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Chapter 1

Probability Spaces, Measures, and
Random Variables

1.1 Probability Spaces as Measurable Spaces

The standard formulation of probability theory starts with a sample space Ω. Events
correspond to subsets of this space. Logic dictates that if a subset A of Ω corresponds
to an event then its complement, Ac, should also correspond to an event, namely the
non–occurrence of A. Similarly, if A and B are events then A∪B and A∩B should also
correspond to events. Families of sets are usually called classes and from the above it
should be clear that the class of all events events should be a field of sets.

Field: Let Ω be a set and A a class of subsets of Ω. A is a field if

F1. Ω ∈ A .

F2. A,B ∈ A implies that A ∪B ∈ Ω.

F3. A ∈ A implies Ac ∈ A .

Note that in view of the above definition, if A is a field then ∅ = Ωc ∈ A and if A,
B, both belong to Ω then A ∩ B = (Ac ∪Bc) ∈ Ω. Also, it follows by induction that
if Ai, i = 1, 2, . . . , n belong in A , then

⋃n
i=1Ai and

⋂n
i=1Ai also belong in A (i.e. a

field is a class of subsets of Ω closed under finite unions and intersections). Note that the
set difference of two sets in A , defined as A \ B := ABc and the symmetric difference
A4B := ABc ∪ AcB also belong to A .

The above framework is the adequate for the simplest situations that arise in prob-
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ability theory, namely those that deal with finite sample spaces. Consider for instance
the problem of casting a die. A natural choice of sample space in this case would be
Ω = {ω1, ω2, ω3, ω4, ω5, ω6} where ω1 corresponds to the case where the face that lands
up is 1 etc. There are six ”elementary events” in this case, {ωi}, i = 1, 2, . . . , 6 and all
conceivable events are unions of these1. There are 26 = 64 possible events, including the
empty set (impossible event) and the whole space (certain event). For instance, the event
that the outcome is even is {ω2, ω4, ω6}, while the event that the outcome is greater than
or equal to 5 is {ω5, ω6}.

If the sample space has a finite or a countably infinite number of elements {ω1, ω2, ω3, . . .}
it is possible to think in terms of elementary events {ωi}. In the typical case however, when
the sample space is uncountably infinite, one begins with a field of subsets of Ω. When Ω
is not finite it is important to be able to extend the above considerations to sequences of
events. In particular we wish to ensure that countable intersections and unions of events
are again events and this leads us to extend the notion of the field to that of the σ−field.

σ–Field: Let S be a set and F a field of subsets of Ω. F is a σ–field if it also satisfies

F4. If Ai, i = 1, 2, 3, . . . belong to F then
⋃∞
i=1Ai ∈ F .

Again we point out that
⋂∞
i=1Ai = (

⋃∞
i=1A

c
i)
c ∈ F . Thus the countable union property,

together with closure under complementation and de Morgan’s laws, imply closure under
countable intersections as well and a σ–field is closed under countable set operations.

The following propositions are direct consequences of the definition.

Proposition 1: Let Fi, i ∈ I a family of σ–fields on S, where I is an index set. Then
the class F :=

⋂
i Fi is again a σ–field.

Proposition 2: The class P(S) := {A : A ⊂ S}, i.e. the set of all subsets of Ω is a
σ–field.

Let C a class of subsets of Ω. The σ–field it generates is the smallest σ–field that
contains all its elements i.e. the intersection of all the σ–fields that contain C . We know
that the family of σ–fields that contain C is not empty since it contains at least P(S),
the power set of Ω.

Definition 1. Let Ω be a set and F a σ–field of subsets of Ω. A probability measure
defined on (Ω,F ) is a set function P : F → [0, 1] such that

(i) P (Ω) = 1,

(ii) P (Ac) = 1− P (A) for all A ∈ F ,

1Note that the ”elementary events” are not the elements ω1, ω2, . . ., but the sets {ω1}, {ω2}, . . ..
Events are always subsets of Ω.
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(iii) for all A1, A2, A3, . . . ∈ F with Ai ∩ Aj = ∅ we have P (∪∞i=1Ai) =
∑∞

i=1 P (Ai).

1.2 Sequences of Events

Let {An} be a sequence of sets belonging to F . We say that this sequence is increasing
if An ⊆ An+1 for all n and decreasing if An ⊇ An+1 for all n. The limit of a monotone
sequence of events is defined as limn→∞ :=

⋃∞
n=1An for an increasing sequence {An} and

limn→∞ :=
⋂∞
n=1 An for a decreasing sequence.

If {An}n=1,2,... is an increasing sequence of events, we can write Dn = An \ An−1,
n = 2, 3, . . ., D1 = A1. Note that Dn ∈ F and Dn

⋂
Dm = ∅ when m 6= n. Thus⋃∞

n=1An =
⋃∞
n=1Bn where the Dn’s are disjoint and P (Dn) = P (An) − P (An−1), n =

2, 3, . . ..

P (
∞⋃
n=1

An) = P (
∞⋃
n=1

Dn) =
∞∑
n=1

P (Dn) = P (A1) +
∞∑
n=2

P (An)− P (An−1)

However, the last series is telescopic and has the value limn P (An)− P (A1). Thus

P (lim
n
An) = lim

n
P (An)

for increasing sequences. The same can be shown for decreasing sequences, hence the
above equality holds for all monotonic sequences of events.

If {An} is a sequence of events that is not monotonic, we define its superior and inferior
limits as

lim sup
n

An =
∞⋂
n=1

∞⋃
m=n

Am, lim inf
n

An =
∞⋃
n=1

∞⋂
m=n

Am.

The meaning of these two events can be understood as follows: ω ∈ lim supAn or ω ∈⋂∞
n=1

⋃∞
m=nAm means that ω ∈

⋃∞
m=nAm for all n which in turn means that for every

natural number n there exists another natural n′ > n such that ω ∈ An′ . In other
words, ω ∈ lim supnAn if there exists a subsequence (nk) such that ω ∈ Ank for every
k or equivalently if ω belongs to infinitely many An’s. We also point out that the sets
Bn :=

⋃∞
m=nAm, n = 1, 2, . . ., form a decreasing sequence.

Similarly, the sequence of sets Cn =
⋂∞
m=nAm is an increasing sequence of sets hence

lim infnAn =
⋃
nCn = limnCn. Thus ω ∈ lim inf An or ω ∈

⋃∞
n=1 Cn if there exists a

natural number n such that ω ∈ Cn, which in turn means that ω ∈
⋂∞
m=n, i.e. that ω

belongs to all the Am, for m ≥ n. Hence lim infnAn is the set of ω that belong to all but
a finite number of the An’s.
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Theorem 1. [Borel–Cantelli] Let {An} be a sequence of events such that

∞∑
n=1

P (An) <∞ . (1.1)

Then, with probability 1, only a finite number of these events occurs.

Proof: Let Ω be the probability space and define

1Ai(ω) =


1 if ω ∈ Ai
0 if ω 6∈ Ai .

Also {ω : a finite number of the Ai’s occur} = {ω :
∑∞

n=1 1Ai(ω) < ∞}. Note however
that

∞∑
n=1

P (An) = E
∞∑
n=1

mathbf1An(ω)

and hence (1.1) implies that the rhs of the above equation is finite and hence that∑∞
n=1 1An(ω) <∞ w.p. 1. ♠

An alternative proof of the Borel–Cantelli lemma (as it is widely known) goes as fol-
lows. The probability that infinitely many of the eventsAn occur is precisely P (lim supnAn)
in view of the above discussion. But lim supnAn = limn→∞

⋃
k≥nAk, hence

P (lim sup
n

An) = P ( lim
n→∞

⋃
k≥n

Ak) = lim
n→∞

P (
⋃
k≥n

Ak) ≤ lim
n→∞

∞∑
k=n

P (Ak) = 0,

the last limit being zero since the series
∑∞

k=1 P (Ak) converges by assumption.

The Borel–Cantelli lemma has the following partial converse in the case where the
events An are independent.

Theorem 2. [Second Borel-Cantelli Lemma] If the events An, n = 1, 2, . . ., are
independent and

∑∞
n=1 P (An) =∞ then the probability that infinitely many of the events

An occur is 1, i.e. P (lim supnAn) = 1.

Proof: It suffices to show that limn P (∪k≥nAk) = 1 or equivalently that limn P ((∪k≥nAk)c) =
0. Using de Morgan’s laws, (∪k≥nAk)c = ∩k≥nAck hence (∪k≥nAk)c ⊆ ∩mk=nA

c
k for all

m ≥ n. Thus

P ((∪k≥nAk)c) ≤ P (∩mk=nA
c
k) =

m∏
k=n

P (Ack) =
m∏
k=n

(1− P (Ak)) ,
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where in the next to the last equality above we have used the independence of An. Using
the inequality 1− x ≤ e−x which is valid for all x ∈ R we have

P ((∪k≥nAk)c) ≤ e−
∑m
k=n P (Ak), for all m ≥ n. (1.2)

However, since the series
∑∞

k=1 P (Ak) diverges it follows that limm→∞
∑m

k=n P (Ak) =∞
and hence, letting m→∞ in (1.2) we obtain

P ((∪k≥nAk)c) = 0,

or equivalently
P (∪k≥nAk) = 1,

whence
P (lim inf

n
An) = P (∩∞k=1 ∪k≥n Ak) = lim

n→∞
P (∪k≥nAk) = 1.

♠

1.3 Random Variables, Expectation

The Borel σ–field on the real line, denoted by B(R), or simply B, is the smallest σ–field
that contains all open sets or, as we say the smallest σ–field generated by the open sets. It
is easy to see that such a σ–field must exist: Consider the family of all σ-fields containing
the open sets. This family is of course not empty because it contains P(R) the set of all
subsets of real numbers, which is a σ–field. The intersection of all these σ-fields is B.

Proposition 1. B is also the σ–field generated by

1) all open intervals (a, b), a, b ∈ R,

2) all closed intervals [a, b], a, b ∈ R,

3) all semi-infinite intervals of the form (−∞, a], a ∈ R,

4) all semi-infinite intervals of the form (−∞, a), a ∈ R.

If U, V , are two sets and f : U → V a function, then, for any B ∈ V , its inverse image
under f is defined as f−1(B) := {x ∈ U : f(x) ∈ B}.

Proposition 2. If I is a set of indices (not necessarily countable) and {Bi; i ∈ I} a family
of subsets of V then

1) f−1 (∪i∈IBi) = ∪i∈If−1(Bi)
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2) f−1 (∩i∈IBi) = ∩i∈If−1(Bi)

2) If f(U) = V then f−1(BC) = (f−1(B))
C

.

Definition 2. A function f : R→ R is Borel measurable (often we will simply call them
measurable) if for all B ∈ B, f−1(B) ∈ B.

Proposition 3. f : R→ R is Borel measurable iff f−1(−∞, x] ∈ B for all x ∈ R.

Definition 3. Suppose (Ω,F , P ) is a probability space. A function X : Ω→ R is called
a real random variable if, for all B ∈ B, X−1(B) := {ω : X(ω) ∈ B}.

Definition 4. A random variable X : Ω → R is called simple if there exists n ∈ N,
a1, . . . , an ∈ R and A1, . . . , An ∈ F such that X(ω) =

∑n
i=1 ai1Ai(ω).

The expectation of a simple random variable X =
∑n

i=1 ai1Ai is defined as

EX =
n∑
i=1

aiP (Ai)

The expectation of a non-negative random variable X is defined as

sup{EY : Y is a simple random variable and Y ≤ X}.

σ–field generated by a random variable: If X : Ω → R is a real random variable,
the collection of sets σ − {X} := {X−1(B) : B ∈ B} is a σ–field contained in F . (A
sub-σ–field of F .)

If G is a sigma field and ⊂ F then we say that G is a sub-sigma field of F . If Y is a
random variable such that Y −1(B) ∈ G for any B ∈ G , we say that Y is G –measurable.

The conditional expectation of a random variable X with respect to the sub-sigma
field G is defined to be a G –measurable random variable Y for which

E[Y 1G] = E[X1G] for all G ∈ G . (1.3)

This conditional expectation is denoted by Y = E[Y |G ].

Basic Properties of Conditional Expectation:

1. If G = {∅,Ω}, i.e. if G is the trivial sigma field then E[X|G ] = EX.

2. E[E[X|G ]] = EX.
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3. If G1 ⊂ G2 then E[X|G1] = E[E[X|G2]|G1]. (This is the so-called tower property of
conditional expectation.

