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Populations, subpopulations, variables

A finite population U of size N:

set of discrete units

U = {1, . . . ,N},

e.g., persons, households, businesses, schools, farms etc.

In a finite population U

▶ subpopulations are defined as subsets Ud ⊂ U

▶ there is no intrinsic randomness



Populations, subpopulations, variables

A study characteristic of the population defines a variable (study/target

variable) y , with value yi for unit i ∈ U.

The variable y is non-random --- no probability distribution function is

defined. The values of yi , i ∈ U, are unknown but fixed.

In sample surveys there is customarily a very large number of variables

etc (continuous and categorical),

e.g., income, labour status, education level etc.



Parameters of finite populations

A parameter θ of a population is defined as a function of the values of

a variable y

θ = θ(y1, . . . , yN)

or many variables, e.g., y and z

θ = θ(y1, . . . , yN , z1, . . . , zN)



Parameters of finite populations

The main parameters are:

A population total

Y =
N∑

i=1

yi , ή

∑
U

yi .

e.g., total number of employed persons, total production of wine.

(Totals are not defined in non-finite populations.)

Y =
N∑

i=1

yi = N, when yi = 1, i ∈ U



Parameters of finite populations

A mean

Ȳ =
Y

N
=

1

N

N∑
i=1

yi

e.g, mean personal income.

A ratio of totals

R =
Y

Z
=

∑
N

i=1
yi∑

N

i=1
zi

e.g., total produce of wine to total vineyard area.

A proportion

P =
Nd

N
=

1

N

N∑
i=1

yi , yi =

{
1, i ∈ Ud

0, i /∈ Ud



Parameters of finite populations

Variance of y

S
2 =

1

N − 1

N∑
i=1

(yi − Ȳ )2 =
1

N − 1

 N∑
i=1

y
2

i − 1

N

(
N∑

i=1

yi

)2


The variance S2
is used in the sampling design and in the computation

of the stanard error of estimators.

Standard deviation

S =
√

S2

coefficient of variation, (cv)

cv =
S

Ȳ



Random/probability sample

A random sample is a subset of the population s ⊂ U, of size n, which is

selected so that

▶ The set S = {s1, . . . , sM} of all possible distinct samples s is well

defined

▶ A known probability of selection p(s) is assigned to each sample

s ∈ S

▶ Each unit i ∈ U has a non-zero probability of inclusion in the

sample s

▶ Each sample s is selected with probability p(s), with specified

mechanism of randomness which is called random sampling

technique.

The function p(s) defines a probability distribution in S

p(s) ≥ 0,
∑
s∈S

p(s) = 1

The probability p(s) specifies the probability of selecting each unit

i ∈ U, and the statistical properties of the estimators of parameters.



Probabilities of inclusion in the sample

The probability P(i ∈ s) of inclusion of unit i in a sample s is denoted by

πi and given by

πi =
∑
s∋i

p(s), i = 1, . . . ,N

Example 1:

Consider the population U = {1, 2, 3, 4} and a sample s of size n = 2.

All possible samples of this size are

s1 = {1, 2}, s2 = {1, 3}, s3 = {1, 4}, s4 = {2, 3}, s5 = {2, 4}, s6 = {3, 4}

Then

π1 = p(s1) + P(s2) + p(s3)

π2 = p(s1) + P(s4) + p(s5)

π3 = p(s2) + P(s4) + p(s6)

π4 = p(s3) + P(s5) + p(s6)

If p(s1) = p(s2) = p(s3) = p(s4) = p(s5) = p(s6) = 1/6, then

π1 = π2 = π3 = π4 = 1/2



Probabilities of inclusion in the sample

The probability P(i ∈ s) of inclusion of unit i in a sample s is denoted by

πi and given by

πi =
∑
s∋i

p(s), i = 1, . . . ,N

Example 1:

Consider the population U = {1, 2, 3, 4} and a sample s of size n = 2.

All possible samples of this size are

s1 = {1, 2}, s2 = {1, 3}, s3 = {1, 4}, s4 = {2, 3}, s5 = {2, 4}, s6 = {3, 4}

Then

π1 = p(s1) + P(s2) + p(s3)

π2 = p(s1) + P(s4) + p(s5)

π3 = p(s2) + P(s4) + p(s6)

π4 = p(s3) + P(s5) + p(s6)

If p(s1) = 1/3, p(s2) = 1/6, p(s6) = 1/2, p(s3) = p(s4) = p(s5) = 0,

then

π1 = 1/2, π2 = 1/3, π3 = 2/3, π4 = 1/2



Probabilities of inclusion in the sample

The procedure of random sampling requires πi > 0 for each i ∈ U.

The probability P(i ∈ s, j ∈ s) of joint inclusion of units i and j is a sample

s is denoted by πij and given by

πij =
∑
s∋i,j

p(s), i, j = 1, . . . ,N

In example 1, we have π13 = p(s2) = 1/6



Probabilities of inclusion in the sample

The inclusion of a unit i in a random sample s is expressed by the

random indicator variable

Ii(s) =

{
1, i ∈ s

0, i /∈ s

For the samples of example 1, I3(s4) = 1 I3(s5) = 0

The inclusion of two units i and j in the same random sample s is

expressed by the product Ii(s)Ij(s).

The variable Ii(s) is the only random variable, defined for each unit

i ∈ U.

Properties:

E(Ii(s)) = P(Ii(s) = 1) = πi

V(Ii(s)) = πi(1 − πi), C(Ii(s), Ij(s)) = πij − πiπj



Probabilities of inclusion in the sample

In sample surveys of finite populations the population units may have

unequal probabilities πi .

This is due to random sampling that uses knowledge of the structure of

the population to reduce the statistical error in the parameter

estimation.

Unequal probabilities of selection imply a distribution in the sample that

is different from the distribution in the population.

Example 2:

Consider simple random sampling from a population U, with N = 50000

n = 3000, and with the same probability πi = n/N = 3/50, i ∈ U

The distribution (histogram) of a variable y in the sample is similar to its

distribution in the population (see 1st and 2nd graph).



Probabilities of inclusion in the sample

In sample surveys of finite populations the population units may have

unequal probabilities πi .

This is due to random sampling that uses knowledge of the structure of

the population to reduce the statistical error in the parameter

estimation.

Unequal probabilities of selection imply a distribution in the sample that

is different from the distribution in the population.

Example 2:

Consider simple random sample from five strata defined by the values

of y in ascending order, with stratum sizes

N1 = 20000,N2 = 12000,N3 = 10000,N4 = 5000,N5 = 3000, sample

sizes n1 = · · · = n5 = n/5 = 600 and probabilities of selection

ni/Ni , i = 1, . . . , 5

The distribution of the variable y in the sample is different from its

distribution in the population (see 3rd graph).



Probabilities of inclusion in the sample
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Probabilities of inclusion in the sample

In sample surveys of finite populations the population units may have

unequal inclusion probabilities πi .

This is due to random sampling that uses knowledge of the structure of

the population to reduce the statistical error in the parameter

estimation.

Unequal probabilities of selection imply a distribution in the sample that

is different from the distribution in the population.

The representativeness of the sample is restored with the use of the

sampling weights (see next slide).



Sampling/design weights (αναγωγικοί συντελεστές)

The sampling weight of unit i ∈ U is defined as

wi =
1

πi

Ii(s), i ∈ U

E(wi) =
1

πi

E(Ii(s)) =
1

πi

πi = 1

The weight of a unit that has not been selected in the sample is by

definition equal to zero.

The weight of a selected unit is the inverse of its selection probability.



Sampling/design weights (αναγωγικοί συντελεστές)

The interpretation of wi :

The weight wi of the sample unit i is interpreted as the number of

population units (the unit i included) that are "represented" by the

sample unit i.

Thus, the sample unit i represents itself and wi − 1 non-selected

population units, and all the sample units together represent the whole

population.

Suppose that in example 1 the sample s3 = {1, 4} is selected with

simple random sampling, so that w1 = 2 and w4 = 2. Then the sample

s3 produces the pseudo-population {1, 1, 4, 4}.



Sampling/design weights (αναγωγικοί συντελεστές)

Consider a population of twelve units, with the respective values of a

variable y

U = {y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12}.

Supoose that a simple random sample of size n = 2 from U is

s = {y3, y8}. In this case we have π = n/N = 2/12 for all units of U,

and w = 6 for both units of s.

In view of the interpretation of the weights, regarding the

representativeness of the sample, it is possible to expand the sample

creating the pseudo-population

{y3, y3, y3, y3, y3y3, y8, y8, y8, y8, y8, y8},

where each of the the units 3 and 8 of the sample represents 6 units of

the the population, with the same value of the variable y .



Sampling/design weights (αναγωγικοί συντελεστές)

Suppose now that a sample of size 4 from U is s = {y2, y5, y8, y11}. Here

we have π = n/N = 4/12, and w = 3 for all four units of the sample.

