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Abstract Instantaneous dependence among several asset
returns is the main reason for the computational and statisti-
cal complexities in working with full multivariate GARCH
models. Using the Cholesky decomposition of the covari-
ance matrix of such returns, we introduce a broad class of
multivariate models where univariate GARCH models are
used for variances of individual assets and parsimonious
models for the time-varying unit lower triangular matrices.
This approach, while reducing the number of parameters
and severity of the positive-definiteness constraint, has sev-
eral advantages compared to the traditional orthogonal and
related GARCH models. Its major drawback is the poten-
tial need for an a priori ordering or grouping of the stocks
in a portfolio, which through a case study we show can
be taken advantage of so far as reducing the forecast er-
ror of the volatilities and the dimension of the parameter
space are concerned. Moreover, the Cholesky decomposi-
tion, unlike its competitors, decompose the normal likeli-
hood function as a product of univariate normal likelihoods
with independent parameters, resulting in fast estimation al-
gorithms. Gaussian maximum likelihood methods of esti-
mation of the parameters are developed. The methodology
is implemented for a real financial dataset with seven assets,
and its forecasting power is compared with other existing
models.
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1 Introduction

Many tasks of modern financial management including port-
folio selection, option pricing and risk assessment can be
reduced to the prediction of a sequence of large N × N co-
variance matrices {�t } based on the (conditionally) indepen-
dently N(0,�t )-distributed data Yt , t = 1,2, . . . , n, where
Yt is the shock (innovation) at time t of a multivariate time
series of driftless returns of N assets in a portfolio (Tsay
2005). Since �t is positive-definite and its number of en-
tries grows quadratically in N , the problem of parsimonious
modeling of {�t } is truly challenging and has been stud-
ied earnestly in the literature of finance in the last three
decades (Engle 1982, 2002; Tsay 2005). The key idea is
to write difference equations for {�t } similar to the uni-
variate autoregressive and moving average (ARMA) mod-
els. More precisely, with Ft standing for the past informa-
tion up to and including the time t , Bollerslev (1986) de-
fined the classes of generalized autoregressive conditional
heteroscedastic (GARCH) models for a univariate returns
series {yt } by{

yt |Ft−1 ∼ N(μt , σ
2
t ),

σ 2
t = α0 + ∑p

i=1 αiy
2
t−i + ∑q

j=1 βjσ
2
t−j ,

(1)

where the constraints α0 > 0 and αi ≥ 0, βi ≥ 0, en-
sure a positive variance. Note that this general class of
GARCH models reduces to the simpler class of ARCH mod-
els when all βj = 0. For a discussion and review of progress
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in continuous-time stochastic volatility models see Stelzer
(2010).

Emboldened by the ease of use and success of univari-
ate GARCH models, many early variants of multivariate
GARCH models (Engle and Kroner 1995) were defined
simply as difference equations of the form (1) either for
the vectorized sequence of covariance matrices {vec�t } or
the sequence {�t } itself with suitable matrix coefficients.
The number of free parameters of such models is known
to grow proportional to N4 and N2, respectively. Conse-
quently, for large covariance matrices the use of full mul-
tivariate GARCH models has proved impractical (Engle
2002; Tse and Tsui 2002). Simplification occurs (Alexan-
der 2001, Chap. 7) when the coefficients are diagonal ma-
trices, in which case, each variance/covariance term in �t

follows a univariate GARCH model with the lagged vari-
ance/covariance terms and squares and cross products of the
data (Ledoit et al. 2003). However, complicated restrictions
on the coefficient parameters are needed to guarantee their
positive-definiteness. These restrictions are often too diffi-
cult to satisfy in the course of iterative optimization of the
likelihood function even when the number of assets is about
five.