4. If X ∈ G then X = E[X|G ].

5. If Y ∈ G then E[XY |G ] = Y E[X|G ].

We will sketch the proof of these properties. They all involve the use of the definition
(1.3).

1. Set Y = E[X|G ]. Since Y is measurable with respect to G which is the trivial σ–
field. This necessarily means that Y is constant because, for any x ∈ R, {ω : Y (ω) ≤
x} ∈ {∅,Ω}, i.e. Y (ω) = c for some c ∈ R and all ω ∈ Ω. Thus, from the definition of
conditional expectation, E[X1Ω] = E[Y 1Ω]. Hence, since E[X1Ω] = EX, and E[Y 1Ω] =
c, the result follows.

2. Again, set Y = E[X|G ]. Apply (1.3) with G = Ω ∈ G . Then E[Y 1Ω] = E[X1Ω] or
EY = EX.

3. Set Y1 := E[X|G1], Y2 := E[X|G2] and Z := E[Y2|G1]. We need to show that Z = Y1

a.s. and to this end it is sufficient to show that

E[Z1A] = E[X1A] for any A ∈ G1. (1.4)

However

E[Z1A] = E[Y21A] because Z = E[Y2|G1] and A ∈ G1 (1.5)

E[Y21A] = E[X1A] because Y2 = E[X|G2] and A ∈ G2 since A ∈ G1 ⊂ G2. (1.6)

Hence (1.4) follows from (1.5) and (1.6).

4. Set Y := E[X|G ]. We then have E[X1A] = E[Y 1A] or (by the linearity of the
expection) E[(X − Y )1A] = 0 for any A ∈ G . Since X ∈ G and Y ∈ G by the definition
of the conditional expectation, the set Ak = {X − Y > 1

k
} ∈ G for any k ∈ N. We thus

have

0 = E[(X − Y )1Ak ] ≥
1

k
P (Ak)

whence it follows that P (Ak) = 0. This however means that

P (X − Y > 0) = P (∪∞k=1Ak) ≤
∞∑
k=1

P (Ak) = 0.

By a similar argument we show that P (X − Y < 0) = 0 and hence X = Y a.s.
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5. Set Z := E[X|G ]. We will first prove that E[Y X|G ] = Y E[X|G ] when Y = 1B with
B ∈ G . To this end it suffices to show that

E[1AY E[X|G ] ] = = E[1AY X], for any A ∈ G . (1.7)

When Y = 1B the above equation becomes

E[1A∩B E[X|G ] ] = E[1A∩BX]

which holds since A ∩B ∈ G .

1.4 Convergence Concepts for Sequences of Random

Variables

Let {Xn} be a sequence of real random variables defined on a probability space (Ω,F , P ).
Seeing that such a random variable is in fact a measurable function from Ω to R (we write
X : (Ω,F ) −→ (R,B), where B is the Borel σ–field in R) we realize that the issue of
convergence of a sequence of random variables is the same as that of a sequence of real
functions defined on an measure space.

1.4.1 Convergence in Probability and Convergence with Prob-
ability 1

Definition 5. The sequence {Xn} converges in probability to the random variable X if
∀ε > 0

lim
n→∞

P (|Xn −X| > ε) = 0. (1.8)

(Note that (1.8) is shorthand for the statement limn→∞ P ({ω : |Xn(ω)−X(ω)| > ε}) =

0.) To signify that Xn converges to 0 in probability we often write Xn
P−→ 0.

Equivalently we may say that, for every ε > 0, δ > 0, there exists n0 such that
P (|Xn −X| > ε) < δ for all n ≥ n0.

Definition 6. The sequence {Xn} converges to the random variable X with probability
1 if there exists a set Λ such that P (Λ) = 0 and for all ω 6∈ Λ, Xn(ω)→ X(ω).

The above is pointwise convergence for all ω not in Λ and is usually denoted as
Xn → X w.p. 1 (with probability 1) or a.s. (almost surely). Equivalently we may
write P ({ω : Xn(ω)→ X(ω)}) = 1 or simply P (Xn → X) = 1.
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In order to understand the connection between the two modes of convergence we have
discussed so far let us examine closely the definition of a.s. convergence. The set on which
Xn converges pointwise, i.e. the set {ω : Xn(ω)→ X(ω)} can be written as

{ω : ∀ε > 0 ∃n0(ω, ε) such that |Xm(ω)−X(ω)| < ε for all m ≥ n0(ε)}

or, equivalently, ⋂
ε>0

∞⋃
n=1

∞⋂
m=n

{ω : |Xm(ω)−X(ω)| < ε}.

Let Aε :=
⋃∞
n=1

⋂∞
m=n{ω : |Xm(ω)−X(ω)| < ε}. If ε1 < ε2, then Aε1 ⊆ Aε2 Also, nothing

is lost if we let ε = 1/k where k ∈ N and we can thus say that the set on which Xn

converges to X is the set

lim
k→∞

∞⋃
n=1

∞⋂
m=n

{ω : |Xm(ω)−X(ω)| < 1

k
}

or, equivalently, limk→∞ lim supm→∞{|Xm −X| < 1/k}. Convergence with probability 1
is equivalent to the condition

lim
n→∞

P

(
∞⋂
m=n

{|Xm −X| > ε}

)
= 0. (1.9)

From the above discussion we see that Xn converges in probability to X if, for every ε > 0,

lim
n→∞

P (|Xn −X| > ε) = 0 (1.10)

whereas Xn converges to 0 with probability 1 if, for every ε > 0,

lim
n→∞

P (sup
k≥n
|Xk −X| > ε) = 0. (1.11)

It should be clear from the above that convergence with probability 1 is stronger: it implies
convergence in probability, while convergence in probability does not imply convergence
w.p.1. Similarly, Xn converges w.p.1 to X iff limn→∞ P (supk≥n |Xk−X| > ε) = 0. Conver-
gence with probability 1 is also referred to as almost sure (abbreviated a.s.) convergence.

Before we move further, let us consider the following examples:

Example 1: Suppose that {Xn;n ∈ N} is a sequence of independent Bernoulli random
variables with P (Xn = 0) = 1 − 1

n
, P (Xn = 1) = 1

n
. It is easy to see that Xn converges

to 0 in probability. Indeed, for any ε > 0, P (|Xn| > ε) ≤ 1
n
→ 0, and hence (1.10) is

satisfied. On the other hand we can see that Xn does not converge to 0 w.p.1. Indeed, if
ε ∈ (0, 1), then

{sup
k≥n
|Xk| > ε} =

∞⋃
k=n

{Xk = 1}
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and hence, by de Morgan’s rule

P (sup
k≥n
|Xk| > ε) = P

(
∞⋃
k=n

{Xk = 1}

)
≥ P

(
n⋃

k=n

{Xk = 1}

)
= 1− P

(
m⋂
k=n

{Xk = 0}

)
= 1− n− 1

n

n

n+ 1
· · · m− 2

m− 1

m− 1

m
= 1− n− 1

m
.

This being true for all m > we may let m→∞ to obtain

P (sup
k≥n
|Xk| > ε) ≥ 1

which, of course implies P (supk≥n |Xk| > ε) = 1 for all n ∈ N and, as a result, (1.11)
is not satisfied. Let us appraise this situation: If we make n large enough we can make
the probability P (Xn = 1) arbitrarily close to zero, i.e. we can, in the limit be sure that
Xn = 0. However, since P (

⋃∞
k=n{Xk = 1}) = 1 we can also be sure that, no mater how

large we take n to be, there will be another 1 in the sequence. Put differently, the total
number of 1’s in the sequence is infinite with probability 1.

Example 2: Suppose now that, in the previous example, P (Xn = 1) = 1
n2 . Again it is

easy to see that Xn converges in probability to 0. This time we will also show that it
converges to 0 w.p.1. The same arguments as above apply.

P (sup
k≥n
|Xk| > ε) = P

(
∞⋃
k=n

{Xk = 1}

)
= lim

m→∞
P

(
m⋃
k=n

{Xk = 1}

)

= lim
m→∞

(
1− P

(
m⋂
k=n

{Xk = 0}

))
the second equality following from the continuity of probability measure and the third
from de Morgan’s laws.

P

(
m⋂
k=n

{Xk = 0}

)
=

m∏
k=n

(
1− 1

k2

)
=

m∏
k=n

(
k2 − 1

k2

)
=

(n− 1)(n+ 1)

n2

n(n+ 2)

(n+ 1)2
· · · (m− 2)m

(m− 1)2

(m− 1)(m+ 1)

m2

=
(n− 1)(m+ 1)

nm

Hence

P (sup
k≥n
|Xk| > ε) = 1− lim

m→∞

(n− 1)(m+ 1)

nm
= 1− n− 1

n
=

1

n

which (according to (1.11) establishes convergence w.p.1. Unlike example 1, here we see
that the total number of 1’s in the sequence is finite with probability 1.

There is however a case where convergence in probability implies convergence with
probability 1. Suppose that {Yn} converges monotonically to Y in probability. To start
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with the simplest case, assume that 0 ≤ Yn+1 ≤ Yn for all n and Yn
P−→0. Because of

monotonicity
sup
m≥n

Ym = Yn

hence
P (sup

m≥n
Ym > ε) = P (Yn > ε)→ 0

which implies that Yn → 0 w.p. 1.

The above result generalizes immediately to the case where either Yn+1 ≤ Yn for all n

or Yn+1 ≥ Yn for all n and Yn
P−→Y by considering the sequence Ỹn = |Yn− Y |. Note that

in both cases Ỹn is decreasing and by definition converges to zero in probability. Hence

lim
n→∞

P (sup
m≥n
|Ym − Y | > ε) = lim

n→∞
P (|Yn − Y | > ε) = 0.

1.4.2 Convergence in the Lp sense

Let {Xn}, n = 1, 2, . . . , be a sequence of real random variables such that E|Xn|p < ∞
where p ≥ 1. We say that Xn converges to X in Lp (write Xn

Lp−→ X) if

lim
n→∞

E|Xn −X|p = 0.

The case p = 2 is of particular importance and L2 convergence it is often referred to as
mean square (m.s.) convergence.

It is easy to see that convergence in Lp implies convergence in probability. For this we
shall need the following basic inequality (known as the Markov inequality).

Theorem 3. Let φ : R+ → R+ an increasing function and Y a real random variable such
that Eφ(|Y |) <∞. Then, for any α > 0,

P (|Y | > α) ≤ Eφ(|Y |)
φ(α)

. (1.12)

A particular choice of the function φ that is often useful is φ(x) = xp with p ≥ 1 which
gives a bound on the tail of the distribution in terms of its moments.

Proof: It suffices to observe that

Eφ(|Y |) = E[φ(|Y |)1(|Y | ≤ α)] + E[φ(|Y |)1(|Y | > α)]

≥ E[φ(|Y |)1(|Y | > α)]

≥ φ(α)E[1(|Y | > α)] = φ(α)P (|Y | > α)
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where in the above inequalities we have used the fact that φ takes nonnegative values and
that it is increasing. ♠

Hence, applying the above inequality with φ(x) = xp we obtain

P (|Xn −X| > ε) ≤ E|Xn −X|p

εp
. (1.13)

If Xn
Lp−→ X then the numerator on the right hand side of (1.13) goes to 0 as n → ∞,

hence we have P (|Xn − X| > ε) → 0 as n → ∞ for any ε > 0. Thus convergence in Lp

implies convergence in probability.

The relationship between convergence in Lp and a.s. convergence is more complicated.
Neither one implies the other, unless certain extra conditions are satisfied.

Finally, one important result which will be used in the sequel is the following.

Theorem 4. If a sequence of random variables {Xn} converges to X in probability then
there exists a subsequence nk such that Xnk → X w.p. 1.

Proof: Since Xn converges in probability to X, for every k there exists nk such that

P (|Xnk −X| > 2−k) < 2−k.

Call Ak the event {ω : |Xnk(ω) − X(ω)| > 2−k}. Since
∑∞

k=1 P (Ak) <
∑∞

k=1 2−k < ∞
the Borel–Cantelli theorem assures us that, with probability one, only finitely many of
the Ak’s will occur, i.e. that with probability 1, |Xnk −X| < 2−k for all k ≥ k0(ω). This
insures that

∞∑
k=1

|Xnk −X| <∞ w.p.1

since the tail of the series is dominated by the convergent series
∑

k 2−k. Thus

lim
k→∞

sup
m≥k
|Xnm −X| ≤ lim

k→∞

∑
m≥k

|Xnm −X| = 0

since the series converges. ♠
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Chapter 2

Martingales in Discrete Time

2.1 Adapted and Predictable processes

On the probability space (Ω,F , P ) suppose that there has been defined an increasing
sequence of σ–fieldsFn such that Fn ⊂ Fn+1 ⊂ F for all n. The family {Fn} is called
a filtration. In practice Fn represents the information available at (discrete) time n.