Te pseudo-population that can be created based on this sample and

the weights of the four sample units are

{y2, y2, y2, y5, y5, y5, y8, y8, y8, y11, y11, y11}

Obviously, a larger sample, with larger probability of inclusion (and

smaller weight) has better representativeness.



Sampling/design weights (αναγωγικοί συντελεστές)

The "weighted" sample values wiyi of a variable y restore the

disproportionality of the sample, relative to the population, which is due

to the unequal probabilities of selection of the sampling units.

The sampling weights are used in the inductive inference, i.e., using the

sample to draw conclusions about the population.



Statistical theory for finite populations

Statistics for finite populations is primarily descriptive, i.e., it focuses on

the estimation of population parameters.

The estimation of population parameters is based on a sample s of size

n selected randomly with probability p(s).

The uncertainty about the estimation is due to the fact that only a part

of the population is surveyed.

Whereas the characteristics of the population remain fixed, their

estimation depends on the chosen sample.



Statistical theory for finite populations

The estimator of a parameter θ = θ(y1, . . . , yN) is function of the

random sample, and is denoted by

θ̂ = θ̂(s) = θ̂(y1, . . . , yn)

The estimator θ̂(s) is random variable. The only random element is the

set s that defines which units comprise the sample. The difference in the

values of θ̂(s) from sample to sample is the sample variance of θ̂(s).

The inference for finite populations is based in the concept of the

assumed repetition of the random sampling, with sampling design p(s),
which results in the selection of different samples.



Statistical theory for finite populations

According to this principle of assumed repetition of sampling, the

expected value E(θ̂) of θ̂(s) is given by

E(θ̂) =
∑
s∈S

p(s)θ̂(s)

This is a weighted average (σταθµικός µέσος) of the possible values

θ̂(s) of θ̂, with the probabilities p(s) as weights.

When p(s) is constant for all samples s ∈ S, of the same size n, then

E(θ̂) =
1

M

∑
s∈S

θ̂(s),

where M is the total number of samples of size n.



Statistical theory for finite populations

The estimator θ̂ is unbiased if E(θ̂) = θ, i.e., if it is "on average" equal to

the estimated parameter θ.

A measure of sampling variance of θ̂, denoted by V(θ̂), is given by

V(θ̂) =
∑
s∈S

p(s)
[
θ̂(s)− E(θ̂(s))

]
2

.

The standard error (τυπικό σφάλµα) of θ̂ is defined as

√
V(θ̂).



Statistical theory for finite populations

A commonly used index of reliability of an unbiased estimator is its

relative standard error, known as coefficient of variation (συντελεστής

µεταβλητότητας), defined as CV(θ̂) =
√

V(θ̂)/θ and expressed as

percentage.

The estimation of the variance V(θ̂), denote by V̂(θ̂), is computed

using the survey data. An estimate of the coefficient of variation is√
V̂(θ̂)/θ̂.



Parameter estimation

The probability function p(s) is of theoretical interest, as a

mathematical tool used in the foundation of the probability theory of

survey sampling and in the derivation of the statistical properties of the

estimators, but is usually quite complicated in its use.

In practice it is much easier to derive the expected value and the

variance of estimators knowing only the probabilities πi and πij .

Since the main parameters associated with a variable y are functions of

the population total Y =
∑

i
yi , the methodology of estimation deals

primarily with this basic parameter.



Parameter estimation

For a sample s = {y1, . . . , yn}, the estimator Horvitz-Thompson of Y is

defined as the linear combination (weighted sum)

Ŷ =
N∑

i=1

wiyi =
n∑

i=1

1

πi

yi

The estimator Ŷ is the sum of the weighted values wiyi of the variable y .

In the special case of total Y = N,

N̂ =
N∑

i=1

wi =
n∑

i=1

1

πi

Example: In simple random sampling, πi = n/N, so that

wi = 1/πi = N/n and N̂ =
∑

n

i=1

1

πi
= N



Parameter estimation

The estimator Ŷ is unbiased, i.e., E(Ŷ ) = Y .

E(Ŷ ) =
N∑

i=1

E(wi)yi =
N∑

i=1

yi = Y

The variance of Ŷ is given by

V(Ŷ ) =
N∑

i=1

N∑
j=1

(
πij

πiπj

− 1

)
yiyj

An unbiased estimator of V(Ŷ ) computed using the sample

s = {y1, . . . , yn} is given by

V̂(Ŷ ) =
n∑

i=1

n∑
j=1

1

πij

(
πij

πiπj

− 1

)
yiyj



Parameter estimation

V̂(Ŷ ) =
n∑

i=1

n∑
j=1

1

πij

(
πij

πiπj

− 1

)
yiyj

Because of the double sum this formula is difficult to use in practice. For

specific sampling designs p(s) a simplification of the formula for fast

computations is possible.

Also, for some sampling designs p(s) it is very difficult to compute the

probabilities πij . Then, methods of approximate estimation of V(Ŷ ) are

used; they will be discussed later.

In simple random sampling, πi = n/N, πij = n(n − 1)/N(N − 1), and

the formula for V̂(Ŷ ) takes the simple form

V̂(Ŷ ) =
N(N − n)

n

1

(n − 1)

n∑
i=1

(yi − ȳ)2, where ȳ =
1

n

n∑
i=1

yi .



Parameter estimation

The estimator of the population mean Ȳ is given by

ˆ̄Y =
Ŷ

N
=

1

N

N∑
i=1

wiyi =
1

N

n∑
i=1

1

πi

yi

An alternative estimator of Ȳ that is used when is uknown is given by

˜̄Y =
Ŷ

N̂
=

∑
N

1
wiyi∑

N

1
wi

=

∑
N

1
(1/πi)yi∑
N

1
1/πi

In some sampling designs the estimators
ˆ̄Y and

˜̄Y are identical. Even

when N is known and the two estimators differ, the estimator
˜̄Y is

preferred because it usually has smaller variance.



Parameter estimation

The non-linear estimator
˜̄Y is approximately (for large samples)

unbiased. The approximate variance of
˜̄Y is given by

V(˜̄Y ) =
1

N2
V

[
n∑

i=1

wi(yi − Ȳ )

]

=
1

N2

N∑
i=1

N∑
j=1

(
πij

πiπj

− 1

)
(yi − Ȳ )(yj − Ȳ ).

An estimator of V(˜̄Y ) is given by

V̂(˜̄Y ) =
1

N̂2
V̂

[
n∑

i=1

wi(yi − ˜̄Y )

]

=
1

N̂2

n∑
i=1

n∑
j=1

1

πij

(
πij

πiπj

− 1

)
(yi − ˜̄Y )(yj − ˜̄Y )



Parameter estimation

The estimator of a population proportion P is given by

P̃ =
N̂d

N̂
=

∑
Nd

1
wi∑

N

1
wi

=

∑
nd

1
1/πi∑

n

1
1/πi

,

where nd is the size of the subset of sd of s that corresponds to the

subpopulation Ud .

Notice that P̃ = ˜̄Y if we define yi = 1 when i ∈ Ud and yi = 0 when

i /∈ Ud . Therefore, the arguments on approximate unbiasedness and

variance of
˜̄Y apply to P̃.

In simple random sampling, the estimator is P̂ = N̂d/N, and

V̂(P̂) =
N − n

N(n − 1)
P̂(1 − P̂)



Parameter estimation

The estimator of a population ratio R = Y/Z is given by

R̂ = Ŷ/Ẑ

The non-linear estimator R̂ is approximately (for large samples)

unbiassed, with approximate variance

V(R̂) =
1

Z 2
V

[
n∑

i=1

wi(yi − Rzi)

]

=
1

Z 2

N∑
i=1

N∑
j=1

(
πij

πiπj

− 1

)
(yi − Rzi)(yj − Rzj).



Parameter estimation

An estimator of V(R̂) is given by

V̂(R̂) =
1

Ẑ 2
V̂

[
n∑

i=1

wi(yi − R̂zi)

]

=
1

Ẑ 2

n∑
i=1

n∑
j=1

1

πij

(
πij

πiπj

− 1

)
(yi − R̂zi)(yj − R̂zj).

In simple random sampling the formula V̂(R̂) takes the simple form

V̂(R̂) =
N

Ẑ 2

N − n

n

1

n − 1

n∑
i=1

(yi − R̂zi)
2.



Parameter estimation

The estimation of the population variance of a variable y

S
2 =

1

N − 1

N∑
i=1

(yi − Ȳ )2

is based on the equivalent expression of S2
as function of totals:

S
2 =

1

N − 1

 N∑
i=1

y
2

i − 1

N

(
N∑

i=1

yi

)2
 .

Then

Ŝ
2 =

1

N̂ − 1

 n∑
i=1

w iy
2

i − 1

N̂

(
n∑

i=1

w iyi

)
2

 =
1

N̂ − 1

n∑
i=1

w i(yi − ˜̄Y )2,

where
˜̄Y = Ŷ/N̂.



