Problem 1. Let $\left\{X_{k}\right\}, k=1,2, \ldots$, be independent, identically distributed random variables with distribution $P\left(X_{k}=-1\right)=1 / 4, P\left(X_{k}=0\right)=1 / 2, P\left(X_{k}=1\right)=1 / 4$. Set $S_{n}=X_{1}+X_{2}+\cdots+X_{n}, S_{0}=0$. Finally, let $T=\min \left\{n: S_{n} \in\{-1,5\}\right\}$, i.e. T is the first time that S_{n} becomes either -1 or 5 .
i) Argue that S_{n} is a martingale.
ii) Use the Optional Sampling Theorem to compute the probability $P\left(S_{T}=5\right)$
iii) Show that the process $Y_{n}:=S_{n}^{2}-\frac{n}{2}, n=1,2, \ldots$ is a martingale.
iv) Use once more the Optional Sampling Theorem for the process Y_{n} to compute ET.

Problem 2. Suppose that $\left\{\xi_{i}\right\}, i=0,1,2, \ldots$ are i.i.d. random variables with $P\left(\xi_{0}=\right.$ 1) $=P\left(\xi_{0}=-1\right)=1 / 2$. Let $X_{n}=\sum_{k=1}^{n} \xi_{k-1} \xi_{k}$ and $\mathcal{F}_{n}=\sigma-\left\{\xi_{0}, \xi_{1}, \ldots, \xi_{n}\right\}$ for $n=1,2,3, \ldots$.
a) Show that X_{n} is an \mathcal{F}-martingale.
b) Define $Y_{n}=X_{n}^{2}-n$. Show that Y_{n} is also a \mathcal{F}_{n}-martingale.
c) Let $T=\inf \left\{n \in \mathbb{N}:\left|X_{n}\right|=10\right\}$. Compute $E T$.

Problem 3. Let $\left\{W_{t} ; t \geq 0\right\}$ be brownian motion with mean 0 and variance constant σ^{2}.
i) Suppose that $W_{0}=x$ and let $T=\inf \left\{t \geq 0: W_{t}=a\right.$ or $\left.W_{t}=b\right\}$, i.e. T is the hitting time of the set $\{a, b\}$. Use the fact that W_{t} is a martingale, together with the optional sampling theorem to obtain an expression for the probabilities $p_{a}=P\left(W_{T}=a\right), p_{b}=P\left(W_{T}=b\right)$.
ii) Use the fact that $W_{t}^{2}-\sigma^{2} t$ is also a martingale to obtain an expression for $E T$.
iii) Show that $W_{t}^{3}-3 \sigma^{2} t W_{t}$ is a martingale.
iv) Let $m_{a}=E\left[T \mid W_{T}=a\right], m_{b}=E\left[T \mid W_{T}=b\right]$. Use the fact that $W_{t}^{3}-\sigma^{2} t$ is a martingale and the optional sampling theorem to compute m_{a}, m_{b}. (Hint: You may also need to use the fact that $E T=p_{a} m_{a}+p_{b} m_{b}$.)

Problem 4. Consider a geometric Brownian motion defined as $X_{t}=e^{W_{t}}$ where W_{t} is standard Brownian motion.
Let $x>0$ a given level and $T_{x}=\inf \{t>0: X(t)=x\}$. Thus T_{x} is the first time the process $X(t)$ reaches the level x.
i) Compute $\operatorname{Cov}\left(X_{s}, X_{t}\right)(s<t)$.
ii) Evaluate $P\left(X_{1}>2\right)$.
iii) What is the probability that $T_{1 / 2}<T_{2}$ i.e. the probability that $\left\{X_{t}\right\}$ reaches level $1 / 2$ before it reaches level 2? (Hint: Transform this problem into one about hitting times of Brownian motion.)
iv) What is the mean of the random variable T_{x} ?
v) Compute the Laplace transform of $T_{x}, E e^{-s T_{x}}$.

Problem 5. Let $X_{t}=\int_{0}^{t} e^{W_{s}} d W_{s}$ where $\left\{W_{t}\right\}$ is standard brownian motion and the stochastic integral is defined in the Itô sense. What is $E X_{t}, \operatorname{Var}\left(X_{t}\right)$ and $\operatorname{Cov}\left(X_{s}, X_{t}\right)$ where $s<t$? Compute the same quantities for the process $Y_{t}=\int_{0}^{t} e^{s} d W_{s}$. If $s<t$ compute $E\left[Y_{s} \mid Y_{t}\right]$.

Problem 6. If W_{t} is standard Brownian motion, use the Itô formula to compute the stochastic integrals
i) $\int_{0}^{t} W_{s}^{n} d W_{s}, n$ positive integer.
ii) $\int_{0}^{t} e^{\beta W_{s}} d W_{s}, \beta \in \mathbb{R}$.
iii) $\int_{0}^{t} \frac{1}{1+W_{s}^{2}} d W_{s}$.

Problem 7. Let $\left\{W_{t} ; t \geq 0\right\}$ denote the standard brownian motion and $X_{t}:=W_{t}-t W_{1}$, for $t \in[0,1]$ denote the standard brownian bridge. Compute the expected area under the graph of the standard brownian bridge, i.e. $E \int_{0}^{1} X_{t} d t$, the expected absolute area under the graph, $E \int_{0}^{1}\left|X_{t}\right| d t$, and the variance of the area $\operatorname{Var}\left(\int_{0}^{1} X_{t} d t\right)$. (Hint: In many instances it pays to change the order of integration and expectation.)

Problem 8. Simulate the standard brownian bridge. (You may use any method you like but the representation $X_{t}=W_{t}-t W_{1}, t \in[0,1]$ may be the easiest to implement.) Use a Monte Carlo estimator to estimate

$$
P\left(\max _{0 \leq t \leq 1}\left|X_{t}\right|>2\right) \text { and } E \max _{0 \leq t \leq 1}\left|X_{t}\right| .
$$