• The process {Xn}n≥0 is adapted to {Fn} if for every n Xn is measurable with
respect to Fn. We will write Xn ∈ Fn.

• The process {Xn}n≥0 is predictable with respect to {Fn} if for every n Xn is
measurable with respect to Fn−1 or symbolically Xn ∈ Fn−1.

2.2 Stopping Times

Let T be a nonnegative, integer valued, random variable. T is a stopping time w.r.t. the
filtration {Fn} iff the sequence of random variables 1(T = n), n = 0, 1, 2, . . ., is adapted
to {Fn}. In particular, note that if T is a stopping time then {1(T ≤ n)} is also an
adapted sequence, while {1(T > n)} is a predictable sequence. To see this, write

1(T ≤ n) =
k=n∑
k=0

1(T = k)

and observe that 1(T = k) ∈ Fk ⊂ Fn for k ≤ n. This establishes that 1(T ≤ n) ∈ Fn.
On the other hand 1(T > n) = 1−1(T ≤ n−1) which, in view of the above is a predictable
sequence.
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Proposition 4. If S, T , are Fn–stopping times then S + T , S ∨ T , S ∧ T are also
Fn–stopping times.

Proof: To prove the first statement, note that

1(S + T = n) =
n∑
k=0

1(S = k)1(T = n− k) ∈ Fn.

The second follows from 1(S ∨ T ≤ n) = 1(S ≤ n)1(T ≤ n), and the fact that both
1(S ≤ n) and 1(S ≤ n) are in Fn since T and S are stopping times. Finally 1(S ∧ T >
n) = 1(S > n)1(T > n). ♠

2.3 Martingales in Discrete Time

Theorem 5. A process {Xn} is a martingale w.r.t. the filtration {Fn} if

• Xn is an adapted process, i.e. Xn ∈ Fn,

• E|Xn| <∞ ∀n,

• E[Xn+1|Fn] = Xn ∀n.

Example 1: Let {Yi} be independent random variables with E|Yi| < ∞ for all i and
consider the filtration Fn = σ − {Y1, Y2, . . . , Yn}. (This is sometimes called the natural
filtration of the process.) Let EXi = µi. The process Xn =

∑n
i=1 Yi − µi is an Fn–

martingale.

Example 2: Using the setup of the previous example suppose that, for all i, σ2
i =

Var(Yi) <∞. The process Xn = (
∑n

i=1 Yi − µi)
2 −

∑n
i=1 σ

2
i is an Fn–martingale.

Example 3: Using again the same setup we assume that Yi has distribution Fi and
F̃i(s) :=

∫∞
−∞ e

−sxdFi(x) is finite for s in a neighborhood of 0. Then

Xn :=
e−s

∑n
i=1 Yi∏n

i=1 F̃i(s)
,

is an Fn–martingale.

Example 4: Let {Yn} be a Discrete Time Markov Chain with state space S and tran-
sition probability matrix P (i, j). Also suppose that f : S → R be a real function.
Then

Xn :=
n∑
k=1

(
f(Yk)−

∑
j∈S

P (Yk−1, j)f(j)

)

15



is an Fn–martingale.

Example 5: [Right Regular Sequences and Induced Martingales for Markov
Chains] Let {Yn} be a Discrete Time Markov Chain with state space S and transition
probability matrix P (i, j). Let f : S → R be bounded and satisfy

f(i) =
∑
j∈S

P (i, j)f(j) , ∀i ∈ S .

Such sequences (right eigenvectors corresponding to eigenvalue 1) are called right regular
sequences. Then

Xn = f(Yn)

is a martingale.

Example 6: The above example is a special case of the following more general class of
martingales. Let f be a right eigenvector corresponding to an eigenvalue λ of P , i.e.

λf(i) =
∑
j∈S

P (i, j)f(j) , ∀i ∈ S .

Assuming that E|f(Yn)| <∞,
Xn = λ−nf(Yn)

is a martingale.

Example 7: [Likelihood Ratios] Let {Yn} be an i.i.d. sequence with density g. Let f
be another density function. Then the process

Xn =
f(Y0)f(Y1) · · · f(Yn)

g(Y0)g(Y1) · · · g(Yn)

is a martingale.

2.4 Submartingales, Supermartingales, and Martin-

gale Transforms

Theorem 6. {Xn} is a submartingale w.r.t. {Fn} iff

a) Xn ∈ Fn

b) E|Xn| <∞ ∀n

c) E[Xn+1|Fn] ≥ Xn, ∀n.
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{Xn} is a supermartingale w.r.t. {Fn} iff it satisfies a) and b) above and

c’) E[Xn+1|Fn] ≤ Xn, ∀n.

2.4.1 Convexity and Jensen’s Inequality

A function φ : R −→ R is convex iff, for every λ ∈ (0, 1) and every x1, x2 ∈ R

φ(λx1 + (1− λ)x2) ≤ λφ(x1) + (1− λ)φ(x2)

It can be shown that, φ is convex iff for every x0 ∈ R there exists β ∈ R such that

φ(x0) + β(x− x0) ≤ φ(x) for all x ∈ R.

(This result, which is in fact true for convex functions in Rn is known as the supporting
hyperplane theorem.) We are now ready to state the central result about convex functions
which we shall need here:

Jensen’s Inequality Let φ be a convex function and X a random variable with EX <∞.
Then

g(EX) ≤ Eg(X) . (2.1)

Proof: Apply the supporting hyperplane theorem with x0 = EX to obtain

φ(EX) + β(x− EX) ≤ φ(x) for all x ∈ R.

Hence
φ(EX) + β(X − EX) ≤ φ(X)

and taking expectations in the above equation establishes (2.1) since E(X −EX) = 0. ♠
Theorem 7. Let {Xn} be a martingale and g a convex function. Then {g(Xn)} is a
submartingale, provided that E|g(Xn)| <∞.

Examples: Suppose {Xn} is a martingale. Then {X2
n} and {(Xn − a)+} are submartin-

gales.

2.4.2 Martingale Transforms

Let {Mn} be an Fn–martingale and {Cn} an Fn–predictable process. Set ∆Mn = Mn −
Mn−1,

Xn = C0M0 +
n∑
k=1

Ck∆Mk .

{Xn} is a Martingale Transform. It is easy to see that martingale transforms are martin-
gales:
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Proposition 5. Suppose |Cn| ≤ K ∀n, where K is a positive real number. Then {Xn} is
a martingale.

Proof: We first show that E|Xn| <∞:

E|Xn| ≤ E|C0|E|M0|+
n∑
k=1

E|Ck|E|∆Mk|

≤ K

(
E|M0|+

n∑
k=1

E|Mk|+ E|Mk−1|

)
<∞

(E|Mk| <∞ for all k since {Mk} is a martingale.)

Next, check that E[Xn+1|Fn] = Xn. Indeed,

Xn+1 = Xn + Cn+1 (Mn+1 −Mn)

and, taking expectations,

E[Xn+1|Fn] = E[Xn + Cn+1 (Mn+1 −Mn) |Fn] = Xn + Cn+1E[Mn+1 −Mn|Fn] = 0

The second equality following from the fact that Xn, Cn+1 ∈ Fn, and the last from the
fact that Mn is a martingale. ♠

2.5 Square–integrable martingales and orthogonality

of increments

Theorem 8. Let {Xn} be an Fn–martingale with EX2
n < ∞. Then, for all integers

i ≤ j ≤ k ≤ l,
E(Xl −Xk)(Xj −Xi) = 0 . (2.2)

Furthermore

EX2
n = EX2

0 +
n∑
k=1

E(Xk −Xk−1)2 . (2.3)

Proof: To establish (2.2) note that

E[(Xl −Xk)(Xj −Xi)|Fk] = (Xj −Xi)E[Xl −Xk|Fk] = 0 .

To show (2.3) write Xn = X0 +
∑n

k=1(Xk −Xk−1). Then

X2
n = X2

0 + 2X0

n∑
k=1

(Xk −Xk−1) +
n∑
k=1

(Xk −Xk−1)2 + 2
n∑
k=2

k−1∑
j=1

(Xk −Xk−1)(Xj −Xj−1).

Taking expectations and using (2.2) yields (2.3). ♠
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2.6 The Doob–Meyer Decomposition

Theorem 9. Let {Xn} be a process adapted to Fn. Then there exists an Fn–martingale
{Mn} and an Fn–predictable process {An} with M0 = 0, A0 = 0 such that

Xn = X0 +Mn + An . (2.4)

This decomposition is essentially unique in that if Xn = X0 + M̃n + Ãn ∀n, Mn = M̃n,
An = Ãn ∀n (with probability 1).

If {Xn} is a submartingale then {An} is a nondecreasing process, i.e. An+1 ≥ An ∀n
(w.p. 1).

Proof: If (2.4) is true then

Xn+1 −Xn = Mn+1 −Mn + An+1 − An

hence
E[Xn+1 −Xn|Fn] = E[Mn+1 −Mn|Fn] + E[An+1 − An|Fn] .

Since {Mn} is a martingale, E[Mn+1−Mn|Fn] = 0. Since {An} is predictable, E[An+1−
An|Fn] = An+1 − An. Hence,

An+1 = An + E[Xn+1|Fn]−Xn .

Set

An =
n∑
k=1

E[Xk|Fk−1]−Xk−1, (2.5)

Mn =
n∑
k=1

Xk − E[Xk|Fk−1]. (2.6)

From (2.5) you can verify that {An} is Fn–predictable, from (2.6) that {Mn} is an Fn–
martingale, and adding (2.5)+ (2.6) gives

Mn + An = Xn +X0.

Note that if {Xn} is a submartingale then it is Fn–adapted and therefore the Doob-Meyer
decomposition holds with An, Mn given by (2.5), (2.6). From (2.5) it follows that

An+1 − An = E[Xn+1|Fn]−Xn ≥ 0,

since {Xn} is a submartingale.

To show uniqueness, suppose we also have Xn = X0 + M̃n + Ãn. Then Mn + An =
M̃n + Ãn or

Mn − M̃n = Ãn − An . (2.7)
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Taking conditional expectations we get

E[Mn|Fn−1]− E[M̃n|Fn−1] = E[Ãn|Fn−1]− E[An|Fn−1]

However

E[Mn|Fn−1] = Mn−1(martingale)

E[An|Fn−1] = Mn−1(predictable)

(The same relations hold for M̃n and Ãn.) Therefore

Mn−1 − M̃n−1 = Ãn − An . (2.8)

From (2.7) and (2.8) we get

Mn−1 − M̃n−1 = Mn − M̃n . (2.9)

(2.9) holds for all n and, by induction,

Mn − M̃n = M0 − M̃0 = 0 .

From (2.7) it follows that
An − Ãn = 0 .

♠

Example: An application of the Doob–Meyer decomposition Let {Xn} be an
Fn–martingale. Then {X2

n} is a submartingale and

X2
n = X2

0 + An +Mn

where Mn is a martingale and An is predictable and are given by the expressions

An =
n∑
k=1

E[∆X2
k |Fk−1], (2.10)

Mn =
n∑
k=1

X2
k − E[X2

k |Fk−1]. (2.11)

2.6.1 Quadratic Variation of a Martingale

Let {Xn} be an Fn–martingale. Then {X2
n} is a submartingale which we can decompose

into a martingale and an increasing process. This increasing process is called the quadratic
variation of X, 〈X〉. We write

X2
n = Mn + 〈X〉n .

From the Doob–Meyer decomposition we have

〈X〉n = EX2
0 +

n∑
k=1

E[(Xk −Xk−1)2|Fk−1] .
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2.7 The Optional Sampling Theorem

2.7.1 Optional Sampling Theorem for Submartingales

Let {Xn} be a submartingale w.r.t. {Fn} and S, T , be stopping times such that 0 ≤ S ≤
T ≤ m (where m is a given integer). Then

EXS ≤ EXT . (2.12)

Proof: Write XT = X0 + (X1 −X0) + · · ·+ (XT −XT−1), or

XT = X0 +
m∑
k=1

(Xk −Xk−11(T ≥ k) .

Similarly,

XS = X0 +
m∑
k=1

(Xk −Xk−11(S ≥ k) .

Taking expectations we can write

EXT = EX0 +
m∑
k=1

E[E[(Xk −Xk−11(T ≥ k)|Fk−1]] .