Parameter estimation

In the same way we can estimate the covariance of two variables y

and z

Syz =
1

N − 1

N∑
i=1

(yi − Ȳ )(zi − Z̄)

=
1

N − 1

[
N∑

i=1

yizi −
1

N

(
N∑

i=1

yi

)(
N∑

i=1

zi

) ]
.

Then

Ŝyz =
1

N̂ − 1

[
n∑

i=1

wiyizi −
1

N̂

(
n∑

i=1

wiyi

)(
n∑

i=1

wizi

) ]

=
1

N̂ − 1

n∑
i=1

wi(yi − ˜̄Y )(zi − ˜̄Z).



Estimation for sub-populations

In large scale surveys, we may also be interested in estimation of

parameters for various sub-populations (domains), which are not strata.

Let Ud ⊂ U be a sub-population of size (number of units) Nd .

Suppose that we want to estimate the total Yd =
∑

Ud
yi of the

sub-population for a variable y . We define a new variable yd so that

ydi =

{
yi , i ∈ Ud

0, i /∈ Ud



Estimation for sub-populations

Then Yd is the total (for the whole U ) for the new variable yd , that is

Yd =
∑
Ud

yi =
∑

U

ydi .

Now we can use the general theory for the estimation of the total Yd .

Let then s be a sample from U and consider sd = s ∩ Ud , (i.e., the

subset of s that belongs to the sub-population Ud).

The estimator of Yd is

Ŷd =
∑

sd

wiyi =
∑

s

wiydi (=
∑

s

1

πi

ydi).



Estimation for sub-populations

According to the general theory of estimation

E(Ŷd) =
∑

U

E(wi)ydi = Yd

V(Ŷd) =
∑

U

∑
U

(
πij

πiπj

− 1

)
ydiydj

V̂(Ŷd) =
∑

s

∑
s

1

πij

(
πij

πiπj

− 1

)
ydiydj



Estimation for sub-populations

The HT estimator of Nd is

N̂d =
∑

sd

wi (=
∑

sd

1

πi

)

The HT estimator of the mean Ȳd = Yd/Nd of the sub-population Ud is

ˆ̄Y = Ŷd/N̂d

The HT estimator Pd is

P̂d =
N̂d

N

If N is unknown, then

P̂d =
N̂d

N̂
=

∑
sd

wi∑
s
wi

=

∑
sd

1/πi∑
s
1/πi

.



Estimation for sub-populations

The size nsd
of the sample sd is random, and can be written as

nsd
=
∑

U

I(i ∈ sd) =
∑
Ud

I(i ∈ s)

and then E(nsd
) =

∑
Ud
πi .

Example:

In the case of simple random sampling, when πi = n/N, it follows that

E(nsd
) = nNd/N, that is, the expected size of the sample sd is

proportional to the size of Ud .



Using auxiliary variables in estimation

In survey sampling it is very useful to define auxiliary variables,

continuous or gategorical.

Examples: geographic place, gender, age,

land area, business type, etc.

The values of an auxiliary variable may be known before sampling, e.g.,

geographic place, or become known only for the the sampled units,

e.g., the age of persons.

The auxiliary variabls are used:

▶ in the design of sampling

▶ in the definition of sub-populations

▶ in the improvement of the estimators of population parameters.



Using auxiliary variables in estimation

The estimator Horvitz-Thompson Ŷ uses the sample values of y .

Suppose that we have information on an auxiliary vector variable x with

p components, i.e., x = (x1, . . . , xp)
′

either with the values xi = (xi1, . . . , xip)
′
, i ∈ U or with the total

X =
∑

U
xi .

This information (for the entire population) can be used for the

improvement of the estimation of Ŷ if y correlates with x.



Using auxiliary variables in estimation

Suppose that the relationship of y with x is such that for each i ∈ U the

value yi is approximated ("predicted") by the linear combination

x
′
i B = β1xi1 + · · ·+ βpxip, i.e., yi ≈ x

′
i B.

A suitable vector coefficient B is determined with method of least

squares, which minimizes the distance function (sum of squares)∑
U
(yi − x

′
i B)

2
. This B is given by

B =

(∑
U

xix
′
i

qi

)−1∑
U

xiyi

qi

,

where qi are known constants (usually qi = 1).

For univariate x (and qi = 1) , the univariate B has the form

B =

∑
U

xiyi∑
U

x2

i

.



Using auxiliary variables in estimation

Suppose that the relationship of y with x is such that for each i ∈ U the

value yi is approximated ("predicted") by the linear combination

x
′
i B = β1xi1 + · · ·+ βpxip, i.e., yi ≈ x

′
i B.

A suitable vector coefficient B is determined with method of least

squares, which minimizes the distance function (sum of squares)∑
U
(yi − x

′
i B)

2
. This B is given by

B =

(∑
U

xix
′
i

qi

)−1∑
U

xiyi

qi

,

where qi are known constants (usually qi = 1).

For univariate x (and qi = 1) , the univariate B has the form

B =

∑
U

xiyi∑
U

x2

i

.

With this B a relationship of linear regression ί is defined between y and

x, is the regression coefficient, and the differences ei = yi − x
′
i are the

residuals of the linear regression.



Using auxiliary variables in estimation

The coefficient

B =

(∑
U

xix
′
i

qi

)−1∑
U

xiyi

qi

,

is a population parameter. Estimation of B using a sample s is given by

B̂ =

(∑
s

w ixix
′
i

qi

)−1∑
s

w ixiyi

qi

,

For the sample values of y the residuals are êi = yi − x
′
i B̂.

Asymptotically (i.e., for large samples) B̂ is approximatelly equal to B.



The regression estimator

The regression estimator of the total Y is defined

Ŷ
GR = Ŷ + B̂

′
(X− X̂)

=
∑

s

wiyi +
∑

s

wiyix
′
i

qi

(∑
s

wixix
′
i

qi

)−1

(X−
∑

s

wixi)

In expanded form

Ŷ
GR = Ŷ + β̂1(X1 − X̂1) + · · ·+ β̂p(Xp − X̂p)



The regression estimator

Properties of Ŷ GR
:

Asymptotically, Ŷ GR
is given approximately by

Ŷ
GR ≈ Ŷ + B

′
(X− X̂).

It follows that (Ŷ GR) ≈ Y , i.e., Ŷ GR
is approximately unbiased

estimator of Y .

Alternatively,

Ŷ
GR ≈ B

′
X+ (Ŷ − B

′
X̂)

= B
′
X+

∑
s

wi(yi − x
′
i B)

= B
′
X+

∑
s

wiei



The regression estimator

It follows that asymptotically V(Ŷ GR) ≈ V(
∑

s
wiei)

Remark:
∑

s
wiei is the estimator of the total

∑
U

ei .

Hence

V(Ŷ GR) ≈
∑

U

∑
U

(
πij

πiπj

− 1

)
eiej

An asymptotically unbiased estimator of V(Ŷ GR) is

V̂(Ŷ GR) ≈
∑

s

∑
s

1

πij

(
πij

πiπj

− 1

)
êi êj

The estimator Ŷ GR
has asymptotically smaller variance than the

estimator Ŷ if the residuals ei = yi − x
′
i B have smaller variance than the

values yi .



Special cases of the regression estimator

The ratio estimator estimator:

Consider a univariate x , such that approximately yi ≈ Bxi , and let

qi = xi .

Then B = Y/X (why?), B̂ = Ŷ/X̂ , and from the general formula of Ŷ GR

follows the estimator

Ŷ
R = Ŷ

X

X̂
(= XB̂)

The variance of Ŷ R
follows from the general formula of V(Ŷ GR).

The estimator Ŷ R
has smaller variance than the estimator Ŷ when the

values yi are scattered in small distance from straight line passing

through zero (small residuals ei = yi − xiB).



Special cases of the regression estimator

When xi = 1, so that yi ≈ B, X = N and B = Y/N, then

Ŷ
R = Ŷ

N

N̂
(= NB̂).

This variant of the ratio estimator can be used in sampling designs in

which N̂ ̸= N.

Generalizations of the estimator Ŷ R
are defined when different linear

regressions yi ≈ Bxi are defined for different sub-populations that

comprise the population U (see "poststratification" below).



Special cases of the regression estimator

Poststratified estimator:

Poststratification is the division of the sample in subsets (poststrata)

which correspond to specific sub-populations.

Poststratification is done after the collection of the data, when the

sampling units are identified as members of these sub-populations.

Example: In a survey of people, poststratification by specific age groups

is possible if the age is one of the auxiliary information collected by the

sample.



Special cases of the regression estimator

Let us consider poststrata U1, . . . , UG with respective known sizes

N1, . . . ,NG and samples s1, . . . , sG.

Assume then different linear approximations by poststratum, yi ≈ Bg for

i ∈ Ug , so that Bg = Yg/Ng and B̂g = Ŷg/N̂g .