In this paper, we provide parsimonious models for the
time-varying covariance matrices {�t }, by writing differ-
ence equations for the components of the Cholesky de-
composition of �t (Pourahmadi 1999; Tsay 2005; Smith
and Kohn 2002). The new class of models are closely re-
lated to the standard and familiar factor models (Diebold
and Nerlove 1989; Vrontos et al. 2003), and orthogonal
GARCH models (Alexander 2001); for an extensive discus-
sion on the interrelationship among these models and the
role of ordering the stocks in a portfolio see Dellaportas and
Pourahmadi (2004, Sect. 2), Chou et al. (2009) and Chang
and Tsay (2010). Highly desirable and practical features of
our approach compared to some of the existing methods
are:

(a) Forecast consistency, in the sense that when new assets
are added to the portfolio, the volatility forecasts of the
original assets will be unchanged.

(b) The estimation of the volatility and dependence param-
eters are not separated.

(c) The Cholesky decomposition reduces multivariate vol-
atility modeling to separate estimation of N univariate
regression GARCH models.

(d) By viewing our models as full factor models (Sect. 2.1),
exploitation of (c) above allows an efficient methodol-
ogy to estimate the full factor models (Vrontos et al.
2003; Aguilar and West 2000), a fact that has not been
used before.

The outline of the paper is as follows. In Sect. 2, we
present the Cholesky decomposition of a covariance ma-
trix and provide examples of structured and parsimonious

models for the Cholesky factors. The roles of such mod-
els in handling volatility of financial data are discussed. It
is shown that the multivariate conditional covariance esti-
mation can be reduced to estimating the 3N parameters of
univariate GARCH models and a few “dependence” param-
eters. A maximum likelihood procedure for estimation of the
“dependence” and volatility parameters as well as the issue
of ordering the stocks are presented in Sect. 3. In Sect. 4,
for a data set of N = 7 daily exchange rates we study the
impact of ordering the variables on the forecast error of the
volatility and compare the performance of several traditional
multivariate volatility models. Section 5 concludes the pa-
per.

2 The Cholesky decomposition and GARCH models

We rely on the notion of regression to derive the Cholesky
decomposition of a covariance matrix and hence motivate
the use of a lower triangular matrix with unconstrained
entries, instead of an orthogonal matrix in the orthogonal
GARCH models (Alexander 2001). For the time being, we
drop the subscript t in Yt ,�t and focus on the contem-
poraneous covariance structure of a generic random vector
Y = (y1, . . . , yN)′ and view y1, y2, . . . , yj , . . . , yN as an or-
dered set of random variables indexed by j . Consider re-
gressing yj on its predecessors y1, . . . , yj−1:

yj =
j−1∑
k=1

φjkyk + εj , j = 1,2, . . . ,N, (2)

where φjk and σ 2
j = var(εj ) are the unique regression co-

efficients and residual variances with obvious statistical in-
terpretations; by convention

∑
∅ = 0. Indeed, with ε =

(ε1, . . . , εN)′ and ν = cov(ε) = diag(σ 2
1 , . . . , σ 2

N), one can
write (2) in the matrix form T Y = ε, where T is a unit
lower triangular matrix with −φjk in the (j, k)th position,
then it follows that the unit lower triangular matrix T diag-
onalizes �:

T �T ′ = ν. (3)

The pair of matrices (T , ν) are the components of the mod-
ified Cholesky decomposition of � (Pourahmadi 1999). For
an unstructured covariance matrix, the nonredundant en-
tries of T and logν are unconstrained and referred to as
its generalized autoregressive parameters (GARP) and log-
innovation variances (IV), respectively.

Since the inverse of T is also a unit lower triangular ma-
trix, setting T −1 = B = (θij ) it follows from (3) that
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� = BνB ′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

σ 2
1 θ21σ

2
1 θ31σ

2
1 · · · θN1σ

2
1

θ21σ
2
1

∑2
i=1 θ2

2iσ
2
i
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2
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2
i
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2
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i
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i

...
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2
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2
i
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i=1 θ3iθNiσ

2
i · · · ∑N

i=1 θ2
Niσ

2
i

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (4)

This alternative representation of the Cholesky decom-
position of � and its parameters are closely related to the
moving average and factor models discussed next.