Note that 1(T ≥ k) = 1−
∑k−1

i=0 1(T = i) ∈ Fk−1 and hence

E[(Xk −Xk−11(T ≥ k)|Fk−1] = 1(T ≥ k)E[(Xk −Xk−1|Fk−1]

Since T ≥ S, 1(T ≥ k) ≥ 1(S ≥ k). Also E[Xk −Xk−1|Fk−1] ≥ 0 ({Xn} is a submartin-
gale). Hence

1(T ≥ k)E[(Xk −Xk−1|Fk−1] ≥ 1(S ≥ k)E[(Xk −Xk−1|Fk−1] .

From the above it follows that

X0 +
m∑
k=1

E[(Xk −Xk−11(T ≥ k)|Fk−1] ≥ X0 +
m∑
k=1

E[(Xk −Xk−11(S ≥ k)|Fk−1] .

Taking expectations:

E

[
X0 +

m∑
k=1

(Xk −Xk−11(T ≥ k)

]
≥ E

[
X0 +

m∑
k=1

E[(Xk −Xk−11(S ≥ k)

]
,

or
EXT ≥ EXS .

♠
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2.7.2 Doob’s Maximal Inequality

Let {Xn} be a nonnegative submartingale (i.e. Xn ≥ 0 ∀n). Then, ∀λ > 0, ∀n,

λP{max
0≤k≤n

Xk > λ} ≤ EXn . (2.13)

Proof: Define the stopping time T as

T =

{
min{k : Xk > λ} if max0≤k≤nXk > λ
n if max0≤k≤nXk ≤ λ

.

Notice that {XT > λ} = {max0≤k≤nXk > λ} and therefore

P{XT > λ} = P{max
0≤k≤n

Xk > λ} .

However, from Markov’s inequality

λP{XT > λ} ≤ EXT ,

while from the Optional Sampling Theorem,

EXT ≤ EXn .

The conclusion of the theorem follows from the above. ♠

2.7.3 The Optional Sampling Theorem for Martingales

Let {Xn} be a martingale w.r.t. {Fn}. We know that EXn = EX0. If T is a stopping
time, under what conditions is EXT = EX0? We start with

Lemma 1. Let {Xn} be a martingale and T a stopping time w.r.t. {Fn}. Then, for all
n ≥ k,

E[Xn1(T = k)] = E[Xk1(T = k)] .

Proof: Indeed

E[Xn1(T = k)] = E[E[Xn1(T = k)|Fn]] = E[1(T = k)E[Xk|Fn]] = E[1(T = k)Xn]

♠

Lemma 2. With the assumptions of the previous lemma

E[XT∧n] = EX0 .
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Proof: We can write XT∧n =
∑n−1

k=0 Xk1(T = k) + Xn1(T ≥ n) and taking expecta-
tions,

E[XT∧n] =
n−1∑
k=0

E[Xk1(T = k)] + E[Xn1(T ≥ n)]

=
n−1∑
k=0

E[Xn1(T = k)] + E[Xn1(T ≥ n)]

= E

[
Xn

(
n−1∑
k=0

1(T = k) + 1(T ≥ n)

)]
= EXn = EX0 .

Theorem 10. Let {Xn} be a martingale and T a stopping time w.r.t. {Fn}. Suppose
that P (T <∞) = 1 and E[supk |XT∧k|] <∞. Then EXT = EX0.

Proof: From the previous lemma we have EXT∧n = EX0 ∀n. Since P (T <∞) = 1,
limn→∞XT∧n = XT . Finally, XT∧n ≥ supk |XT∧k|. Use the Dominated Convergence
Theorem to conclude that

lim
n→∞

E[XT∧n] = E[ lim
n→∞

XT∧n] = EXT .

♠

2.7.4 The Kolmogorov–Doob Inequality

Theorem 11. Let Xn be a square–integrable martingale (i.e. EX2
n <∞ for all n). Then

P ( max
0≤i≤n

|Xi| ≥ ε) ≤ EX2
n

ε2
.

Proof: Define the sets Ak = {|Xi| < ε, i ≤ k}, Bk = Ak−1 ∩ {|Xk| ≥ ε}. Then
Ω = An

⋃⋃n
k=0 Bk and

EX2
n =

n∑
k=0

E[X2
n1(Bk)] + E[X2

n1(An)] ≥
n∑
k=0

E[X2
n1(Bk)]

We have however

E[X2
n1(Bk)] = E[(Xn −Xk +Xk)

21(Bk)]

= E[(Xn −Xk)
21(Bk)] + 2E[(Xn −Xk)1(Bk)] + E[X2

k1(Bk)]

≥ E[X2
k1(Bk)] .
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Hence

EX2
n ≥

n∑
k=0

E[X2
k1(Bk)] ≥ ε2

n∑
k=0

E1(Bk) = ε2E[
n∑
k=0

1(Bk)] = ε2P (
n⋃
k=0

Bk) ,

from which the conclusion of the theorem follows immediately. ♠
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Chapter 3

Brownian Motion

3.1 Brownian Motion

A stochastic process {Wt, t ≥ 0} is called Standard Brownian Motion if it satisfies the
following three postulates

i) P (W0 = 0) = 1, i.e. the process starts with probability 1 from 0 at time 0.

ii) {Wt, t ≥ 0} has continuous paths with probability 1.

iii) The increments are independent i.e. if 0 ≤ ti < t2 < · · · < tk then P (Wti −Wti−1
∈

Hi; i = 1, 2, . . . , k) =
∏k

i=1 P (Wti −Wti−1
∈ Hi) for any (Borel) subsets Hi of R.

iv) For 0 ≤ s < t, Wt −Ws is normally distributed with mean 0 and variance t− s:

P (Wt −Ws ∈ H) =
1√

2π(t− s)

∫
H

e−x
2/2(t−s)dx

From the above postulates it follows that the finite dimensional distributions of the
process Wt are given by

P (Wt1 ∈ (x1, x1 + dx1), . . . ,Wtn ∈ (xn, xn + dxn)) = f(x1, x2, . . . , xn; t1, t2, . . . , tn)dx1 · · · dxn
with

f(x1, . . . , xn; t1, t2, . . . , tn)

=
1

(2π)n/2
1√

t1(t2 − t1) · · · (tn − tn−1)
e
− 1

2

{
x21
t1

+
(x2−x1)

2

t2−t1
+···+ (xn−xn−1)

2

tn−tn−1

}

=
1

(2π)n/2
1√
|Σ|

e−
1
2
xTΣ−1x
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where xT denotes the transpose of x = (x1, . . . , xn) and

Σ = E

 Wt1
...
Wtn

 (Wt1 , . . . ,Wtn) =

 EWt1Wt1 · · · EWt1Wtn

· · · EWtiWtj · · ·
EWtnWt1 · · · EWtnWtn

 = [ti ∧ tj] i=1,...,n
j=1,...,n

is the corresponding covariance matrix, i.e. the finite dimensional distributions of brow-
nian motion are normal. This means that brownian motion is a Gaussian process.

3.1.1 Properties of Standard Brownian Motion

1. Markov Property. Brownian motion is a Markov process with stationary transition
probabilities

Pt(x,A) = P (Wt+s ∈ A|Ws = x) = P (Wt+s −Ws ∈ A− x|Ws = x)

= P (Wt ∈ A− x) =

∫
A−x

φ(u)du

where A− x is the set {y − x : y ∈ A} and φ(u) = 1√
2π
e−u

2/2.

2. Scaling Property. ∀c > 0 {
√
cWt/c; t ≥ 0} d

= {Wt; t ≥ 0}. Indeed,
√
cWt/c has con-

tinuous paths, stationary and independent increments, and the correct distribution.

3. Symmetry. {−Wt; t ≥ 0} d
= {Wt; t ≥ 0}.

4. Time reversal. {tW1/t; t ≥ 0} d
= {Wt; t ≥ 0}.

3.2 Martingales associated with Brownian Motion

It is easy to see that standard brownian motion is a martingale. If we denote by Fs :=
σ{Wu; 0 ≤ u ≤ s} the history of the process up to time s then

E[Wt|Fs] = Ws + E[Wt −Ws|Fs] = Ws

the second term in the above equation vanishing as a result of the independent increments
property.

This property, together with the optional stopping theorem allows us to compute
probabilities of reaching boundaries. Suppose that W0 = x and let a < x < b. Set
τ = inf{t ≥ 0 : Wt = a or b}. Then, by the optional stopping theorem we have

EWτ = EW0 = x.
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However Wτ = a1(Wτ = a) + b1(Wτ = b, and if we denote by pa = P (Wτ = a) (and
similarly for pb) we have apa + bpb = x which gives (since pa + pb = 1)

pa =
b− x
b− a

.

Similarly, one can easily show that the process St = W 2
t − t is also a martingale.

Indeed,

E[W 2
t − t|Fs] = E[(Wt −Ws)

2 + 2Ws(Wt −Ws) +W 2
s − t|Fs]

= E[(Wt −Ws)
2|Fs] + 2WsE[Wt −Ws|Fs] +W 2

s − t
= (t− s) + 0 +W 2

s − t = W 2
s − s

With τ defined as before let us use the optional sampling theorem again. This time we
obtain

EW 2
τ − Eτ = x2

which gives
paa

2 + pbb
2 − Eτ = x2

or
(b− x)a2 + (x− a)b2

b− a
− x2 = Eτ

from which we obtain
Eτ = ab.

An important martingale associated with brownian motion is the exponential martin-
gale. Suppose here that Wt is BM(µ, σ2). Then, if θ is any real number

Mt := eθWt−q(θ)t, with q(θ) = µθ +
1

2
θ2σ2

is a martingale. Indeed,

E[Mt|Fs] = E[eθ(Wt−Ws)−q(θ)(t−s)|Fs]Ms = Ms

the last equality following from the fact that Eeθ(Wt−Ws) = eµθ(t−s)+
1
2
θ2σ2(t−s).

We have thus seen that Mt is a martingale for any choice of θ. If we set θ = θ0 = −2µ
σ2

we see that q(θ0) = 0 and thus the exponential martingale becomes eθ0Wt . We can use
this to compute pa and pb (defined as before) when µ 6= 0. Indeed, in this case, from the
optional sampling theorem we have

E[eθ0Wτ ] = eθ0x

or
pae

θ0a + pbe
θ0b = eθ0x
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which gives

pa =
e

2µ

σ2
(b−x) − 1

e
2µ

σ2
(b−a) − 1

.

The optional sampling theorem can also be used to obtain the Laplace transform of the
time until we hit the boundary. Here we will assume that µ = 0, σ = 1 which corresponds
to q(θ) = 1

2
θ2, in order to simplify the algebra. We start with

E[eθWτ−τq(θ)] = eθx.

or

eθx = paE[eθWτ−τq(θ)|Wτ = a] + pbE[eθWτ−τq(θ)|Wτ = b]

= pae
θaE[e−q(θ)τ |Wτ = a] + pbe

θbE[e−q(θ)τ |Wτ = b].

We seem to have the problem that this is one equation and we have two unknowns,
E[e−q(θ)τ |Wτ = a] and E[e−q(θ)τ |Wτ = b] but in fact we can get around this problem by
setting

s = q(θ) =
1

2
θ2.

There are two solutions to this equation,

θ1 =
√

2s, and θ2 = −
√

2s.

Thus, if we set fa(s) = E[e−sτ ;Wτ = a] and fb(s) = E[e−sτ ;Wτ = b], we have

ex
√

2s = ea
√

2sfa(s) + eb
√

2sfb(s)

e−x
√

2s = e−a
√

2sfa(s) + e−b
√

2sfb(s).

From this system we can compute fa(s), fb(s) separately, and hence also Ee−sτ = fa(s) +
fb(s). In fact, adding and subtracting the above equations we get

cosh(x
√

2s) = cosh(a
√

2s)fa(s) + cosh(b
√

2s)

sinh(x
√

2s) = sinh(a
√

2s)fa(s) + sinh(b
√

2s)

or, using the fact that sinh(α− β) = sinhα cosh β − coshα sinh β, we obtain

fa(s) sinh(b− a)
√

2s = sinh(b− x)
√

2s

fb(s) sinh(b− a)
√

2s = sinh(x− a)
√

2s

We thus have

f(s) = fa(s) + fb(s) =
sinh

(
(x− a)

√
2s
)

+ sinh
(
(b− x)

√
2s
)

sinh
(
(b− a)

√
2s
)
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and using the formulas sinh 2α = 2 sinhα coshα, sinhα+sinh β = 2 cosh
(
β−α

2

)
sinh

(
α+β

2

)
we obtain

f(s) =
cosh

((
b+a

2
− x
)√

2s
)

cosh
(
b−a

2

√
2s
)

Since we can take x = 0 without loss of generality, this formula simplifies as follows

f(s) =
cosh

(
b+a

2

√
2s
)

cosh
(
b−a

2

√
2s
) .