The poststratified estimator is defined as

Ŷ
PS =

G∑
g=1

Ŷg

Ng

N̂g

(=
G∑

g=1

Ng
ˆ̄Yg).

The variance of Ŷ PS
follows from the general formula of V(Ŷ GR).

The estimator Ŷ PS
is more efficient than Ŷ R = Ŷ

N

N̂
when Bg differ

significantly.

The asymptotic properties of Ŷ PS
require adequately large sizes ng or

small number of poststrata.



Important properties of Ŷ GR

The estimator Ŷ GR
can be written alternatively as

Ŷ
GR =

∑
s

wiyi +
∑

s

wiyix
′
i

qi

(∑
s

wixix
′
i

qi

)−1

(X−
∑

s

wixi)

=
∑

s

wi

1 +
x
′
i

qi

(∑
s

wixix
′
i

qi

)−1

(X−
∑

s

wixi)

 yi

=
∑

s

ciyi

where ci = wigi , with gi = 1 +
x
′
i

qi

(∑
s

wixix
′
i

qi

)−1

(X−
∑

s
wixi)

The estimator has Ŷ GR
a linear form, with respect to yi , like the HT

estimator Ŷ =
∑

s
wiyi . The weights ci are independent of y .



Important properties of Ŷ GR

Substituting yi with xi it follows from the formula

Ŷ
GR =

∑
s

wiyi +
∑

s

wiyix
′
i

qi

(∑
s

wixix
′
i

qi

)−1

(X−
∑

s

wixi)

that the regression estimator of the total X is X̂GR = X.

In this case, the weights ci are "‘calibrated" to the known population

total X, that is
∑

s
cixi =

∑
U
xi .



Calibration

Calibration is a procedure of adjusting the sampling weights in the

linear form
∑

s
wiyi so that the new weights ci (the calibrated weights)

satisfy the calibration constraint
∑

s
cixi =

∑
U
xi , i.e., the estimation

procedure reproduces exactly known population totals X.

The same weights ci produce the calibration estimator

Ŷ
C =

∑
s

ciyi

of the total Y of any variable y .



Calibration

It follows easily that

Ŷ
C = Ŷ +

∑
s

(ci − wi)yi .

The estimator Ŷ C
will be approximately unbiased if

E [
∑

s
(ci − wi)yi ] ≈ 0, i.e., if the differences ci − wi are small.

The proper weights ci can be determined through the minimization of

the distance function
∑

s
qi(ci − wi)

2/wi under the constraint∑
s
cixi =

∑
U
xi . Usually qi = 1.

The minimization gives

ci = wigi , where gi = 1 +
x
′
i

qi

(∑
s

wixix
′
i

qi

)−1

(X−
∑

s
wixi),

i.e.,

Ŷ
C = Ŷ

GR



Calibration

The basic objective of calibration is the consistency of specific

estimates with the corresponding population totals which are already

known from other sources (e.g., administrative, census etc).

The calibration produces an estimator of linear form, identical to the

regression estimator, without using any assumption of linear relationship

(regression) of y with x.

The adjustment factors gi ci = wigi depend on the observations xi , but

are independent of y . They can viewed as a measure of difference

between sample and population. It holds that gi → 1 when n → N.

Since Ŷ C = Ŷ GR
, the estimator Ŷ C

can also be written as

Ŷ C = Ŷ + B̂
′
(X− X̂).



Calibration

Special case 1:

Consider the categorical variable x with p categories which correspond

to a partition of the population into p population groups U1, . . . , Up.

Suppose that the sizes of these groups, N1, . . . ,Np are known.

The value of the variable x for unit i ∈ U is defined as

xi = (δi1, . . . , δip, )
′
, where δij =

{
1, i ∈ Uj

0, i /∈ Uj

and indicates which group the unit i belongs to.

Then the total of x is ∑
i∈U

xi = (N1, . . . ,Np)
′
.



Calibration

Let s be a random sample from U, and sj = s ∩ Uj be set of the sample

units that belong to gategory (group) j. Then∑
i∈s

wixi = (N̂1, . . . , N̂p)
′
, (N̂j =

∑
i∈sj

wj)

Calibration that satisfies the constraint∑
i∈s

cixi =
∑
i∈U

xi , i.e., (N̂c
1
, . . . , N̂

c
p)

′
= (N1, . . . ,Np)

′
)

gives gi = Nj/N̂j if i ∈ Uj (so that ci = wiNj/N̂j) and the calibration

estimator of the total Y , of any variable y , is given by

Ŷ
C =

∑
i∈s

ciyi =

p∑
j=1

∑
i∈sj

ciyi =

p∑
j=1

Nj

N̂j

∑
i∈sj

wiyi =

p∑
j=1

Ŷj

Nj

N̂j

,

where Ŷj is the estimator of the total of y for category j.



Calibration

Remarks:

▶ In this special case of calibration, the estimator Ŷ C
is the same as

the poststratified estimator!

▶ The estimator Ŷ C
has simple form and its construction is simple.

▶ Since Ŷ C = Ŷ GR
, the estimator Ŷ C

can be written as

Ŷ C = Ŷ + B̂
′
(N− N̂), where N = (N1 . . . ,Np)

′
, N̂ = (N̂1 . . . , N̂p)

′
.

Analytically: Ŷ C = Ŷ + B̂1(N1 − N̂1) + · · ·+ B̂p(N1 − N̂p)

▶ Usual cases of such calibration: the p categories of the variable x
are age groups (in surveys of persons), or types of businesses (in

business surveys).



Calibration

Special case 2:

Consider the categorical variable x with p + q categories which

correspond to two different partitions of a population into p groups

U11, . . . , U1p and q groups U21, . . . , U2q . Suppose that the sizes of the

groups N11, . . . ,N1p and N21, . . . ,N2q , respectively, are known.

Example: Partition of population of persons by age groups and

geographic regions.

The value of the variable x for unit i ∈ U is defined as

xi = (δi11, . . . , δi1p, δi21, . . . , δi2q)
′
,

where δi1j =

{
1, i ∈ U1j

0, i /∈ U1j

δi2k =

{
1, i ∈ U2k

0, i /∈ U2k



Calibration

The total of x is ∑
i∈U

xi = (N11, . . . ,N1p,N21, . . . ,N2q)
′
.

Let s be a random sample from U, and s1j = s ∩ U1j , s2k = s ∩ U2k are

the partitions of the sample that correspond to the partitions of the

population. Then∑
i∈s

wixi = (N̂11, . . . , N̂1p, N̂21, . . . , N̂2q)
′
, (N̂1j =

∑
i∈s1j

wi), (N̂2k =
∑
i∈s2k

wi)

Calibration that satisfies the constraints∑
i∈s

cixi =
∑
i∈U

xi

equates the sizes of the p + q groups with their estimates obtained from

sample s.



Calibration

In this special case, the calibrated weights ci do not have a simple

form, but Ŷ C
can be written as

Ŷ
C = Ŷ + B̂

′
1
(N1 − N̂1) + B̂

′
2
(N2 − N̂2),

where N1 = (N11 . . . ,N1p)
′
, N̂1 = (N̂11 . . . , N̂1p)

′
and

N2 = (N21 . . . ,N2q)
′
, N̂2 = (N̂21 . . . , N̂2q)

′
.



Calibration

Crossing of the two partitions produces p × q groups Ujk , j = 1, . . . , p,

k = 1, . . . , q with associated sizes Njk . This is equivalent to single

partition of U into p × q groups with respect to the two characteristics

concurrently, e.g., with classification of each unit of a population of

persons by geographic region and age group.

If te sizes Njk are known, the calibration that equates N̂jk to Njk (p × q

equations) reduces to the first special case, which produces the simple

poststratified estimator.



Calibration

Remarks:

In large scale surveys, calibration is carried out for multiple partition of

the population, e.g., by gender, by age groups and by geographic

regions. The calibration procedure is then an extension of the

procedure for case 2.

Calibration for multiple partition with a large number of groups implies

large number of calibration constraints (equations of estimates with

totals). This may have undesirable consequences:

▶ some negative clibration factors gi , and hence negative

calibration weights ci = wigi .

▶ the sample in the different groups is not adequate for the

asymptotic properties of Ŷ C
.



Calibration in estimation for sub-populations

Suppose that calibration has been carried out using some vector

auxiliary variable x, so that
∑

s
cixi =

∑
U
xi .

Then the calibrated weights ci can be used to estimate the total Y (or

any parameter associated with any variable y) and for any Ud .

The estimation procedure is the same as in the production of the

estimate of Ŷd , but using the weights ci instead of wi , that is

Ŷ
C
d =

∑
s

ciydi .



Calibration in estimation for sub-populations

Using the analytic expression

ci = wigi = wi

1 +
x
′
i

qi

(∑
s

wixix
′
i

qi

)−1

(X−
∑

s

wixi)


the estimator Ŷ C

d can take the alternative form of a regression estimator

Ŷ
C
d = Ŷd + B̂

′
d(X− X̂),

where B̂d =

(∑
s

wixix
′
i

qi

)−1∑
s

wixiydi

qi
=

(∑
s

wixix
′
i

qi

)−1∑
sd

wixiyi

qi
.



