . The degrees of freedom for the regression is k  , 

while the total degrees of freedom is 1n − . Table 2.2 Analysis of Variance Table 

(ANOVA) is presented for multiple regression model k  independent variables.  

 

Table 2.2    Table Analysis of Variance table for multiple regression 
Source of 

Variation 

Sums of squares  Degrees of 

freedom  

 

 Mean Sums  

of squares 

 

F value 

Regression 2( )RSS Y Y= −  k  R
R

SS
MS

k
=  

 

( )(1, 1 )

R

n k

E

MS
F

MS
− +

=  

Residuals 2( )ESS Y Y= −      n-(k+1) 

( )1
E

E

SS
MS

n k
=

− +
  

Total 2( )TSS Y Y= −  1n −    

 



 

For our example the Analysis of Variance table is given in Table 2.3. 

 

 

Table 2.3    Table Analysis of Variance of Example 

Source of 

variation 

 

Sums of 

squares  

Degrees 

of 

freedom 

Mean 

sums of 

squares  

F P-value 

 

Regression 

 

191.762 

 

2 

 

95.881 

 

41,92 

 

0,000 

Residuals 38 17 2287   

Total 230.638 19    

 

 

Taking p-value = 0,000 , we reject the null hypothesis. So, we conclude that 

there is a linear relationship between the indicatorY  and at least one of the two 

independent variables.  

 

Note that this test is a primary control, indicative of a relationship between 

the dependent and at least one of the independent variables included in our model. 

If H0 is rejected, then we need to conduct separate checks for the importance of each 

individual parameter in the final model. 

 

In multiple regression, additional checks are needed to determine the 

statistically significant of the parameters. These tests are indicative of the 

contribution of each independent variable to explain the dispersion of the values of 

our dependent variable. Based on these tests, many of the independent variables 

show no statistically significant explanatory effect and thus these should be excluded 

from the regression model. Before we proceed with these individual checks, let us 

present some goodness of fit  criteria of the  multiple regression model. 

 

2.2. EVALUATION OF THE MODEL 

The mean square error (MSE) is an unbiased estimator of the population 

variance of errors , symbolized by 2

 . The mean square error is defined in equation 

(2.11): 

 



 
 

It is already known that the smaller the error, the better the fit of the regression 

model. The mean square error (MSE) is a measure of goodness of fit of our model. 

Still, the square root of MSE is an estimator of the standard deviation of error  . 

The square root of the MSE is usually denoted by s  or simply s and referred to as 

the standard error of the estimate. 

 

 
 

The s  is a goodness of fit criterion (the smaller its value, the better the fit of 

the model to our data). However it has the major disadvantage that it is measured in 

units of our dependent variable. So it is a measure that is inappropriate for 

comparisons between different applications. An alternative goodness of fit criterion 

of the regression model is the coefficient of determination, denoted as
2R . This is 

defined as  

 

T

E

T

R

SS
SS

SS
SS

R −== 12
 

 

The coefficient of determination 
2R  is a very useful criterion for goodness 

of fit of the regression model. However, it has some limitations. It can be shown 

that, for each data set, with increasing the number of independent variables in the 

model the value of 2R also increases. This is natural since the greater the number of 

independent variables in the model, the more the surface approaches the regression 

data. Since then the adjustment of the multiple regression model becomes better as 

the number of independent variables increases,
2R  growing and approaching unity 

or 100% of the variability of Y explaining the model. Thus, the coefficient becomes 

unsuitable for comparisons between models with different number of independent 

variables, since every time another independent variable is added to the model, its 

The mean square error is: 

                                    

2

1

ˆ( )

( 1) ( 1)

n

i j

jE
E

y y
SS

MS
n k n k

=

−

= =
− + − +


                                  (2.11) 

 

 

 

The standard error of the estimate is: 

     

                                        Es MS =                                                         (2.12) 

 



value will be increased regardless of whether the contribution of this additional 

variable is significant or not. 

 

A measure suitable for a comparison between models involving different 

number of independent variables is the adjusted (or corrected) determination 

coefficieny factor. The adjusted coefficient of determination denoted by  
2

R is the 

takes into consideration the degrees of freedom.  

 

The adjusted coefficient of determination is defined as: 

 

      2 /[ ( 1)]
1 1

/( 1)

E

T

MSSSE n k
R

SST n MS

− +
= − = −

−
                         (2.13) 

 

This measure, as seen from the structure, not always grow as additional 

variables are introduced into the model. If 
2

R grows as we introduce a new 

independent variable in the model, this is an indication that its presence in the model 

is appropriate.  