In particular, when b = ` > 0, a = −`, then

f(s) =
1

cosh
(
`
√

2s
)

3.3 Total and Quadratic Variation

Let f be a real function. The total variation of f over an interval [a, b] is defined by the
limit

V f(a, b) = lim
n→∞

n−1∑
k=0

|f(tk+1)− f(tk)|

tk = a+ k
n
(b− a), k = 0, 1, . . . , n− 1.

Remark: If f is monotonic, V f(a, b) = |f(b)− f(a)|. To give another example, suppose
f is right continuous and there exist points (countably many at the most) Ti, i = 1, 2, . . .,
such that f is absolutely continuous on (Ti, Ti+1) and has jumps of size Ji at Ti. In that
case

f(t) = f(a) +
∑

a<Ti≤t

Ji +

∫ t

a

f ′(u)du (3.1)

and

V f(a, b) =

∫ b

a

|f ′(u)|du+
∑

a<Ti≤b

|Ji| .

The quadratic variation of f is defined as

Qf(a, b) = lim
n→∞

n−1∑
k=0

|f(tk+1)− f(tk)|2 .

Suppose f is absolutely continuous, i.e. f(t) = f(a) +
∫ t

0
f ′(u)du. Then, from the mean

value theorem,

Qf(a, b) = lim
n→∞

n−1∑
k=0

|f ′(tk + ξk)|2
1

n2
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where ξk ∈ (0, 1
n
). If |f ′(t)| ≤ B ∀t ∈ [a, b], 0 ≤ Qf(a, b) ≤ limn→∞B

2
∑n−1

k=0
1
n2 = 0. If f

is as in (3.1 then

Qf(a, b) =
∑

a<Ti≤t

J2
i .

3.3.1 Quadratic Variation of Brownian Sample Paths

Let W (t) be a standard Brownian motion. For every fixed t > 0,

lim
n→∞

2n∑
k=1

[
W ( k

2n
t)−W (k−1

2n
t)
]2

= t w.p.1 (3.2)

i.e. the quadratic variation of brownian paths is QW (0, t) = t. (The equality holds both
with probability 1 and in the mean square sense.) One implication of this is that the total
variation of the paths is infinite

lim
n→∞

2n∑
k=1

∣∣W ( k
2n
t)−W (k−1

2n
t)
∣∣ =∞ w.p.1.

This is a consequence of the inequality

2n∑
k=1

∣∣W ( k
2n
t)−W (k−1

2n
t)
∣∣ ≥ ∑2n

k=1

[
W ( k

2n
t)−W (k−1

2n
t)
]2

maxj=1,...,2n
∣∣W ( k

2n
t)−W (k−1

2n
t)
∣∣ .

The numerator converges to t w.p.1 as n → ∞ while the denominator converges to zero
since W (t) is continuous (and hence uniformly continuous on bounded intervals) w.p. 1.

To show (3.2) (with convergence in the mean square sense) consider the sum

2n∑
k=1

[
W ( k

2n
t)−W (k−1

2n
t)
]2 − t =

2n∑
k=1

δk,n

where

δk,n :=
(
W ( k

2n
t)−W (k−1

2n
t)
)2 − t

2n
.

Note that Eδk,n = t2−n− t2−n = 0 and Eδ2
k,n = 3 · 2−2nt2 (fourth moment of a zero mean

normal random variable). It suffices to show that
∑2n

k=1 δk,n
m.s.→ 0. The independence of

brownian motion increments implies that

E

(
2n∑
k=1

δk,n

)2

=
2n∑
k=1

E[δ2
k,n] = 2n · 3 · 2−2nt2 = 3 · 2−nt2 → 0 as n→∞.
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Thus we have shown that (3.2) holds in the L2 sense. We next show that it holds w.p. 1
as well. Fix ε > 0 and let

An = {ω : |
2n∑
k=1

δk,n| > ε}.

Then, from Chebychev’s inequality

P (An) ≤ E(
∑2n

k=1 δk,n)2

ε2
=

3t2

ε22n

and thus
∞∑
n=1

P (An) =
3t2

ε2

∞∑
n=1

2−n <∞.

Hence, for any given ε, the Borel–Cantelli theorem implies that only finitely many of the
An occur, i.e. that, for any ε there exists n0(ε) such that n > n0(ε) implies

∑2n

k=1 δk,n < ε.
This establishes convergence w.p. 1 in (3.2).

3.4 Gaussian Processes

A stochastic process {Xt; t ∈ R} is called a Gaussian process if, for every k and every
t1 < t2 < · · · < tk, the distribution of (Xt1 , Xt2 , . . . , Xtk) is multidimensional Gauss. It
is clear that to define the joint distribution of (Xt1 , Xt2 , . . . , Xtk) it suffices to determine
the vector (m(t1),m(t2), . . . ,m(tk)) and the covariance matrix

R(t1, t1) R(t1, t2) · · · R(t1, tk)
R(t2, t1) R(t2, t2) · · · R(t2, tk)

...
...

...
R(tk, t1) R(tk, t2) · · · R(tk, tk)

 . (3.3)

A Gaussian process with m(t) = 0 is called a centered Gaussian process. The stan-
dard Brownian motion is a centered Gaussian process with covariance function given by
R(ti, tj) = ti ∧ tj. A Gaussian process for which m(t) = µ for all t and R(s, t) = r(|t− s|)
is called stationary since, in that case, (Xt1 , . . . , Xtn)

d
= (Xt1+s, . . . , Xtn+s) for all n,

t1, . . . , tn, s. The standard Brownian motion is not stationary. An example of such a
process is the stationary Ornstein-Uhlenbeck process with covariance function R(s, t) =
σ2e−α|t−s| where α > 0.
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Chapter 4

Stochastic Integrals

4.1 L2 spaces of random variables

4.1.1 A brief overview of linear spaces of random variables

Consider the family, L2, of all random variables on the probability space (Ω,F , P ) that
have zero mean and finite second moment, i.e. for every X ∈ L2, EX = 0, EX2 < ∞.
It is easy to see that this family is a linear space over R i.e. that it satisfies the axioms
of a real linear space. In fact, the only property that we need to check is that, if X, Y ,
belongs to L2 then X + Y belongs to L2 as well. This however is a consequence of the
inequality ‖X+Y ‖ ≤ ‖X‖+‖Y ‖. Thus, the finiteness of the second moment of X and Y
implies that of their sum, X +Y . A norm is a function ‖ · ‖ : L2 → R+

0 from the elements
of L2 to the nonnegative reals that has the following properties

N1. (Nonnegativity) For all x ∈ L2, ‖x‖ ≥ 0,

N2. ‖x‖ = 0 iff x = 0,

N3. ‖αx‖ = |α| ‖x‖ for all x ∈ L2, α ∈ R.

N4. (Triangular inequality) ‖x+ y‖ ≤ ‖x‖+ ‖y‖

An inner product is a function (·, ·) : L2 × L2 → R such that

IP1. 〈aX, Y 〉 = 〈X, aY 〉 = a〈X, Y 〉

IP2. 〈X + Y, Z〉 = 〈X,Z〉+ 〈Y, Z〉
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We define an inner product on L2 via the relationship

〈X, Y 〉 := EXY (4.1)

A linear space on which an inner product has been defined is an inner product space. The
inner product induces a norm via the definition ‖x‖ =

√
〈x, x〉.

The elements x1, x2, . . . , xn of L2 are linearly independent iff

α1x1 + α2x2 + · · ·+ αnxn = 0

implies αi = 0, i = 1, 2, . . . , n.

At this point it is customary to define the dimension of the linear space as the max-
imum number of linearly independent elements of the space. In the ordinary Euclidean
space Rn this dimension is of course n. However, since we are willing to assume that
our probability space (Ω,F , P ) is rich enough to support sequences of independent ran-
dom variables Xi, we have to dispense with the requirement that our space has finite
dimension.

Note that two random variables that differ only on a set of measure 0 have to be
identified here: Indeed, if P (X = Y ) = 1 then certainly E(X−Y )2 = 0, hence ‖X−Y ‖ =
0 which implies that X − Y = 0 according to (N2). Thus when we deal with random
variables in L2 we have to think of them rather as equivalence classes.

A sequence of elements of L2, {Xn}, is said to converge to an element of X ∈ L2 if
‖Xn −X‖ → 0 as n→∞. Note that this is precisely L2 convergence for the sequence of
random variables.

A sequence {Xn} is Cauchy, if

‖Xn −Xm‖ → 0 as n,m→∞. (4.2)

Clearly every convergent sequence is Cauchy since, if Xn → X then, using the triangular
inequality (N4) we have

‖Xn −Xm‖ ≤ ‖Xn −X‖+ ‖Xm −X‖

and each of the two terms on the right side go to 0 as n and m go to infinity. On the
other hand, a Cauchy sequence is not necessarily convergent. While (4.2) guarantees that
the elements of the sequence approach each other more and more as m and n grow large,
there is no guarantee that the limit this sequence is approaching is actually an element
of L2.

All Cauchy sequences are bounded, i.e. if {Xn} is a Cauchy sequence then supn ‖Xn‖ <
∞ which means that there exists M > 0 such that EX2

n ≤M for all n ∈ N.

The space L2 is complete if every Cauchy sequence of elements of L2 converges to an
element of L2.
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Theorem 12. L2 is complete.

Proof. We start with a Cauchy sequence Xn of elements of L2. According to the
definition we have to show that there exists a random variable X with EX2 < ∞ such
that ‖Xn −X‖ → 0 as n→∞. Choose a subsequence nk such that ‖Xm −Xn‖ < 2−3k/2

when m and n are greater than or equal to nk. This means that E(Xnk+1
−Xnk)

2 < 2−3k.
Using Chebychev’s inequality we have

P
(∣∣Xnk+1

−Xnk

∣∣ > 2−k
)
≤
E(Xnk+1

−Xnk)
2

2−2k
< 2−k.

Since
∞∑
k=1

P
(∣∣Xnk+1

−Xnk

∣∣ > 2−k
)
<
∞∑
k=1

2−k <∞,

the Borel–Cantelli lemma insures that, with probability 1, only finitely many of the in-
equalities

∣∣Xnk+1
−Xnk

∣∣ > 2−k are true. This is equivalent to saying that there exists some
k0 (which may depend on ω) such that, for all k ≥ k0,

∣∣Xnk+1
−Xnk

∣∣ ≤ 2−k. Hence, w.p.
1 the series

∑∞
k=1 |Xnk=1

−Xnk | converges (since it is dominated by a convergent series).
This in turn implies that the telescopic series

∑∞
k=1(Xnk+1

− Xnk) converges absolutely
and thus that limk→∞Xnk =: X exists.

We next show that EX2 <∞ and hence that X is an element of L2. Fix k ∈ N. Since
E (Xnm −Xnk)

2 < 2−3k for all m > k, from Fatou’s lemma it follows that

E[lim inf
m→∞

(Xnm −Xnk)
2] ≤ lim inf

m→∞
E[(Xnm −Xnk)

2] ≤ 2−3k

and since limm→∞Xnm = X w.p.1 this can also be written as ‖X − Xnk‖2 ≤ 2−2k or
‖X −Xnk‖ ≤ 2−3k/2. From the triangle inequality we then have

‖X‖ ≤ ‖Xnk‖+ 2−3k/2 <∞

since Xnk ∈ L2. This shows that X is also an element of L2.

Finally we have to show that ‖Xn − X‖ → 0 when n → ∞. Indeed, for any given
ε, choose nk such that ‖Xnk − X‖ < ε/2 and N such that ‖Xn − Xm‖ < ε/2 whenever
m ≥ N , n ≥ N . Then, from the triangle inequality,

‖Xn −X‖ ≤ ‖Xn −Xnk‖+ ‖Xnk −X‖ <
ε

2
+
ε

2
= ε
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4.2 Integration with respect to functions of bounded

variation

To understand the challenges involved in defining the stochastic integral we have to recall
first the definition of the ordinary integral. Historically, arriving at a satisfactory definition
was by no means a simple task and it has only been completed in the first two decades of
the twentieth century. Suppose that F is a function of bounded variation, f a continuous
function defined on a closed interval [a, b], and let tni := a + i

n
(b − a), i = 0, 1, 2, . . . , n.

Then the so–called Riemann–Stieltjes integral can be defined as∫ b

a

f(x)dF (x) := lim
n→∞

n−1∑
i=0

f(tni )
[
F (tni+1)− F (tni )

]
.