Calibration in estimation for sub-populations

Remarks:

The calibration has not been done specifically for Ud , i.e.,∑
sd

cixi ̸=
∑

Ud
xi .

In regression terms this means that the auxiliary variable x has been

used for the improvement of the estimation at the level of the

population U and not at the level of the sub-population Ud .

The result of this is that the improvement of the estimation of Yd is small

or negligible (the smaller the Ud the smaller the improvement).



Calibration in estimation for sub-populations

If we want calibration at the level of Ud , i.e.,
∑

sd
cixi =

∑
Ud

xi , or we

want to improve te estimation of Yd , the the procedure of constructing

Ŷ C
d is restricted to sd , and then

Ŷ
C
d = Ŷd + B̂

′
d(Xd − X̂d),

where B̂d =

(∑
sd

wixix
′
i

qi

)−1∑
sd

wixiyi

qi
.

Calibration at the level of Ud requires that the totals Xd be available,

which may not be true (especially for very small Ud).

Also, for small Ud or/and for numerous auxiliary variables, the sample

may not be large enough for the asymptotic properties of Ŷ C
d to hold.



Variance estimation in complex surveys

We saw in previous chapters that for any sampling design the variance

of the estimator Ŷ is given by

V(Ŷ ) =
N∑

i=1

N∑
j=1

(
πij

πiπj

− 1

)
yiyj

If πij > 0 for all units i, j ∈ U, an unbiased estimator of V(Ŷ ) that is

computed using the sample s = {y1, . . . , yn} is given by

V̂(Ŷ ) =
n∑

i=1

n∑
j=1

1

πij

(
πij

πiπj

− 1

)
yiyj



Variance estimation in complex surveys

As already shown, the variance of the important non linear functions of

totals
˜̄Y = Ŷ/N̂, P̂ = N̂d/N̂, and R̂ = Ŷ/Ẑ are calculated

approximately (for large samples) using suitable variants of the basic

formula of the variance of the estimator of a total.



Variance estimation in complex surveys

In practice, the general use of the basic formula

V̂(Ŷ ) =
n∑

i=1

n∑
j=1

1

πij

(
πij

πiπj

− 1

)
yiyj

is problematic for the following reasons:

▶ Because of the double sum the formula is computationally difficult

in large samples.

▶ For many sampling designs it is very difficult (or impossible) to

compute the probabilities πij .

▶ The formula cannot be used in the case of non-smooth functions

of totals (e.g., median, quartiles).

In such problematic cases other, approximate, methods of estimation

of the variance are used.



Variance estimation in complex surveys

A simple approximate method of estimation of V(Ŷ ):

An approximate estimator of V(Ŷ ) is given by the formula

Ṽ(Ŷ ) =
1

n(n − 1)

∑
s

(
yi

πi/n
− Ŷ

)
2

This simplified estimator is calculated as if sampling has been done with

replacement (although in reality sampling has been done without

replacement), thus circumventing the probabilities πij and the double

sum.

In the case of simple random sampling we have

Ṽ(Ŷ ) = N2

n(n−1)

∑
s
(yi − ȳ)2

, where ȳ =
∑

s
yi/n. If the sampling ratio

f = n/N is very small, so that 1 − f ≈ 1, then Ṽ(Ŷ ) = V̂(Ŷ ) (which is

the variance given by the general formula).



Variance estimation in complex surveys

This approximate method is applied also to stratified sampling, with H

strata and stratum sample sizes nh:

Ṽ(Ŷ ) =
H∑

h=1

1

nh(nh − 1)

∑
sh

(
yi

πi/nh

− Ŷh

)
2

The simplification of the calculations for Ṽ(Ŷ ), compared to V̂(Ŷ ), is

significant. However, Ṽ(Ŷ ) is not an unbiased estimator of V(Ŷ ).
In many cases, the bias is positive (overestimation), and then Ṽ(Ŷ ) can

be used as upper bound estimate of the variance V(Ŷ ).



Resampling, or replication, methods of variance estimation

The general methodology

Let θ be a parameter, with estimator θ̂ calculated using a sample s.

Consider a number of (say K ) proper subsets s1, . . . , sK of the sample s,

and the different estimators θ̂1, . . . , θ̂K that are calculated using these

K different subsets .

An alternative estimator of θ which is based on the full sample s is the

average

θ̂⋆ =
1

K

K∑
k=1

θ̂k



Resampling methods of variance estimation

Example 1:

θ = Y , θ̂ = Ŷ =
∑

s

wiyi , θ̂k = Ŷk =
∑

sk

wiyi , k = 1, . . . , K

θ̂⋆ =
1

K

K∑
k=1

θ̂k =
1

K

K∑
k=1

Ŷk

Example 2:

θ =
Y

Z
, θ̂ =

Ŷ

Ẑ
, θ̂k =

Ŷk

Ẑk

, k = 1, . . . , K

θ̂⋆ =
1

K

K∑
k=1

θ̂k =
1

K

K∑
k=1

Ŷk

Ẑk



Resampling methods of variance estimation

We consider two variance estimators of θ̂⋆:

V̂1 =
1

K (K − 1)

K∑
k=1

(
θ̂k − θ̂⋆

)
2

V̂2 =
1

K (K − 1)

K∑
k=1

(
θ̂k − θ̂

)
2

It follows from the identity

K∑
k=1

(
θ̂k − θ̂

)
2

=
K∑

k=1

(
θ̂k − θ̂⋆

)
2

+ (θ̂⋆ − θ̂)2

that V̂2 ≥ V̂1.



Resampling methods of variance estimation

When the estimators θ̂1, . . . , θ̂K are uncorrelated and have the same

expected value, then V̂1 is unbiased estimator of V(θ̂⋆).

Both V̂1 and V̂2 are used also for the estimation of V(θ̂), assuming that

V(θ̂⋆) and V(θ̂) are almost equal.

The approximate variance estimators in the rest of this chapter are of

the form V̂1 and V̂2. But θ̂1, . . . , θ̂K are usually correlated, and both V̂1

and V̂2 are then biased estimators of V(θ̂⋆) and V(θ̂).



Resampling methods of variance estimation

The method of Random Groups

Let s be a sample from population U that is partitioned in K

non-overlapping random groups (sub-samples) s1, . . . , sK , so that

s = ∪K
k=1

sk . These groups are not (statistical) independent.

We assume that s is partitioned by a random mechanism so that each

random group sk has the same sampling design with that of the full

sample s.

Let θ̂1, . . . , θ̂K be estimators of θ, where θ̂k is calculated only with the

data of sk , k = 1 . . . , K .



Resampling methods of variance estimation

We consider two alternative estimators of θ: the estimator θ̂RG, which is

the average

θ̂RG =
1

K

K∑
k=1

θ̂k ,

and the estimator θ̂ which is calculated with the full sample s, without its

partition to the K groups.

We consider the alternative variance estimators:

V̂RG1 =
1

K (K − 1)

K∑
k=1

(
θ̂k − θ̂RG

)
2

and

V̂RG2 =
1

K (K − 1)

K∑
k=1

(
θ̂k − θ̂

)
2



Resampling methods of variance estimation

Both V̂RG1 and V̂RG2 are estimators of V(θ̂RG) and of V(θ̂), but they are

not unbiased estimators.

The bias of V̂RG1 as estimators of V(θ̂RG) is given by the formula

E(V̂RG1)− V(θ̂RG) = − 1

K (K − 1)

K∑
k=1

K∑
l=1 k ̸=l

C(θ̂k , θ̂l).

If all the pairs have the same covariance (say C), then

E(V̂RG1)− V(θ̂RG) = −C.

It holds that V̂RG2 ≥ V̂RG1.

When the sample s is selected with stratified sampling, then the method

of random groups is applied to each stratum separately.



Resampling methods of variance estimation

Remarks:

The method of random groups is computationally very simple.

In many cases, the partition of the sample into random groups with the

same sampling design is not simple.

The estimation of the variance of θ is unstable, i.e., it has large variance,

because of the small number of random groups used in practice.

In practice the use of this method is not as common as other, more

advanced, methods which are based on the concept of resampling.



Resampling methods of variance estimation

The method Jackknife

Let s be a random sample from a population U, and θ̂ be the estimator

of a parameter θ.

The sample s is partitioned in K random groups s1, . . . , sK of equal size

m = n/K . These groups are random (sub)samples from the full sample s.

We assume that the selection of the sub-samples s1, . . . , sK is done with

simple random sampling, even when the full sample s has not been

selected with simple random sampling.



Resampling methods of variance estimation

With each sub-sample sk , k , k = 1, . . . , K , we associate an estimator

θ̂(k), of the same type as the estimator θ̂, but calculated using the data

that are left after the omission of sk , i.e., using the data in s − sk .