2.1 The factor model interpretation

Now we discuss the possibility of viewing the Cholesky
decomposition (4) as a factor model. In fact, solving for
Y from T Y = ε, or regressing yj on the past innovations
ε1, . . . , εj−1, it follows that

yj = εj +
j−1∑
k=1

θjkεk, j = 1, . . . ,N, (5)

or in matrix form,

Y = Bε. (6)

It turns out that the representation (6) is closely related to
the factor models. To this end, we partition the innovation
vector ε and the matrix B so that (6) becomes

Y = Bε = (B1
... B2)

⎛
⎝ ε1

· · ·
ε2

⎞
⎠ = B1ε1 + B2ε2. (7)

Now, think of ε1 as a k × 1 vector of latent factors, B1

the corresponding matrix of factor loadings, and B2ε2 as
the vector of idiosyncratic errors. Then, the latent factors
ε1 have clear statistical interpretations as the first k in-
novations of Y and (7) has the appearance of a factor
model. Note that for the extreme case of k = N , the vec-
tor of idiosyncratic errors in (7) is zero and it reduces to
the full-factor representation of Y (Aguilar and West 2000;
Vrontos et al. 2003).

2.2 Structured T matrices: parsimony

In this section we provide a class of structured covariance
matrices with a small number of parameters. These matrices
can be used, for example, in Bollerslev’s (1990) constant-
correlation models to reduce the number of correlation pa-
rameters from the maximum of N(N − 1)/2 to as low as
one or two. Similar structures for the lower triangular ma-
trix T containing the GARPs in (2)–(3) will reduce the high
number of parameters in the AR structures.

Consider a situation where T is a Toeplitz matrix or the
entries along its subdiagonals are constant:

φi,i−j = φj , j = 1,2, . . . ,N − 1; i = j + 1, . . . ,N. (8)

This structure reduces the number of parameters in T to
N − 1, which still could be large. If needed, one could fur-
ther reduce the dimension of (φ1, φ2, . . . , φN−1) via para-
metric models formulated using the regressogram intro-
duced in Pourahmadi (1999) or other graphical tools. When
there are indications that φj ’s are monotone in j , then one
may set, for example,

φj = γ0 + γ1j
±k, j = 1, . . . ,N − 1, (9)

where γ0, γ1 are the two new parameters and k is a known
positive integer. In applications where constancy along the
subdiagonals of T is deemed inappropriate, one could expo-
nentiate φj ’s by the Box-Cox transformation of the (time)
index i along those subdiagonals. Namely, a non-Toeplitz T

can be obtained by setting

φi,i−j = φ
f (i;λj )−f (i−j ;λj )

j ,

j = 1,2, . . . ,N − 1; i = j + 1, . . . ,N, (10)

where

f (x;λ) =
{

xλ−1
λ

if λ �= 0,

logx if λ = 0.

For example, if 0 < φj < 1, then the entries along
the j th subdiagonal of T are monotone increasing if
λj < 1, monotone decreasing if λj > 1, or constant if
λj = 1. For other range of values of φj , similar noncon-
stant patterns could be prescribed depending on the val-
ues of the exponent λj . Here, the number of parameters
(φ1, . . . , φN−1, λ1, . . . , λN−1) could be as small as 2 or as
large as 2(N − 1). For more examples of this type see Del-
laportas and Pourahmadi (2004).

2.3 The Cholesky-GARCH models

Returning to the multivariate time series of returns {Yt },
note that from the matrix form of (2) we have εt = TtYt ,
where the εjt ’s are uncorrelated. Thus, motivated by the
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idea of orthogonal GARCH (Alexander 2001) and constant-
correlation GARCH (Bollerslev 1990) models, we refer to
the case when Tt ≡ T , and GARCH (p, q) models for
the time-varying innovation variances {νt } are used, as
Cholesky-GARCH models for the returns {Yt }. Note that
even in this simple case the number of parameters is N(N −
1)/2 + (p + q + 1)N which is quite large for large data sets
with, say, N = 100. This can be reduced considerably by
selecting a structured T from the previous section, or from
a longer list of such examples in Dellaportas and Pourah-
madi (2004, Sect. 3). In the sequel for simplicity we fix
p = q = 1.