There is of course nothing special about the equally spaced partition we have used above
and in fact, one can show that any partition, a = tn0 < tn1 < · · · < tni < · · · < tnn =
b of the interval [a, b] will yield the same limit as n → ∞, provided of course that
max0≤i≤n−1(tni+1 − tni )→ 0 as n→∞.

Why do we require F to be a function of bounded variation? The reason is that
functions of bounded variation correspond to signed measures. Any increasing function
F defines a measure on the real line via the relationship µ(a, b] = F (b) − F (a). Think
of the measure µ(a, b] of the interval (a, b] as the total mass of the interval. Since F is
increasing, the mass of any interval is nonnegative and if F is absolutely continuous, i.e.
if F (x)− F (0) =

∫ x
0
F ′(u)du, the derivative of F correspond to the mass density.

Similarly, a function of bounded variation can be written as the difference of two
increasing functions G+ and G−: F (x) = G+(x) − G−(x). This representation is unique
(up to an arbitrary initial value, say G−(−∞) = G+(−∞) = 0). Thus, if we can think
of increasing functions as mass distributions on the real line, we can think of bounded
variation as electrical charge distributions that can be positive in some places and negative
in others. In this case the signed measure µ of the interval (a, b] is the total charge
of the interval (positive – negative) i.e. µ(a, b] = F (b) − F (a) = (G+(b)−G+(a)) −
(G−(b)−G−(a)).

The real problem that presents itself when we try to define∫ t

0

fsdWs

is that, since Wt has paths of infinite total variation, they do not define a (signed) measure
the way a bounded variation function does, so it is not at all clear how to define the integral
and what its precise meaning would be.
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4.3 Definition of the Ito Integral

Denote by H2 the set of all adapted processes on the filtered probability space (Ω,F ,F, P )
satisfying

E

∫ t

0

X2
sds <∞ ∀t ≥ 0.

(F = {Ft} is the filtration and an adapted process is one for which Xt ∈ Ft for all t ≥ 0.
A process X is simple if there exists a real sequence {tk}, tk → ∞ as k → ∞ and a
sequence of random variables {Fk} such that Fk ∈ Ftk for all k and

X(t, ω) =
∞∑
k=1

Fk(ω)1[tk,tk+1](t).

Also define

S: The set of all simple adapted processes,

S2: The set of all simple adapted processes in H2,

L2: The set of all random variables ξ in (Ω,F , P ) such that E(ξ2)1/2 <∞.

Define a norm in H2 by means of

‖X‖ =

(
E

∫ t

0

X2
sds

)1/2

.

Theorem 13. S2 is dense in H2 i.e. for all X ∈ H2 there exist simple processes {Xn}
such that

‖Xn −X‖ → 0, n→∞

We will denote the stochastic integral which we are about to define by It(X) :=∫ t
0
XsdWs, t ≥ 0. For simple processes this task is easy. We set

I(X) =
n−1∑
k=0

Xtk

(
Wtk+1

−Wtk

)
. (4.3)

The stochastic integral defined above has the following two important properties.

Proposition 6. For X ∈ S2, EI(X) = 0 and ‖I(X)‖ = ‖X‖.

Proof:

EI(X) =
n−1∑
k=0

E
[
E
[
Xtk

(
Wtk+1

−Wtk

)∣∣Ftk

] ]
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However
E
[
Xtk

(
Wtk+1

−Wtk

)∣∣Ftk

]
= XtkE

[
Wtk+1

−Wtk

∣∣Ftk

]
= 0

whence we obtain EI(X) = 0. To show that the isometry ‖I(X)‖ = ‖X‖ holds as well,
i.e. that EI(X)2 = E

∫ t
0
X2
sds we first note that

I2(X) =
n−1∑
k=0

X2
tk

(
Wtk+1

−Wtk

)2
+ 2

n−2∑
j=0

n−1∑
k=j+1

XtjXtk

(
Wtj+1

−Wtj

) (
Wtk+1

−Wtk

)
.

Taking expectations on both sides of the above equation we will have to deal with two
types of terms.

E[X2
tk

(
Wtk+1

−Wtk

)2
] (4.4)

and
E[XtjXtk

(
Wtj+1

−Wtj

) (
Wtk+1

−Wtk

)
] (4.5)

Both expectations can be computed by conditioning appropriately. (4.4) becomes

E
[
E
[
X2
tk

(
Wtk+1

−Wtk

)2
∣∣∣Ftk

] ]
= E

[
X2
tk
E
[(
Wtk+1

−Wtk

)2
∣∣∣Ftk

] ]
= E

[
X2
tk

(tk+1 − tk)
]
.

To compute (4.5) note that j < k hence j + 1 ≤ k and tj+1 ≤ tk, which implies that
Ftj+1

⊆ Ftk . Hence the expectation in (4.5) becomes

E
[
E
[
XtjXtk

(
Wtj+1

−Wtj

) (
Wtk+1

−Wtk

)∣∣Ftk

] ]
= E

[
XtjXtk

(
Wtj+1

−Wtj

)
E
[(
Wtk+1

−Wtk

)∣∣Ftk

] ]
= 0,

the last equation following since E
[(
Wtk+1

−Wtk

)∣∣Ftk

]
= 0. Thus we have

EI(X)2 =
n−1∑
k=0

E
[
X2
tk

(tk+1 − tk)
]

= E

[
n−1∑
k=0

X2
tk

(tk+1 − tk)

]
= E

∫ t

0

X2
sds (4.6)

since Xt is a simple process. ♠

Proposition 7. Suppose X ∈ H2. There exists a random variable I(X) ∈ L2, unique up
to a null set, such that I(Xn)→ I(X).

Proof: Let {Xn} be a sequence in S2 such that Xn → X. Then ‖Xn − Xm‖ → 0
(Cauchy sequence in H2). From the previous proposition

‖I(Xm)− I(Xn)‖ = ‖I(Xm −Xn)‖ = ‖Xn −Xm‖ → 0

Hence {I(Xn)} is a Cauchy sequence in L2 and, in view of the completeness of L2, there
exists a random variable I(X) ∈ L2 such that I(Xn) → I(X). We have thus been able
to define the stochastic integral I(X) for arbitrary integrants Xt ∈ H2 (not necessarily
simple processes) by means of approximating them by sequences of simple processes. This
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definition however would not be satisfactory if the resulting limit I(X) depended on the
approximating sequence. In other words it is essential to establish uniqueness, i.e. to
show that any other sequence of simple processes would lead to the same result. Suppose
that {X ′n} is another S2 sequence such that X ′n → X. Then

‖Xn −X ′n‖ ≤ ‖Xn −X‖+ ‖X −X ′n‖ → 0

where we have used the triangle inequality and the fact that both Xn and X ′n converge in
H2 to X. However, using the linearity of the integral I(X) for simple functions and the
isometry ‖I(Y )‖ = ‖Y ‖ we have established for any simple process we have

‖I(Xn)− I(X ′n)‖ = ‖I(Xn −X ′n)‖ = ‖Xn −X ′n‖ → 0

Thus,
‖I(X ′n)− I(X)‖ ≤ ‖I(X ′n)− I(Xn)‖+ ‖I(Xn)− I(X)‖ → 0 .

This establishes the uniqueness of the stochastic integral I(X) since it shows that I(X ′n)→
I(X) in L2. Finally, in order to show that EI(X) = 0 and ‖I(X)‖ = ‖X‖ note that,
for any sequence of random variables ξn → ξ in L2, Eξn → Eξ and ‖ξn‖ → ‖ξ‖ as a
consequence of the Dominated Convergence Theorem. ♠

Note that, up to this point, we have defined the Ito integral of a process X in H2 for
each t. We have not however defined It(X) as a function of t, i.e. as a function of the
upper limit of integration. This will be done presently. Let us see first an example.

We will compute explicitly It(W ) =
∫ t

0
WsdWs. Since Wt ∈ Ft by assumption the

integrand is an adapted process. Also E
∫ t

0
W 2
s ds =

∫ t
0
EW 2

s =
∫ t

0
sds = t2/2 < ∞, thus

W ∈ H2. Fix t > 0 and consider the simple functions {Xn} defined by

Xn(s) = W
(
tk2−n

)
for s ∈

[
kt
2n
, (k+1)t

2n

)
, k = 0, 1, 2, . . . , 2n − 1.

It is easy to see that {Xn} is a sequence of adapted processes in S2. Also

‖W −Xn‖ = E

∫ t

0

(Ws −Xn(s))2ds =

∫ t

0

E(Ws −Xn(s))2ds

=
2n−1∑
k=0

∫ t/2n

0

E
(
W
(
tk2−n + s

)
−W

(
tk2−n

))2
ds =

2n−1∑
k=0

∫ t/2n

0

sds

= 2n · 1

2

(
t

2n

)2

=
t2

2n+1

Thus

‖W −Xn‖ =
t

2
n+1
2

→ 0

which implies It(Xn)→ It(W ).
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Write for simplicity tk = kt
2n

.

It(Xn) =
2n−1∑
k=0

W (tk) [W (tk+1)−W (tk)]

=
1

2

2n−1∑
k=0

[
W 2(tk+1)−W 2(tk)

]
−
[
W 2(tk+1) +W 2(tk)− 2W (tk)W (tk+1)

]
=

1

2

2n−1∑
k=0

[
W 2(tk+1)−W 2(tk)

]
− 1

2

2n−1∑
k=0

[W (tk+1)−W (tk)]
2

=
1

2
W 2(t)− 1

2

2n−1∑
k=0

[W (tk+1)−W (tk)]
2

However the last term in the above string of equations is the quadratic variation of the
brownian motion and it converges (in L2) to t:

2n−1∑
k=0

[W (tk+1)−W (tk)]
2 L2

−→ t

Consequently ∫ t

0

WsdWs =
1

2
W 2
t −

1

2
t

The above explicit computation can be repeated for other type of integrands. It is akin
to the evaluation of integrals in ordinary calculus via approximating sequences. In practice
stochastic integrals are most often evaluated via the Ito formula (which is essentially the
stochastic counterpart of the ”change–of–variables” formula of ordinary calculus).

4.4 The Ito Formula

Suppose that Xs, Ys are adapted processes in H2 and Zt is an Ito process, i.e. a process
expressed as

Zt = Z0 +

∫ t

0

XsdWs +

∫ t

0

Ysds. (4.7)

The above is also often expressed in shorthand differential form (even though it only
makes symbolic sense) as

dZt = XtdWt + Ytdt. (4.8)

Theorem 14. [Ito formula] Suppose f : R → R is twice continuously differentiable
and Z is given by (4.7). Then

f(Zt) = f(Z0) +

∫ t

0

f ′(Zs)XsdWs +

∫ t

0

f ′(Zs)Ysds+
1

2

∫ t

0

f ′′(Zs)X
2
sds
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In order to evaluate stochastic integrals of the form
∫ t

0
f(Ws)dWs we can apply the

above formula with Xs = 1, Ys = 0 which gives Zt = Wt, and F (t) = F (0)+
∫ t

0
f(s)ds. Of

course, f must be continuously differentiable in order for F ′′ to exist and be continuous.
Then the Ito formula gives

F (Wt) = F (0) +

∫ t

0

f(Ws)dWs +
1

2

∫ t

0

f ′(Ws)ds (4.9)

For instance, suppose we wanted to evaluate
∫ t

0
WsdWs. Take f(x) = 1

2
x2 and apply

the above formula to obtain

1

2
W 2
t =

∫ t

0

WsdWs +
1

2

∫ t

0

1ds

which gives the result we had obtained in the previous section.

Similarly, to compute
∫ t

0
eWsdWs take f(x) = ex to obtain

eWt = 1 +

∫ t

0

eWsdWs +
1

2

∫ t

0

eWsds

whence we obtain ∫ t

0

eWsdWs = eWt − 1− 1

2

∫ t

0

eWsds.

Note that the integral appearing on the right hand side of the above equation is an
ordinary Riemann integral, in view of the continuity of the paths of Brownian motion
with probability 1.

We now proceed to give the proof of (4.9).

Proof of (4.9) We shall establish this special case of the Ito formula under the additional
assumption that

∫ t
0
E[f(Ws)]ds < ∞. The integral

∫ t
0
f(Ws)dWs makes sense as an Ito

integral since the process f(Ws) is adapted to Fs and E
∫ t

0
f(Ws)dWs =

∫ t
0
E[f(Ws)]ds <

∞. Then if we set t
(n)
k := kt

2n
for k = 0, 1, 2, . . . , 2n − 1 and we define an approximating

sequence of simple processes via

Xn(s) = f(W (t
(n)
k )) when s ∈

[
t
(n)
k , t

(n)
k+1

)
, k = 1, 2, . . . , 2n − 1.