Note 1: The different sets s − sk , k = 1, . . . , K overlap.

Note 2: In the calculation of θ̂(k), the weights wi for all i ∈ s − sk are

multiplied by K/(K − 1) to counterbalance the loss of sk .

For k = 1, . . . , K we define the "pseudo-value"

θ̂k = k θ̂ − (K − 1)θ̂(k)

The Jackknife estimator of θ is defined as the average of the

pseudo-values θ̂k

θ̂JK =
1

K

K∑
k=1

θ̂k



Resampling methods of variance estimation

The Jackknife variance estimator of θ̂JK is

V̂JK =
1

K (K − 1)

K∑
k=1

(
θ̂k − θ̂JK

)
2

=
K − 1

K

K∑
k=1

(
θ̂(k) − ˆ̄θ

)
2

where
ˆ̄θ =

∑
K

k=1
θ̂(k)/K . Here V̂JK is used as estimator of V(θ̂), and

V(θ̂JK ).

For good accuracy of the variance estimator V̂JK a sufficient number of

sub-samples is required (large K ). The maximum possible number of

sub-samples is obtained in the special case where K = n, m = 1.



Resampling methods of variance estimation

Example: Sample s of size n with simple random sampling.

π = n/N, wi = N/n, θ = Y , θ̂ = Ŷ =
∑

s
wiyi = (N/n)

∑
s
yi .

Consider K sub-samples s1, . . . , sK of equal sizec m = n/K . Then

K/(K − 1) = n/(n − m).

θ̂(k) =
K

K − 1

N

n

∑
s−sk

yi =
N

n − m

∑
s−sk

yi = N ˆ̄Ys−sk

θ̂k = K θ̂ − (K − 1)θ̂(k) =
N

m

∑
sk

yi = N ˆ̄Ysk

θ̂JK =
1

K

K∑
k=1

θ̂k =
N

n

∑
s

yi = N ˆ̄Ys (= θ̂)



Resampling methods of variance estimation

V̂JK =
1

K (K − 1)

K∑
k=1

(
θ̂k − θ̂JK

)
2

=
N2

K (K − 1)

K∑
k=1

(
ˆ̄Ysk

− ˆ̄Ys

)
2

=
N2(K − 1)

K

K∑
k=1

(
ˆ̄Ys−sk

− ˆ̄Ys

)
2

When K = n (and m = 1), then

V̂JK =
N2

n(n − 1)

∑
s

(
yi − ˆ̄Ys

)
2

=
1

1 − f
V̂(Ŷ ),

where V̂(Ŷ ) is unbiased estimator of V(Ŷ ) according to the general

formula. In this case, the approximate variance V̂JK is larger than the

variance V̂(Ŷ ), with the difference approaching zero when f = n/N

approaches zero.



Resampling methods of variance estimation

Continuing the example, consider now the ratio estimator

θ̂ = R̂ = (Ŷ/X̂)X = (
∑

s
yi/
∑

s
xi)X , for simple random sampling.

For K = n, m = 1 we have θ̂(k) = (
∑

s−k
yi/
∑

s−k
xi)X , k = 1, . . . , n,

where s − k denotes the sample s without the unit k .

The Jackknife estimator of V(θ̂) is

V̂JK =
n − 1

n

n∑
k=1

(θ̂(k) − ˆ̄θ)2,

where
ˆ̄θ =

∑
n

k=1
θ̂(k)/n.



Resampling methods of variance estimation

For an application of the above example we consider the survey data

(file cherry.csv in e-class) from a population of 2967 cherry trees. This

survey, which is described in the book Lohr (2009), had as objective the

estimation of the total timber volume (in cubic feet) for the population

of the cherry trees.

Measurements of height, diameter and volume were done on a sample

of 31 cherry trees which were selected with simple random sampling.

The total diameter X of all cherry trees was known: X = 41837 feet. The

very strong correlation between diameter and volume, ρ = 0, 96, and

the knowledge of X , justifies the use of the ratio estimator for the

estimation of the total volume Y with auxiliary variable the diameter.



Resampling methods of variance estimation

With common weight N/n = 2967/31 = 95, 71 for all sample units, we

calculate the estimates Ŷ = 89517.26, X̂ = 39307.96, and

R̂ = (Ŷ/X̂)X = 95272.16. Also, we calculate the Jackknife variances

V̂JK (Ŷ ) = 76729654 and V̂JK (R̂) = 30765141.

The relative difference of variances

(V̂JK (R̂)− V̂JK (Ŷ ))/V̂JK (Ŷ ) = −0, 599 shows that the variance of the

ratio estimator R̂ is smaller than the variance of the estimator Ŷ almost

by 60%.
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Jackknife for cluster sampling

Suppose that the sample s consists of K clusters, which form a random

sample from a population of Nc clusters.

In this case the clusters are the random groups of the sample on which

the Jackknife method is applied.

Then if θ̂ is the estimate calculated with the full sample s, the estimate

θ̂(k) is the estimate calculated without cluster k .

In multistage sampling, the Jackknife method is applied to the first stage

of sampling, with the K primary sampling units (PSU) forming the

random groups of the sample, regardless of the number of secondary

or tertiary units.

The estimate θ̂(k) is calculated with the data left after the omission of

the PSU k .



Resampling methods of variance estimation

Jackknife for stratified sampling

Consider stratified sampling with H strata, and suppose that the sample

in stratum h (h = 1, . . . ,H) is partitioned randomly into Kh groups

(sub-samples).

Let θ̂ be the estimate of θ which is calculated with the full sample s.

Then θ̂(hk) is the estimate of θ which is calculated with the data left in

the sample after the omission of group k in stratum h.

The Jackknife estimator of V(θ̂) is

V̂JK (θ̂) =
H∑

h=1

Kh − 1

Kh

Kh∑
k=1

(
θ̂(hk) − θ̂

)
2



Resampling methods of variance estimation

Jackknife for stratified multistage sampling

In stratified multistage sampling the Jackknife method is applied

separately to each stratum in the first stage of sampling, with random

groups the Kh selected PSU in stratum h (h = 1, . . . ,H). The Kh PSU,

denoted by shk , form the sample sh of stratum h, i.e., sh =
⋃

Kh

k=1
shk .

Let θ̂(hk) be the estimate of θ when the units of PSU k in stratum h (i.e.,

shk ) is omitted. Then, in the calculation of θ̂(hk) the weights of the units in

the rest of the PSU in stratum h are inflated by Kh/(Kh − 1), and the

weights of the units in the rest of the strata do not change.



Resampling methods of variance estimation

Analytically, if wi denotes generally the weight of unit i, in any stratum

and PSU, then the adjusted weights for the calculation of θ̂(hk) are

defined as follows:

w(hk)i =


wi , if, i /∈ sh

Kh

Kh−1
wi , if, i ∈ sh − shk

0, if , i ∈ shk



Resampling methods of variance estimation

Then the Jackknife estimator of V(θ̂) is

V̂JK (θ̂) =
H∑

h=1

Kh − 1

Kh

Kh∑
k=1

(
θ̂(hk) − θ̂

)
2

Example:

Estimation of total, where θ̂ = Ŷ =
∑

s
wiyi .

The replicate Ŷ(hk) is

Ŷ(hk) =
∑

s

w(hk)iyi =
∑
s−sh

wiyi +
∑

sh−shk

Kh

Kh − 1
wiyi

V̂JK (Ŷ ) =?
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The resampling procedure, involving the omission of a (PSU) shk for the

calculation of the estimate θ̂(hk), consecutively for all Kh PSU of each

stratum h, is independent of the variable and parameter of interest.

In practice, the ommision of shk from the full sample s is done implicitly

with the adjustment of wi = 0 for each unit i ∈ shk , (and with the proper

adjustment of the weights of the rest of the units of s as described

above). In this way, as many sets of adjusted weights for all units of s are

created as are in total the PSU in s.

These sets of weights are used for the calculation of the estimate θ̂(hk)

of any parameter θ(hk) for any variable, in the same way that the full

sample estimate θ̂ is calculated, and may form additional columns in

the data file.



Resampling methods of variance estimation

Remarks:

The Jackknife method is useful for the estimation of the variance of the

estimator of any parameter. However, it is not satisfactory when the

estimated parameter is not a smooth function of totals (e.g., median

and quartiles).

When there is a large number of strata, with many PSU per stratum, the

method requires many calculations.

The method can be applied also to the calibration estimator θ̂C
. To this

end, in each repetition calibration is carried out again with the reduced

sample for the production of the calibration estimator θ̂C

(k), which is

calculated with the calibrated weights.



Resampling methods of variance estimation

The method Bootstrap

The method Bootstrap uses resampling for the selection of a number of

sub-samples (replicates), with replacement, from the full sumple.

These sub-samples are used to calculate replicate estimates of θ, and

thereby estimate the variance V(θ̂).