 

The corrected coefficient of determination can still be calculated on the basis 

of the simple coefficient of determination 2R by: 

 

    
2 2 1

1 (1 )
( 1)

n
R R

n k

−
= − −

− +
                              (2.14) 

 

Note that a new variable should be included in the model only if the
2

R

increases. 

 

Among the various multiple regression models with different number of 

independent variables, the model that minimizes the MSE and  maximizes 
2

R is the 

best. The use of two criteria, and MSE and 
2

R , to introduce new independent 

variables in the regression model would be further discussed in the next section.  

 

In our example, 
2 0,961R = , Which means that 96.1% of the total variability 

of annual household expenditures attributes to their linear relationship with income 

and  household size. Still
2

0,95R = , a value that is very close to the non-adjusted 

rate. So we conclude that the model fits the data very well. Though not yet know if 

the two independent variables are significant. This  will be investigated conducting  



individual tests for the significance of each parameters. These tests are presented 

below. 

  

2.3. TESTING THE SIGNIFICANCE OF THE MODEL PARAMETERS 

Until now, we investigated the suitability of the model. using the test statistic 

F . We also saw how to evaluate the regression model using the coefficient of 

determination and the adjusted one. It remains to be seen, how can we evaluate 

whether each one of parameters
j  are significant, or in other words, how important 

is the existence of each one of the 
jX in the model. A test for the significance of the 

individual parameters of the regression are useful because it investigates whether the 

variable under examination jX has explanatory capacity on the dependent variable.  

In the last section, we saw that an indication of the benefits we get from the 

introduction of a particular variable in the regression equation, resulting from the 

comparison of the adjusted coefficient of determination, which includes the variable 

of interest, with the corresponding of that model in which that variable is not 

included. Here we introduce a statistical test for the significance of each parameter 

j .  

 

 In Chapter 1 we saw that the hypothesis testing: 

 

0 1: 0H  =  

1 1: 0H    

 

may be carried out using or controlling t  ( )( )1 1b s b=   or control F  ( )R EMS MS= . 

These two tests proved equivalent. In simple linear regression, there is only one 

parameter, 1 . And if it is zero there is no linear regression relationship. In multiple 

regression but where 1k  t these two tests are not equivalent. The F  test investigates 

whether statistically there is significant linear relationship between the Y  and at least 

one independent variable jX , while the  t  tests explore the significance of each 

individual independent variable , 1, 2,...,jX j k=  including in the model.  

 

In a regression model Y  with k  independent variables 1 2, ,..., kX X X , there are 

k  significance tests for the slopes 1 2, ,..., k   . 

If the null hypothesis is true, then the test function following distribution t  

with ( )1n k− +  degrees of freedom.  



 

 

 

Individual testing of hypothesis of the regression slope is of the form: 
 

                     

0 1

1 1

0 2

1 2
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

=



       The control function is of the form 

ˆ

ˆ( )

j

js




, 

 

 

By analogy with hypothesis testing confidence intervals for the values of each  

parameters of our model can be calculated.  

The confidence intervals for the parameters , 1, 2,...,j j k =  it is easy to calculate 

using the estimator and the standard error for each of the parameters.  

 

       The degree of confidence interval (1-a) 100% for the j  They are 

 

                            ( )( ( 1),1 / 2)
ˆ ˆ

j n k jt s − + −                                           

 

  

If a 95% confidence interval for the parameter j  contains zero, then the two-

sided hypothesis testing  0 : 0jH  =  is not rejected and thus there is no indication that 

the variable jX  having a linear relationship with the Y . 

 

 

MULTICOLLINEARITY  

 

A problem may arise in drawing conclusions for the regression model 

parameters are as follows: In multiple regression, we need to have a strong 

correlation between each one of the independent variables and the dependent 



variable Y . But in addition, we do not want the independent variables to be 

significantly correlated with each other.  

When two independent variables are highly correlated with each other, then 

these variables behave similarly, and consequently they explain the behaviour of Y  

in a similar way. In such a case, we would say that the one variable “steals" the 

explanatory power of the other.  

 

This problem is called multicollinearity.  

 

Many problems can arise from this confusion. A serious consequence of this 

problem is that the estimators of the model parameters exhibit high variability, the 

standard errors are unusually large, making the parameter estimates statistically 

insignificant. The multicollinearity can also lead to signs of some parameter be 

opposite to those expected.  

 

In order to avoid multicollinearity, we should avoid to include in the model 

explanatory variables that are significantly correlated to each other. 

 

 

       