In the sequel we shall suppress the dependence of t
(n)
k on n and write simply tk. The

simple processes Xn are obviously adapted and belong to S2, hence we can define their
Ito integrals as

I(Xn) =
2n−1∑
k=0

f(W (tk)) (W (tk+1)−W (tk)) .
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Let us use now Taylor’s theorem for the function F (remember that F ′ = f) to obtain

F (W (tk+1))− F (W (tk)) = f(W (tk))(W (tk+1 −W (tk)) +
1

2
f ′(ξk)(W (tk+1 −W (tk))

2

where ξk is between W (tk) and W (tk+1). Thus

I(Xn) =
2n−1∑
k=0

F (W (tk+1))− F (W (tk)) −
1

2

2n−1∑
k=0

f ′(ξk)(W (tk+1 −W (tk))
2

= F (W (t))− F (0) − 1

2

2n−1∑
k=0

f ′(ξk)(W (tk+1)−W (tk))
2

since the first sum is telescopic. It remains to examine the limit of the second sum as
n → ∞. In fact we will show that it converges in L2 to 1

2

∫ t
0
f ′(Ws)ds. To simplify the

notation set

Φn =
2n−1∑
k=0

f ′(ξk)(W (tk+1)−W (tk))
2,

Φ =

∫ t

0

f ′(Ws)ds,

Ψn =
2n−1∑
k=0

f ′(ξk)(tk+1 − tk).

To show that Φn
L2

−→Φ we must establish that ‖Φn−Φ‖ → 0. Using the triangle inequality

‖Φn − Φ‖ ≤ ‖Φn −Ψn‖+ ‖Ψn − Φ‖.
Now we have

‖Φn −Ψn‖2 = E
(∑2n−1

k=0 f ′(ξk) [(W (tk+1)−W (tk))
2 − (tk+1 − tk)]

)2

To ease the notation define

δk,n :=
[
(W (tk+1)−W (tk))

2 − (tk+1 − tk)
]

(4.10)

We have used the same quantities before, namely when we were trying to compute the
quadratic variation of Brownian motion. There we had seen that

Eδk,n = t2−n and Eδ2
k,n = 3t22−2n. (4.11)

Thus

‖Φn −Ψn‖2 = E
(∑2n−1

k=0 f ′(ξk)
2δ2
k,n

)
+ 2E

(∑2n−1
k=1

∑k−1
l=0 f

′(ξk)f
′(ξl)δk,nδl,n

)
At this point we note that the second expectation on the right hand side of the above
equation vanishes. Also, since f ′ is continuous on [0, t], and therefore bounded on this
interval, say by M , we obtain the inequality

‖Φn −Ψn‖2 ≤
2n−1∑
k=0

MEδ2
k,n ≤ 3t22−2nM2n = 3t2M2−n → 0,

the second inequality following from (4.11). This completes the proof. ♠
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4.5 A more general Ito formula

Often in applications the following, more general Ito formula is useful. Suppose that
we are given a function F : R2 → R continuously differentiable with respect of its first
argument, t, and twice continuously differentiable with respect to its second argument, z.
If, as before, Zt is an Ito process, i.e.

dZt = XtdWt + Ytdt,

then the following change of variables holds

dF (t, Zt) =
∂F

∂t
dt+

∂F

∂z
dZt +

1

2

∂2F

∂z2
(dZt)

2

=

(
∂F

∂t
+
∂F

∂z
Yt +

1

2

∂2F

∂z2
X2
t

)
dt+

∂F

∂z
XtdWt. (4.12)

In integral form this can be written as

F (t, Zt)− F (0, Z0) =

∫ t

0

(
∂F

∂s
+
∂F

∂z
Ys +

1

2

∂2F

∂z2
X2
s

)
ds+

∫ t

0

∂F

∂z
XsdWs.

4.6 Multidimensional version of Ito’ s formula

Suppose f : Rn → R is a twice continuously differentiable function and Xt and Ito process
described by the equation

dXt = utdt+ vtdWt

where

ut :=


u1
t

u2
t
...
unt

 , vt :=


v11
t v12

t · · · v1m
t

v21
t v22

t · · · v2m
t

...
...

...
vn1
t vn2

t · · · vnmt

 , Wt :=


W 1
t

W 2
t

...
Wm
t


It is assumed that the processes uit, v

ij
t are adapted and that W i

t , i = 1, 2, . . . ,m are
independent standard brownian motions. The Ito formula is written symbolically as

df(Xt) = ∇fdXt +
1

2
dXT

t HdXt (4.13)

where

H :=


D11f(Xt) D12f(Xt) · · · D1nf(Xt)
D21f(Xt) D22f(Xt) · · · D2nf(Xt)

...
...

...
Dn1f(Xt) Dn2f(Xt) · · · Dnnf(Xt)

 .
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We thus have

dXT
t HdXt = dW T

t V
THV dWt =

m∑
i=1

n∑
j=1

n∑
k=1

m∑
l=1

dW i
tV

T
ijHjkVkldW

l
t

= dt

m∑
i=1

n∑
j=1

n∑
k=1

V T
ijHjkVki = dt

m∑
i=1

n∑
j=1

n∑
k=1

VjiHjkVki

where in the above string of equalities we have taken into account that

dW i
t dW

j
t = δijdt.

(δij, called Kronecker’s delta, is defined to be equal to 1 if i = j and zero otherwise.) We
can thus write (4.13) in more detailed form as

df(Xt) =
n∑
i=1

Dif(Xt)u
i
tdt+

n∑
i=1

Dif(Xt)
m∑
j=1

vijt dW
j
t

+
1

2

(
m∑
i=1

n∑
j=1

n∑
k=1

vjit Djkf(Xt)v
ki
t

)
(4.14)
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Chapter 5

Hermite Polynomials, Brownian
Motion, and Gaussian Spaces

Let {Wt; t ≥ 0} be standard Brownian motion. For θ ∈ R define the process

Ut(θ) = eθWt− 1
2
θ2t, t ≥ 0. (5.1)

Show that {Ut(θ); t ≥ 0} is a martingale.

The nth derivative of Ut(θ) with respect to θ evaluated at θ = 0 is also a martingale.
(Provide a proof or accept it as given and continue.) What are the martingales obtained
in this fashion for n = 1, 2, 3, 4?

The Hermite polynomials are defined as follows:

hn(x) := (−1)ne
1
2
x2 d

n

dxn
e−

1
2
x2 , n = 0, 1, 2, 3, . . . . (5.2)

(There are slightly different definitions in other areas, notably in Physics. This is the
standard definition in Probability.) From this definition we see that the first few Hermite
polynomials are

h0(x) = 1

h1(x) = x

h2(x) = x2 − 1

h3(x) = x3 − 3x

h4(x) = x4 − 6x2 + 3.

Consider the expression eθx−
1
2
θ2 as a function of θ ∈ R.
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Consider the analytic function f(x) := e−
1
2
x2 . The following Taylor expansion is valid:

f(x− θ) =
∞∑
n=0

(−θ)n

n!
f (n)(x)

or, equivalently

e−
1
2

(x−θ)2 = e−
1
2
x2+θx− 1

2
θ2 =

∞∑
n=0

θn

n!
(−1)n

dn

dxn
e−

1
2
x2

which gives

eθx−
1
2
θ2 =

∞∑
n=0

θn

n!
(−1)ne

1
2
x2 d

n

dxn
e−

1
2
x2

or, equivalently,

eθx−
1
2
θ2 =

∞∑
n=0

θn

n!
hn(x). (5.3)

This last expression provides the generating function for the Hermite polynomials.

Consider now the related expansion

eθx−
1
2
tθ2 =

∞∑
n=0

θn

n!
Hn(x, t). (5.4)

Here of course Hn(x, t) := dn

dθn
eθx−

1
2
tθ2
∣∣∣
θ=0

. Setting λ = θ
√
t, y = x/

√
t we have xθ− 1

2
θ2t =

yλ− 1
2
λ2 and thus

eθx−
1
2
tθ2 = eλy−

1
2
λ2 =

∞∑
n=0

λn

n!
hn(y) =

∞∑
n=0

θn

n!
tn/2hn(x/

√
t).

Comparing with (5.4) we obtain

Hn(x, t) = tn/2hn(x/
√
t). (5.5)

Now, suppose that X, Y are jointly normal random variables with mean zero, variance
1, and covariance ρ. Their moment generating function is given by

EeθX+ηY = e
1
2
θ2+ρηθ+ 1

2
η2 . (5.6)

The above is equivalent to writing

E[eθX−
1
2
θ2eηY−

1
2
η2 ] = eρηθ.

E

[
∞∑
n=0

θn

n!
hn(X)

∞∑
n=0

ηn

n!
hn(Y )

]
=

∞∑
n=0

∞∑
m=0

θnηm

n!m!
E[hn(X)hm(Y )] = eρηθ =

∞∑
n=0

θnηn

n!
ρn.
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Since the above must hold for all θ and η we conclude that

E[hn(X)hm(Y )] =

{
n!ρn if n = m

0 if n 6= m
. (5.7)

In particular, when Y = X, ρ = 1 and the above relationship becomes

E[hn(X)hm(X)] =

∫
R
hn(x)hm(x)

1√
2π
e−

1
2
x2dx = n!1(n = m). (5.8)

The normalized Hermite polynomials are defined as h̃n(x) := 1√
n!
hn(x) and form an or-

thonormal sequence.

Referring back to (5.1) we have

Ut(θ) =
∞∑
n=0

θn

n!
Hn(Wt, t) =

∞∑
n=0

θn

n!
tn/2hn(Wt/

√
t)

For instance,

H4(Wt, t) = t2
(
W 4
t

t2
− 6

W 2
t

t
+ 3

)
= W 4

t − 6W 2
t t+ 3t.

We have seen that, according to the Itô rule, for any twice continuously differentiable
function f ,

f(Wt, t) = f(0, 0) +

∫ t

0

∂

∂x
f(Ws, s)dWs +

∫ t

0

∂

∂t
f(Ws, s)ds+

1

2

∫ t

0

∂2

∂x2
f(Ws, s)ds.

Applying the above formula to the function f(x, t) = eθx−
1
2
θ2t, where θ is a given real

parameter, we obtain

eθWt− 1
2
θ2t = 1 +

∫ t

0

θeθWs− 1
2
θ2sdWs +

∫ t

0

(−1

2
θ2)eθWs− 1

2
θ2sds+

1

2

∫ t

0

θ2eθWs− 1
2
θ2sds

= 1 + θ

∫ t

0

eθWs− 1
2
θ2sdWs.
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Chapter 6

Stochastic Differential Equations

6.1 Introduction

The evolution of many physical systems can be described by means of equations that
relate the rate of change of a quantity to the quantity itself, and perhaps other variables.
For instance, if N(t) denotes the size of a given population at time t and if we assume
that the rate of change (births minus deaths) of the population depends only on the
size of the population and time, and that the functional dependence is described by a
known function, f(N(t), t), then the evolution of size of the population in question may
be described by means of the differential equation

dN(t)

dt
= f(N(t), t), N(0) known initial value. (6.1)

Let us consider a concrete example, known as the Verhulst model of population growth.
This model assumes that f(N) := rN(C − N) where r > 0 is a measure of the innate
ability of the population to grow, while C > 0 is the environments carrying capacity.
When the size of a population exceeds this limit the population rate of growth becomes
negative. Thus we have the differential equation

dN(t)

dt
= rN(C −N), N(0) = N0 (6.2)

(where N0 is the known initial value of the population size). This differential equation is
of the separable variables type, i.e. we may write

dN

N(C −N)
= rdt or

dN

N
− dN

C −N
= rCdt (6.3)

(where we have expanded in partial fractions). Integrating, we obtain

logN − log(C −N) = K0 + rCt
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where K0 is an integration constant. This gives

N

C −N
= eK0erCt

and setting K = eK0 > 0 we obtain

N(t) =
KC

K + e−rCt
.

The value of K is determined by the requirement that N(0) = KC
K+1

= N0. Substituting,
we obtain the expression for the evolution of the population size as a function of time.