This procedure is described for stratified multistage sampling.



Resampling methods of variance estimation

Let Kh be the number of PSU in the sample of stratum h. In each

repetition of the procedure of selecting sub-samples, Kh − 1 PSU are

selected with simple random sample with replacement.

This is done independently for each stratum h = 1, . . . ,H, and thus a

bootstrap replicate is created, consisting of
∑

H

h=1
(Kh − 1) PSU.

This procedure is repeated R times, producing R bootstrap replicates.

Let mhk(r) be the number of times that PSU k of stratum h is selected in

replicate r (r = 1, . . . , R). Note: 0 ≤ mhk(r) ≤ Kh − 1.



Resampling methods of variance estimation

In replicate r the sampling weights are adjusted as follows:

wi(r) = wi

Kh

Kh − 1
mhk(r), for unit i in PSU k of stratum h.

For each r let θ̂(r) be the replicate estimate of θ, calculated in the

same way as the estimate θ̂ but using the weights wi(r) instead of the

initial weights wi .

Then, the bootstrap estimator of the variance V(θ̂) is

V̂B(θ̂) =
1

R − 1

R∑
r=1

(
θ̂(r) − θ̂

)
2

.



Resampling methods of variance estimation

As in the method of Jackknife, in the method of Bootstrap the repeated

procedure of forming sub-samples (replicates) is independent of any

variable and parameter.

In each repetition r the weights of all units are adjusted as described

above (for the non-selected PSU the weights are zero), and thus a new

set of weights is created for the full sample to be used for the

calculation of the estimate θ̂(r) of any parameter θ for any variable, in

the same way that the estimate θ̂ is calculated.



Resampling methods of variance estimation

Remarks:

The number R is arbitrary, but usually it is R = 1000 or R = 500 or smaller.

The method of Bootstrap gives good estimate of variance for both

smooth and non-smooth functions of totals (e.g., quartiles).

The method of Bootstrap usually requires fewer calculations than the

method of Jackknife.

When the procedure of estimation includes calibration, then in addition

to the calibration of the weights of the full sample to calculate the

estimate θ̂C
, the adjusted weights wi(r) must be calibrated in each

relicate r to calculate the replicate estimate θ̂C

(r).



Nonresponse

Unit nonresponse

Almost invariably in surveys, some sampling units do not respond

completely, in the sense that none of the required information is

collected from them.

Causes for non-response

The main causes of non-response include:

▶ inability to communicate with the sampling units

▶ absence

▶ inability to respond (e.g., language, illiteracy)

▶ illness

▶ inaccessible units

▶ refusal



Nonresponse

Consequences of non-response

Possible bias, because of violation of the basic principle of randomness

of the sample.

The non-responding units may be systematically different from the

responding, so that the responding part of the sample not to be

representative of the population.

The responding part of the sample is representative of the part of the

population which would be responded to the survey, which is rarely the

same with the entire survey population.

The size of bias depends on the relationship of the respondents’

characteristics with the survey variables, and increases with the

non-response rate.

The stronger the relationship of the value yi of a variable y for unit i and

the probability of non-response of the unit, the larger the bias of

estimates related with this variable.
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For example, suppose that in a survey of personal income the persons

of high income have higher probability of non-response than persons of

low income.

The result will be that for variables related positively with income,

persons with high values of these variables will not be represented

adequately in the sample.

Anyway, regardless of this relationship, in the case of estimation of totals

it is obvious the bias (underestimation) resulting from the loss of sampling

units.

It should be noted that in any case of non-response the size of the bias

cannot be estimated.
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The variance of the estimators is also affected by non-response. The loss

of information due to non-response (information from fewer sampling

units) results in an increase of the variance of an estimator if the

variance of the associated variable in the responding part of the

sample remains the same as the variance in the full sample (or is larger).

However, this is not more likely to happen.

In the above example of higher non-response rate for persons of high

income, the variance of income in the respondents is smaller than that

in the full sample. Therefore, there will be bias in the estimation

(underestimation) of the variance of estimators related to income.
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Measure of response

Let nα (nα < n) be the size of the subset of the sample for which there

is response. A measure of response is given by the response rate

pa =
nα

n
.

This measure, usually expressed as percentage, indicates the degree of

success in eliciting response from the units of the selected sample.



Nonresponse

An alternative measure of response is given by the weighted response

rate

p̃α =

∑
nα
i=1

wi∑
n

i=1
wi

=
N̂α

N̂
,

where wi = 1/πi is the weight of the responded unit i, and N̂α is an

estimate of the number of population units which would respond given

their selection in the sample.

To p̃α is interpreted as an estimate of the average probability of

response from the members of the population.

The measures pa and p̃α may differ substantially. They are, however,

equivalent when the weights of all units are equal.

These two measures do not give the size of bias resulting from

non-response. Low non-response may cause large bias if the

relationship of non-response with survey variables is strong.
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Handling the problem of non-response

1. Prevention of non-response

Prevention of the problem at the stage of designing the survey. Factors

related to possible non-response include:

▶ Subject (content) of the survey

▶ design of the questionnaire

▶ selection, training and supervision of interviewers

▶ method of data collection

▶ time and conditions in conducting the survey

▶ frequency of data collection in the case of repeated survey.



Nonresponse

2. Reduction of the non-response

Steps towards a reductionof non-response during the survey include:

▶ Call-backs, follow-ups

Repeated efforts for communication

Different days and times (in face to face or telephone interviews)

Different methods of data collection (e.g., telephone follow-up in

mail survey)

▶ Survey of non-respondents

A random sample of non-responded units is selected, and a

special effort is made to collect data from all its units.

If this process is successful, it may achieve unbiasdeness with

suitable methodology. However, this is a time consuming process,

and because of that it is rarely implemented.



Nonresponse

3. Adjustment of the weights of the responded units

The objective of such an adjustment is to increase the weights of the

responded units so that these units represent the non-responded units as

well.

Observe first that whereas the estimate of the population size N based

on the full sample

N̂ =
n∑

i=1

wi ,

is unbiased, and for some sampling designs is exactly equal to N, the

estimate based on the reduced sample becomes

N̂α =
nα∑
i=1

wi ,

which is an underestimation of N because of the loss of n − nα sample

units.
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This observation suggests the way of adjusting the weights for restoring

the unbiasedness of the estimator of N.

Specifically, the weights of all the responded units are multiplied by the

common factor N̂/N̂α, which is the inverse of the weighted response

rate p̃α.

Thus, the adjusted weight of each responded unit i is

w̃i = wi

1

p̃α
= wi

N̂

N̂α

= wi

∑
n

i=1
wi∑

nα
i=1

wi

.

Then, the estimator resulting from the use of the adjusted weights is

Ñ =
nα∑
i=1

w̃i =
1

p̃α

nα∑
i=1

wi =
1

p̃α
N̂α = N̂,

that is, the unbiased estimator that would be obtained from the full

sample.
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The interpretation of p̃α as estimated average probability of response of

the population units, leads to the interesting view of the adjusted weight

of each selected and responded unit as the inverse of the probability of

selection and response of this unit, i.e., w̃i = 1/πi p̃α.

The adjusted weights are used in the estimation of any other

parameter, but they do not restore the unbiasedness of the estimation.

So, the estimator of the total Y

Ỹ =
nα∑
i=1

w̃iyi =
1

p̃α

nα∑
i=1

wiyi

is not unbiased, but its bias may be lower than the one that would result

without the weight adjustment.



Nonresponse

The estimated average probability of response p̃α does not depend on

the survey variables, and is the same for all the responded units of the

sample.

If the true probabilities of response are the same for all the population

units, and the response of each unit is independent from the response

of the other units, then the non-respondents are as if the have been

selected randomly from the sample, and the respondents constitute a

representative sample.

The assumption of such response mechanism is implicit when the

non-response is not taken into consideration.

In this unrealistic case, the adjusted weights produce an unbiased

estimator of total Ỹ =
∑

nα
i=1

w̃iyi for any variable y .
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More realistic is the assumption that for a partition of the sample to

different classes according to some characteristic(s), the probability of

response is (almost) the same for the units that belong to the same class.

For such a class an estimate of this probability is the weighted rate of

response of the units of the class, which can be used for the adjustment

of the weights of all responded units of the class. In other words a

different p̃α is used for each class.

Let K be the number of such classes, of size Nk , (k = 1, . . . , K ), and let

nka be the number of respondents in class k . Then

Ỹ =
K∑

k=1

Ỹk =
K∑

k=1

1

p̃kα

nkα∑
i=1

wiyi =
K∑

k=1

N̂k

N̂kα

nkα∑
i=1

wiyi .

The weights of the respondents in class k are increased uniformly by

1/p̃kα = N̂k/N̂kα, so that the non-respondents of this class are also

represented in the sample.
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Example: Assume that for each unit of a sample of persons the age is

known, and that the sample is partitioned into age classes as shown in

the table.