A noteworthy feature of our Cholesky-GARCH mod-
els, which is immediate from (4), is that their correlation
matrices are time-varying, and hence could be more flexi-
ble compared to the Bollerslev’s (1990) constant-correlation
GARCH models.

3 Estimation

In this section we present some of the conceptual under-
pinnings for estimation of the parameters of the Cholesky-
GARCH models and the issue of ordering the stocks in a
portfolio which is required in our approach.

3.1 The likelihood function

Assuming normality for the returns, the log-likelihood func-
tion, up to ignoring some irrelevant constants, is given by

L(θ) =
n∑

t=1

(
N∑

j=1

logσ 2
j t + Y ′

t T
′
t ν

−1
t TtYt

)

=
n∑

t=1

N∑
j=1

(
logσ 2

j t + ε2
j t

σ 2
j t

)

=
N∑

j=1

{
n∑

t=1

(
logσ 2

j t + ε2
j t

σ 2
j t

)}
, (11)

where θ is the vector of parameters in a Cholesky-GARCH
model.

The last representation is the most convenient to use for
computational purposes since it can be viewed as a sum
of N univariate Gaussian likelihoods for the mutually un-
correlated (transformed) returns {εjt }, j = 1, . . . ,N . It is
the source of a rather unique and appealing property of the
Cholesky-GARCH models that is not available in any other
multivariate time series models with time-varying innova-
tion variances. Thus, estimation of the N(N − 1)/2 parame-
ters in T proceeds by estimating independently N univariate
regression models with time-varying innovation variances.
Details of an algorithm for finding MLE of the parameters

and the asymptotic properties of the estimators can be found
in Pourahmadi (2000, Sect. 2).

By contrast, in the orthogonal GARCH models the es-
timation of the orthogonal matrix and the volatilities are
achieved in two steps, the matrix is usually estimated first as
if the volatilities were time-independent, followed by esti-
mation of the latter. Similarly, Vrontos et al. (2003) focused
on representation (4) and estimated simultaneously all the
parameters, without exploiting the fact that the GARP pa-
rameters T = B−1 could be estimated faster via (11). From a
practical perspective, Cholesky- GARCH models provide an
easy and very competitive alternative to the existing multi-
variate models (Dellaportas and Pourahmadi 2004, Sect. 2),
allowing quick and easy estimation for larger values of N .
There is also the possibility of developing a sequential al-
gorithm over time or when n gets large following the recent
result in Chang and Tsay (2010). At the moment, the only
drawback of the Cholesky-GARCH models seems to be the
need for ordering the stocks in a portfolio which is discussed
next.

3.2 Ordering the stocks

The Cholesky-GARCH models we proposed here is based
on some sort of a priori ordering of the components of the
return vector. While for a portfolio of N stocks there are N !
choices, the degree of non-uniqueness here is similar to the
factor models and the choice of factor rotations (Geweke
and Zhou 1996). As a statistical decision problem, order-
ing variables is quite challenging. In the Bayesian literature
this very same problem has been investigated by Webb and
Forster (2008) who presented an efficient reversible jump
MCMC algorithm that searches over all models with differ-
ent orderings. This could be readily implemented here by
applying a Laplace approximation to each row of (2) as de-
scribed by Vrontos et al. (2003) who provided a way to find
the best ordering in a full factor model.