N(t) =
N0C

N0 + (C −N0)e−Crt
, t ≥ 0. (6.4)

Let us now consider a first, stochastic version of (6.2). Suppose that the growth
parameter r is no longer constant, but instead, a stochastic process r(t, ω) taking non-
negative values with probability 1. Furthermore, assume that the initial population size is
a random variable N0(ω) with known distribution. (We may assume N0 and {r(t); t ≥ 0}
to be independent but this is not required by the arguments we will use.) Thus (6.2)
becomes

dN(t)

dt
= r(t, ω)N(C −N), N(0) = N0(ω) (6.5)

(We include the usually omitted argument ω to emphasize the stochastic nature of this
differential equation.) Provided that the process {r(t); t ≥ 0} has with probability 1
integrable sample paths we can integrate (6.3) and obtain

N(t, ω) =
N0(ω)C

N0(ω) + (C −N0(ω))e−C
∫ t
0 r(s,ω)ds

, t ≥ 0. (6.6)

The statistics of the process {N(t); t ≥ 0} can in principle be computed from those of
{r(t)}, N0 and (6.5). Such equations as (6.5) are usually called random differential equa-
tions. Their solution is obtained pathwise (for each ω) by applying the usual techniques
of the theory of ordinary differential equations. No new concepts are necessary for their
study.

A different type of differential equation subject to random disturbances is an equation
of the form

dXt = f(Xt)dt+ dWt (6.7)

where {Wt; t ≥ 0} is standard brownian motion. The above is to be understood as the
continuous version of the discrete recurrence equation

Xti+1
= Xti + f(Xti)h+

√
hξi, i = 0, 1, 2, . . . ,
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where h > 0 is a (small) discrete step, ti = ih, and {ξi} an i.i.d. sequence of standard
normal random variables. Equation (6.7) is to be understood in its equivalent integral
form as

Xt = X0 +

∫ t

0

f(Xs)ds+Wt.

More generally we are interested in considering Stochastic Differential Equations of
the form

dXt = b(t,Xt)dt+ σ(t,Xt)dWt, with initial condition X0 (6.8)

where b and σ are appropriately smooth functions R+ × R → R. and {Wt; t ≥ 0} is
standard Brownian motion. Because of the fact that the Wiener process has sample
paths that are everywhere non-differentiable with probability 1, the above equation is a
shorthand for the integral equation

Xt = X0 +

∫ t

0

b(s,Xs)ds+

∫ t

0

σ(s,Xs)dWs. (6.9)

Here the first integral on the right hand side is an ordinary Riemann (or Lebesgue) integral
for each ω, whereas the second integral is to be interpreted as an Itô integral.

It can be shown (see for instance Øksendal, 2003) than if the functions b and σ satisfy
the following two conditions then (6.9) has a unique solution. Suppose that T > 0 and
that

1. Lipschiz Condition. There exists K > 0 such that |b(t, x) − b(t, y)| + |σ(t, x) −
σ(t, y)| ≤ K|x− y| for all x, y ∈ R and t ∈ [0, T ].

2. Linear Growth Condition. There exists G > 0 such that |b(t, x)| + |σ(t, x)| ≤
G(1 + |x|) for all x, y ∈ R and t ∈ [0, T ].

Then (6.9) has a unique solution with sample paths continuous with probability 1 in the
interval [0, T ].

The proof is based on the idea of Picard iteration, familiar from ordinary differential
equations, whose idea is to construct a sequence of processes {Xn

t ; t ∈ [0, T ]} as follows

X0
t = X0, t ∈ [0, T ]

X1
t = X0 +

∫ t

0

b(s,X0)ds+

∫ t

0

σ(s,X0)dWs, t ∈ [0, T ]

...

Xn+1
t = X0 +

∫ t

0

b(s,Xn
s )ds+

∫ t

0

σ(s,Xn
s )dWs, t ∈ [0, T ], n = 1, 2, . . . ,
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It can then be shown that the sequence of processes {Xn
t } converges to a process {Xt}

which is the unique solution of (6.9).

In the same spirit we would like to study the differential equation

dXt

dt
= b(t,Xt) + σ(t,Xt)

dWt

dt
(6.10)

where X0 is given and Wt is standard brownian motion. The problem we are faced with
here is that Wt has paths that are nondifferentiable, hence the way this equation is written
makes no sense. This can be circumvented if we pose the problem in its integral form

It is customary to write the above equation in differential form as follows:

Next we consider a couple of simple stochastic differential equations important in
applications.

6.1.1 Geometric Brownian Motion

Consider the stochastic differential equation

dXt = µXtdt+ σXtdWt, X0 = x0.

In order to solve it we may apply the Itô rule with f(x) = log x to obtain

f(Xt)− f(X0) =

∫ t

0

(
f ′(Xs)µXs +

1

2
f ′′(Xs)σ

2
sX

2
s

)
ds+

∫ t

0

f ′(Xs)σXsdWs

log(Xt/X0) =

∫ t

0

(
µ− 1

2
σ2

)
ds+

∫ t

0

σdWs =

(
µ+

1

2
σ2

)
t+ σWt

whence we obtain
Xt = x0e

(µ− 1
2
σ2)t+σWt . (6.11)

It is easy to determine the distribution of Xt. Noting that Wt ∼ N(0, t) (i.e. normal with
mean 0 and variance equal to t) and setting a := µ− 1

2
σ2 we see that

P (Xt ≤ x) = P (x0e
at+σWt ≤ x) = P (at+σWt ≤ log(x/x0)) = P

(
Wt ≤

1

σ
(log(x/x0)− at)

)
.

Denoting by Φ(x) := 1√
2π

∫ x
−∞ e

− 1
2
u2du the distribution function of the standard normal

distribution and taking into account that Wt
d
=
√
tZ, where Z is a standard normal

random variable, from the above equation we have

P (Xt ≤ x) = P

(
Z ≤ 1

σ
√
t
(log(x/x0)− at)

)
= Φ

(
1

σ
√
t
(log(x/x0)− at)

)
. (6.12)
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If we set Ft(x) := P (Xt ≤ x) and ft(x) := d
dx
Ft(x), and similarly ϕ(x) := d

dx
Φ(x) =

1√
2π
e−

1
2
x2 we see from (6.12) that

ft(x) =
d

dx
Φ

(
1

σ
√
t
(log(x/x0)− at)

)
= ϕ

(
1

σ
√
t
(log(x/x0)− at)

)
1

xσ
√
t

=
1

xσ
√

2πt
e−

1
2σ2t

(log(x/x0)−at)2

or

ft(x) =
1

xσ
√

2πt
e−

1
2σ2t

(log(x/x0)−(µ− 1
2
σ2)t)2 , x > 0. (6.13)

The above is a lognormal density. The moments are easily determined from (6.11) by
taking into account the moment generating function of the standard normal distribution,
i.e. EeθZ = e

1
2
θ2 . Thus

EXt = E
[
x0e

(µ− 1
2
σ2)t+σWt

]
= x0e

(µ− 1
2
σ2)tE

[
eσWt

]
= x0e

(µ− 1
2
σ2)te

1
2
σ2t = x0e

µt

and

EX2
t = E

[
x2

0e
2(µ− 1

2
σ2)t+2σWt

]
= x2

0e
(2µ−σ2)tE

[
e2σWt

]
= x2

0e
(2µ−σ2)te2σ2t = x2

0e
(2µ+σ2)t.

Finally,

Var(Xt) = EX2
t − (EXt)

2 = x2
0e

(2µ+σ2)t − x2
0e

2µt = x2
0e

2µt
(
eσ

2t − 1
)
.

As a special case consider σ = 1, µ = 1
2
, x0 = 1. In this case we have the stochastic

differential equation

dXt =
1

2
Xtdt+XtdWt.

which has the solution
Xt = eWt .

Then P (Xt ≤ x) = P (Wt ≤ log x) and

ft(x) =
1√
2πt

x−1e−
1
2t

(log x)2 , x ≥ 0.

The mean and variance in this case are EXt = e
1
2
t and Var(Xt) = e2t − et.
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6.2 Ornstein–Uhlenbeck Equation

This is the equation
dXt = αXtdt+ βdWt, X0 = x0. (6.14)

or, equivalently, in integral form

Xt = x0 +

∫ t

0

αXsds+ βWt.

The solution is easy if we use Ito’s formula for the function f(x, t) = e−atx. Note that
∂f
∂t

= −ae−atx, ∂f
∂x

= e−at, and ∂2f
∂x2

= 0. Ito’s formula yields

f(Xt, t)− f(X0, 0) =

∫ t

0

(
∂f

∂t
(Xs, s) +

∂f

∂x
(Xs, s)aXs +

1

2

∂2f

∂x2
β2

)
ds+

∫ t

0

∂f

∂x
(Xs, s)βdWs

=

∫ t

0

(
−ae−asXs + e−ataXs

)
ds+

∫ t

0

e−asβdWs

whence we obtain

e−atXt − x0 =

∫ t

0

e−asβdWs

or equivalently

Xt = x0e
αt +

∫ t

0

βeα(t−s)dWs. (6.15)

Note that the above is a gaussian process with mean

EXt = x0e
αt

Var(Xt) =

∫ t

0

β2e2α(t−s)ds = β2e2αt

∫ t

0

e−2αsds =
β2

2α
e2αt

(
1− e−2αt

)
=
β2

2α

(
e2αt − 1

)
.

Also, assuming s < t,

Cov (Xs, Xt) = Cov

(∫ s

0

βeα(s−u)dWu,

∫ t

0

βeα(t−u)dWu

)
= Cov

(∫ s

0

βeα(s−u)dWu,

∫ s

0

βeα(t−u)dWu +

∫ t

s

βeα(t−u)dWu

)
= Cov

(∫ s

0

βeα(s−u)dWu,

∫ s

0

βeα(t−u)dWu

)
=

∫ s

0

β2eα(s−u)eα(t−u)du

= β2eα(s+t)

∫ s

0

e−2αudu =
β2

2α
eα(s+t)

(
1− e−2αs

)
=
β2

2α

(
eα(s+t) − eα(t−s)) .

In general setting s ∧ t = min(s, t), s ∨ t = max(s, t),

Cov (Xs, Xt) =
β2

2α
ea(s∨t) (eα(s∧t) − e−α(s∧t)) .
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6.3 The Brownian Bridge Process

Suppose that Wt, t ≥ 0, is standard brownian motion. The brownian bridge process Xt,
t ∈ [0, 1], is defined (at least informally for the time being) as the process Bt, conditional
on the event W1 = 0. Based on this informal idea we can easily compute the joint
distribution of the process Xt as follows. Thus, for 0 ≤ t1 < t2 < · · · < tn ≤ 1 we have
that

(Xt1 , Xt2 , . . . , Xtn)
d
= (Wt1 ,Wt2 , . . . ,Wtn)|W1 = 0.

The right hand side of the above equation is the conditional distribution of a Gaussian
vector given one of its components, hence it is again Gaussian.

Two useful characterizations of the brownian bridge process are the following.

Xt = Wt − tW1, 0 ≤ t ≤ 1 (6.16)

and

dXt = − 1

1− t
Xtdt+ dWt, 0 ≤ t < 1, X0 = 0. (6.17)

It is easy to check that the process described in (6.16) is a Gaussian process which has the
right mean and covariance function and therefore that it is indeed the standard brownian
bridge. Regarding the SDE of (6.17) note that it can be solved through the use of an

integrating factor: Indeed,
∫

dt
1−t = − log(1 − t) and e

∫
dt
1−t = 1

1−t . Thus, multiplying the

equation (6.17) by 1
1−t we obtain

1

1− t
dXt +

1

(1− t)2
Xtdt =

dWt

1− t
or

d

(
1

1− t
Xt

)
=

dWt

1− t
where we have used Ito’s rule, hence

Xt = (1− t)
∫ t

0

dWs

1− s
.

In the above derivation we also took into account the initial condition X0 = 0. If the
process starts at time s ∈ (0, 1) at the point Xs, then the solution would have been

Xt = (1− t)
(

Xs

1− s
+

∫ t

s

dWu

1− u

)
(6.18)

To see that this is again the standard brownian bridge it is enough to note that it is a
Gaussian process with zero mean and covariance function given, when s < t, by (6.18) we
have

EXsXt = E

[
X2
s

1− t
1− s

]
+ E

[
Xs(1− t)

∫ t

s

dWu

1− u

]
.
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The second integral on the right hand side of the above equation is zero by the martingale
property of stochastic integrals. Thus, in view of the fact that

E
[
X2
s

]
= (1− s)2E

(∫ s

0

dWu

1− u

)2

= (1− s)2

∫ s

0

du

(1− u)2

= (1− s)2

(
1

1− s
− 1

)
= s(1− s),

gives
EXsXt = s(1− t)

which is the correct expression for the covariance. (Note that in the above derivation we
have also made use of the Ito isometry.)
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