Age

15-24 25-34 35-44 45-64 65+ όc

nk 202 220 180 195 203 1000

nkα 124 187 162 187 203 863∑
nk

i=1
wi 30322 33013 27046 29272 30451 150104∑

nkα
i=1

wi 18693 28143 24371 28138 30451 129796

p̃kα 0,6165 0,8525 0,9011 0,9613 1,000

1/p̃kα 1,622 1,173 1,110 1,040 1,000

The weight of each respondent of age between 15 and 24 is multiplied

by 1,622, and likewise for the weights of the respondents in the other

age classes. In the class 65+ there was full response, and thus the

weights did not change. Note that 1/p̃α = N̂/N̂α = 1,156.
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In practice, for substantial reduction of the bias the classes should be

specified so that the units in each class to be as similar as possible, with

respect to main variables, and the weighted rates of response in

different classes to be as dissimilar as possible.

Common characteristics of specification of the classes are geographic

variables, and other variables that exist in the survey frame. For

example, in a business survey, variables such as type of of business and

size of business.



Nonresponse

Also, characteristics specified by paradata, that is, data produced by

the sampling process. These may be data recorded by the interviewers,

such as day and time of call for the interview, approach tactic,

outcome of call, etc.

Other paradata are observations for each sampled household, such as

dwelling type, security system, indication of presence of children,

observations for the neighborhood, etc.

Often, to facilitate the process, the strata of the sample are used as

classes.
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The adjustment of the weights for nonresponse may cause increase of

the variance of estimates when the classes of adjustment are numerous

and contain few sampling units.

Then, the probabilities of response are not estimated accurately, which

results in an increase of the variance of estimates. Also, regardless of the

number of classes, some of them may require large adjustment factors,

the result of which is an increase of the variance of the estimates.

Methods of a different adjustment of the weight of each unit --- using

an estimate of the probability of its response --- which are based on the

use of auxiliary variables and on model assumptions, exist in the

bibliography but they are rarely used in practice.
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The estimator

Ỹ =
K∑

k=1

N̂k

N̂kα

nkα∑
i=1

wiyi

is of the same form as the poststratified estimator. The difference is that

in poststratification the sizes of the poststrata Nj are known, whereas in

the adjustment of the weights of the respondents by class the sizes of

the classes Nk are unknown and estimated by N̂k .

Remark: In the adjustment of the weights of the respondents by class

the adjustment factors N̂k/N̂kα are always greater than one, whereas in

poststratification the adjustment factors may be any positive number

(why?)
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Poststratification is a form of adjustment of the weights for non-response,

with the weights of each poststratum g multiplied by Ng/N̂ga , where Ng

is the size of the poststratum g and N̂ga is the estimate of Ng which is

based on the respondents of this poststratum, so that the sum of the

adjusted weights of the poststratum to be equal to Ng (calibration).

In a survey we may have an adjustment of the weights by class for

non-response correction, and poststratification with poststrata that are

different from the classes or are partly overlapping with them. As in the

case of the classes, the units of the same poststratum should have

almost the same probability of response, for the poststratification to

result in bias reduction.
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Item nonresponse

For some sample units there may be partial response, in the sense that

these units do not respond to some questions. This happens when the

respondent refuses or is unable to respond to some questions, or when

some wrong answers could not be corrected in the process of input

editing.

The process of substituting non available or wrong data with suitable

data for the creation of a complete data file is known as imputation.



ή ό (Nonresponse)

There exist several metods of imputation. Good methods of imputation

can preserve known relationships among variables and reduce the bias

due to partial non-response.

Imputation is used only for substitution of non available or wrong data,

not for total non-response.

The imputation was in the past a manual process, but now days more

often automated systems of imputation are used.

The artificial small survey data set (source: book of Lohr (2009)) shown in

in the following table will be used to explain different imputation

methods.

The number "1" in the last two columns indicates that the respondent

answered yes in the question.
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Years of Crime Violent Crime

Person Age Sex Education Victim Victim

1 47 M 16 0 0

2 45 F ? 1 1

3 19 M 11 0 0

4 21 F ? 1 1

5 24 M 12 1 1

6 41 F ? 0 0

7 36 M 20 1 ?

8 50 M 12 0 0

9 53 F 13 0 ?

10 17 M 10 ? ?

11 53 F 12 0 0

12 21 F 12 0 0

13 18 F 11 1 ?

14 34 M 16 1 0

15 44 M 14 0 0

16 45 M 11 0 0

17 54 F 14 0 0

18 55 F 10 0 0

19 29 F 12 ? 0

20 32 F 10 0 0
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Methods of Imputation

These methods are divided to those that use data only from the

responded and other auxiliary data, and to those that use data from

other respondents.

Deductive imputation

This method determines the missing value with certainty using logical

constraints and other data from the same unit, e.g., a missing term from

a sum. It is the ideal but the less frequent type of imputation.

In the example of the table, for person 9 there is missing value in the last

question. However, the response in the second last question implies

logically that the missing value should be 0.
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Historic imputation

This method is more useful in longitudinal surveys, especially for variables

that are stable over time. It uses values reported by the same unit in a

previous measurement.

In cases where the response in a previous measurement can determine

with certainty the current response, this method is a special case of

deductive imputation.
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Mean imputation

With this method the imputed missing value for some variable is the

mean of the values of the responding sample units. For the same

variable, the mean value is used for each unit for which imputation is

required.

This method is used only for quantitative variables, and often as last

resort. It preserves totals and means, but distorts distributions and

relationships among variables.

Also, it causes artificial concentration of values around the mean,

implying artificial reduction of the variance of the values of the variable

for which we do imputation.

In the example, for persons 2, 4 and 6 the value for years of education is

missing. For all these three persons the imputed value is the mean of the

17 responses in the same question: 12,70. After imputation the mean of

all 20 persons is the same with the mean of the 17 respondents.
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Cell mean imputation

The sample is partitioned into cells (classes) so that the units of the same

class are similar. In each such class we do imputation using the mean

value of the respondents of the class. The distortion of the distribution of

the values of the variable and the artificial reduction of the variance

are less severe than with the simple mean imputation.

For the data of the example, the sample is partitioned in four classes by

age and sex.

Age

≤ 34 ≥ 35

Persons Persons

Sex 3,5,10,14 1,7,8,15,16

F Persons Persons

4,12,13,19,20 2,6,9,11,17,18
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For persons 2 and 6, the missing value for the years of education is

imputed with the mean of the four women of age equal or higher than

35 years who responded to the question: 12,25. For person 4, the

imputed value is the mean of the four women of age equal or lower

than 34 years who responded to the question: 11,25.

After imputation, in each class the mean value is the same with the

mean of the respondents.
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Hot-deck imputation

This is a class of methods that create a more authentic variability of the

imputed values than the mean imputation method. These methods give

always feasible values because the imputed values belong to

respondents of the same survey.

Random hot-deck imputation

With this method the missing value is imputed with the value of a

"donor", who is selected randomly from the respondents. This is the

simplest type of hot-deck imputation.

Cell random hot-deck imputation

This is a variant of the previous method, in which suitable classes of

sample units are created, as in the cell mean imputation. For a unit of a

class, the donor is randomly selected from the respondents of the same

class.



Nonresponse

In the example, for person 10 the answers to the last two questions are

missing. In the class of this person, persons 3, 5 and 14 have responded

to both questions, and so one of these three persons is randomly

selected as donor.

Sequential hot deck imputation

With this method the missing value is imputed with the corresponding

value from the last preceding responded unit of the same class in the

data file. The advantage of this non-random procedure is the easy

sequential processing of the file. The disadvantage is that it often makes

multiple use use of the same donor.

In the example, for person 19 the answer to the second last question is

missing. Person 13 was the last of the same class that responded, and so

the value 1 was used in the imputation.



Nonresponse

Nearest-Neighbor Hot-Deck Imputation

The missing value of a variable is imputed with the value of a

respondent who is the "nearest", according to some distance function

for the values of this variable, defined by known auxiliary information.

For example, if age and sex are used to define distance, then the

respondent of the same sex and the nearest age is selected as donor.

In our example, the missing values for person 10 are imputed with the

values of person 3, who is of the same sex and of the nearest age with

person 10.



Nonresponse)

Regression Imputation

This method employs regression of the variable for which we need

imputation on a set of variables for which there is response from all units.

The regression equation is used then for "prediction" of the missing

values.

In the example, we have only 18 responses for the variable "crime

victim" (perhaps too few for fitting a model to the data), but a logistic

regression with regressor the age gives the following model for the

predicted probability p̂ for a person to be "crime victim",

log
p̂

1 − p̂
= 2.5643 − 0.0896 × age.

The predicted probability for a person of age 17 to be "crime victim" is

p̂ = 0.74. Since this probability is higher than 0.5, the missing value for

person 10 is imputed with the value 1.



Nonresponse

Cold-deck imputation

With this method, the imputed values are from previous survey or from

historic data.
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