A default and simple method is to order the stocks ac-
cording to the sample variances of their returns. As another
possible alternative, we suggest a search algorithm based on
some criterion such as AIC or BIC that can be readily imple-
mented. First, note that GARP parameterization leads to the
Cholesky-GARCH models in which the ordering problem is
of order N2 and not the usual order N !. To see this, note that
for any N > 1 in (2), if yj is picked up as a response vari-
able the order of y1, y2, . . . , yj−1 is irrelevant. Thus, starting
from j = N , there are N possible comparisons, via AIC or
BIC, required to choose yj . Subsequently, since yN has been
chosen and does not appear in the rest of the equations, yN−1

is chosen as the best model among the N − 1 possible ways
to write (2) for k = 1, . . . ,N − 1, and so forth. Therefore,
the number of required comparisons is N(N − 1)/2 − 1.

Although we perform this ordering algorithm in our real
data example in the next Section, we emphasize that this
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model-fitting exercise can only give the model that best de-
scribes the data generation mechanism, but it may fail in
providing the best model that optimally predicts covariance
matrices. This important fact had been also noted by Aguilar
and West (2000), but they did not deal with the problem of
ordering the stocks in a portfolio.

4 Exchange rates data

The predictive performance of multivariate time-varying
volatility models can be judged based on their forecasting
powers. Here we concentrate on comparing the forecast per-
formance of our procedure with six of the existing multivari-
ate volatility models. We also study the impact of various
ordering of the stocks in a portfolio on the forecast perfor-
mance of the various models. Some additional experiments
that focus on the ability of our Cholesky-GARCH models
and the competing models to construct portfolios or calcu-
late Value at Risk (VaR) can be found in Dellaportas and
Pourahmadi (2004).

4.1 The data and the competing models

We obtained (source: DATASTREAM) 7 daily exchange
rates of the US dollar against UK pound, EURO, Swedish
krona, Australian dollar, Canadian dollar, Swiss franc and
Japanese YEN, recorded from 2/1/1999 up to 28/10/2003.
We also obtained (source: REUTERS) two-minute intraday
data from the same exchange rates for the following 3 days
29–31/10/2003. From the 7 series, we created all 7C5 = 21
portfolios of 5 exchange rates, and used them as replications
in our computational experiment. Finally, for the purposes
of comparison we used the following six widely used multi-
variate volatility models:

(i) The multivariate diagonal-vec model of order (1,1);
see Bollerslev et al. (1994).

(ii) The matrix-diagonal model of order (1,1); see Boller-
slev et al. (1994).

(iii) An exponentially weighted moving average model of
the form

�t = α(εt−1ε
′
t−1) + (1 − α)�t−1,

where 0 ≤ α ≤ 1 and {εt } is the vector of shocks. Note
that RiskMetrics uses this model where the smoothing
parameter α is not estimated, but set to 0.06.

(iv) The constant-correlation of order (1,1); see Bollerslev
(1990).

(v) The orthogonal GARCH model of order (1,1); see
Alexander (2001).

(vi) The dynamic conditional correlation (DCC) model; see
Engle (2002).

For each of the 21 replications of the exchange rates, and
for all 5! = 120 possible orderings within each replication,
we predicted the conditional covariance matrices for the
next three days of 29–31/10/2003 using the new Cholesky-
GARCH models and the six popular multivariate models
(i)–(vi) mentioned above.

4.2 Measures of forecast performance and the empirical
results

Although the true realized covariance matrix is unavail-
able, recent developments in the analysis of realized covaria-
tion (Andersen et al. 1999; Barndorff-Nielsen and Shephard
2004) allow us to replace it by a reliable proxy, the realized
covariation matrix. The realized covariation matrix with el-
ements σij , is calculated for each of the three days as the
cumulative cross-products of intraday returns over each day.
Following Ledoit et al. (2003), for the corresponding fore-
casts σ ∗

ij derived from the daily data series the following two
measures of forecast performance will be used here:

Mean absolute deviation

MAD = N−2
∑
i,j

E|σ ∗
ij − σij |.

Root mean square error

RMSE =
[
N−2

∑
i,j

E(σ ∗
ij − σij )

2
]1/2

.

