
Project 1 – Simulation of Risk Process

Consider a risk process where claims occur according to a Poisson process with
rate λ and their sizes are i.i.d. non-negative random variables, {Zk}, k = 1, 2, . . .,
with distribution F . Let µ :=

∫∞
0 xdF (x) denote its mean. The rate at which

income from premium payments accumulates is assumed constant and equal to c
and the initial capital is u. Thus the free reserves of the company at time t are given
by

Xt = u+ ct−
Nt∑
k=1

Zk.

We assume that c > λµ which means that the rate at which the reserves increase
on the average due to premium accumulation is greater than the rate at which they
decrease due to the occurrence of claims.

Define the finite horizon ruin probability as Ψ(u, T ) := P(inf0≤t≤T Xt < 0),
i.e. the probability that the free reserves become negative at some point in the
interval [0, T ]. When the time horizon T is large the finite ruin probability can be
approximated by the infinite horizon ruin probability Ψ(u) := P(inft≥0Xt < 0).

Suppose that the claim distribution has density f(x) = 1
2x

2e−x, λ = 2, u =
20, and c = 6.5. Write a program that simulates the risk process and estimate the
infinite time ruin probability (taking T = 1000) by performing a large number of
independent runs (each of duration T ). Obtain 95% confidence intervals for the
ruin probability.
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Project 2 – Simulation of a Gaussian Process

Let {Xt; t ∈ [0, T ]} be a gaussian process with zero mean and covariance
matrix R(s, t). Simulate the process by discretizing the interval [0, T ] to

0, T/N, 2T/N, . . . (N − 1)T/N, T.

Set ti := iT/N and consider the symmetric (N + 1)× (N + 1) matrix RN whose
(i, j) element is R(ti, tj). Consider the following two cases:

1) R(s, t) = min(s, t). (Brownian Motion)

2) R(s, t) = e−|t−s|. (Ornstein-Uhlenbeck Process)

For these two cases take T = 10 and discretize the interval [0, 10] into 101 points.
Consider the decompositionsRN = ΦNΛNΦ>N (spectral representation) andRN =
LNL

>
N (Cholesky decomposition: here LN is lower triangular) and use them to

simulate the two processes. If {X1(t); t ∈ [0, T ]} and {X2(t); t ∈ [0, T ]} are a
Brownian motion and an Ornstein-Uhlenbeck respectively estimate

E
[∫ T

0
1(X1(t) > 3)dt

]
and P( sup

0≤t≤T
|X2(t)| > 2).
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Project 3 – Poisson Shot Noise

Suppose that {Nt; t ≥ 0} is a Poisson process with rate λ and denote its points
by Tk, k = 1, 2, . . .. Let {Zk; k ∈ N} be a sequence of i.i.d. random variables
with distribution function F and moment generating function M(θ) := E[eθZ1 ].
Let α > 0 and define the function

h(x) :=


e−αx if x ≥ 0,

0 if x < 0.

Consider the process {Xt; t ≥ 0} with

Xt =

∞∑
k=1

Zkh(t− Tk) t ≥ 0.

(Empty sums are by definition equal to 0.)

1) What is the mean E[Xt]?

2) What is the variance Var(Xt)?

3) What is the covariance E[XtXt+τ ], t, τ > 0?

4) Can you evaluate the moment generating function E[eθXt ]?

5) In all of the above cases evaluate the limit as t→∞.

Hint: One way of proceeding is to consider the interval [0, t] and to condition
on the number of points of the Poisson process in it. Conditional on the number
of points, each one of them is uniformly distributed in [0, t], independently of the
others.
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Project 4 – Compound Poisson Process

Suppose that λ(t), t ≥ 0 is a continuous nonnegative function and {Nt; t ≥ 0}
is a time-varying Poisson process with rate λ(t). Let Zk, k = 1, 2, . . ., be i.i.d.
random variables with distribution F and characteristic function Φ(u) := E[eiuZ1 ].
Consider the compound Poisson process {Xt; t ≥ 0} where

Xt =

Nt∑
k=1

Zk.

(As usual, empty sums are assumed equal to 0.)

1) Argue that, conditional on the number of points in the interval [0, t] being
equal to n, the unordered points of the time varying Poisson process are
independent random variables with density λ(s)∫ t

0 λ(x)dx
, s ∈ [0, t].

2) Use this to compute E[Xt] and Var(Xt).

3) Use the independent increments property of the Poisson process to compute
Cov(Xs, Xt).

4) If {Zk} are Bernoulli random variables with P(Z1 = +1) = P(Z1 = −1) =
1/2 determine the characteristic function of Xt.
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