Table 1 presents MAD and RMSE averaged over all days
and all 21 datasets. We also report results for the orderings
that give the lowest and highest RMSE and MAD. Note that
these orderings can only be chosen after the calculation of
RMSE and MAD for all 120 orderings so they have no prac-
tical value, but they provide an indication of the range of
achievable predictive ability of all Cholesky-GARCH mod-
els. It is clear that if we were able to find the best ordering
in terms of forecasting power we would have outperformed
any other model. Moreover, if we were randomly chosen the
worst possible ordering, we would have not have achieved
the worst performance across all models.

Our best-fit ordering algorithm of Sect. 3.2 does not per-
form, in terms of forecasting power, as well as the sim-
ple ordering based on the unconditional variances of the
stocks in a portfolio. This is not surprising since it is usu-
ally the case that the model that fits best does not neces-
sarily predicts best. Indeed, the constant conditional cor-
relation model which makes the simplest assumption of
equal correlation beats all models with respect to both MAD
and RMSE. Our Cholesky-GARCH simple ordering based
on unconditional variance beats all other models except
the matrix-diagonal model which is better with respect to
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Table 1 Average root mean square error (RMSE) and mean absolute
deviation (MAD) across 21 datasets and 3 days. All values have been
multiplied by 104

MODELS RMSE MAD

Cholesky-GARCH, simple ordering 0.2364 0.1829

Cholesky-GARCH, AIC-based ordering 0.2431 0.1845

Cholesky-GARCH, best ordering 0.2123 0.1637

Cholesky-GARCH, worst ordering 0.2664 0.2044

Dynamic conditional correlation (DCC) 0.3301 0.2135

Diagonal-vec 0.2380 0.1833

Matrix diagonal 0.2354 0.1835

Exponentially weighted moving average 0.2473 0.2008

Constant conditional correlation (CCC) 0.2257 0.1680

Orthogonal GARCH 0.2739 0.1988

RMSE but worst with respect to MAD. For practical pur-
poses, the Cholesky-GARCH model based on ordering the
unconditional variances is simple to run, quick when N is
large, and performs well compared to competing models.

We find these results to be very promising, especially
because our simple ordering which requires no extra com-
putational cost performs well in terms of forecasting. We
conjecture that in portfolios containing financial products
more diverse than the exchange rates the constant correla-
tion model will fail to capture the empirical dynamics of
all series. Moreover, we emphasize the extraordinary ease in
applying our method in high dimensions compared to the ex-
ponential moving average and the orthogonal GARCH mod-
els. For example, in Dellaportas and Pourahmadi (2004) we
apply our algorithm in a 100-dimensional problem by just
running a series of 100 univariate regression GARCH(1,1)

models.
Since one of the strengths of the Cholesky-GARCH mod-

els is their ease of computation, we report CPU results based
on 100 stocks and 250 days from a dataset used in Dellapor-
tas and Pourahmadi (2004). A simple stocks ordering based
on unconditional variances and 100 calls to the MATLAB
routine garchfit took 7.3 minutes in a 2 GHz Pentium lap-
top. For a smaller portfolio of 10 stocks the corresponding
time was less than 9 seconds.

5 Conclusion and future work

Our preliminary empirical work shows the great promise of
the proposed Cholesky-GARCH models in providing parsi-
monious models for conditional covariances while guaran-
teeing the positive-definiteness of their estimators. Detailed
empirical results from an experimental study based on ex-
change rates indicates that choosing a particular ordering of
the stocks in a portfolio does not alter by much the forecast-
ing power of our proposed models, a similar conclusion in

a slightly different context is arrived at by Chang and Tsay
(2010). Nevertheless the problem of developing a compu-
tationally efficient algorithm for “optimal” ordering of the
stocks remains open and will be studied in our subsequent
work. Extension of Chang and Tsay’s (2010) recent sequen-
tial algorithm in the context of penalized likelihood estima-
tion involving the Cholesky decomposition to our setup will
be studied where it can speed up the computation as more
data become available over time.
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