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Chapter 9: Structural Break-Point Models 
 Structural break-point models  

 Introduction and motivation  

 Structural break-point regression models  

 Structural break-point time series models 

 Testing for structural break-points 

 Examples and applications using R 
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Structural Break-point models:  
Introduction and motivation 

 So far, we have estimated regression models: 

 
Yi = β0 + β1X1,i + β2X2,i +⋯+ βkX𝑘,i + ui, i = 1, … , n 

or 
Y𝑡 = β0 + β1X1,t + β2X2,𝑡 +⋯+ βkX𝑘,𝑡 + u𝑡 , t = 1, … , T 

  

     and time series models: 

 Y𝑡 = δ + 𝜑1𝑌t−1 +⋯+ 𝜑p𝑌t−𝑝 + θ1ε𝑡−1 +⋯+ θ𝑞ε𝑡−𝑞 + ε𝑡 , t = 1, … , T 

 

 We have implicitly assumed that the parameters of these models are constant for 
the entire sample period. However, there are time series data where this 
assumption in not valid. There is empirical evidence that there are single or 
multiple structural break-points in the underlying series 

 

 We can test this implicit assumption using parameter stability tests 
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Structural Break-point models: 
Introduction and motivation: Single break 
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Hedge fund investments: composite index 



Structural Break-point models: 
Introduction and motivation: Single break 

5 Ioannis Vrontos, Department of Statistics, AUEB 

Real Interest Rates series (6-month, 1-year) 



Structural Break-point models: 
Introduction and motivation: Single break 
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Real Exchange Rates series 



Structural Break-point models: 
Introduction and motivation: Single break 
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Consumer Price Index 



Structural Break-point models: 
Introduction and motivation: Single break 
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Inventories Index 



Structural Break-point models: 
Introduction and motivation: Multiple break-points 
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US ex-post real interest rates 



Structural Break-point models: 
Introduction and motivation: Multiple break-points 
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Nominal Interest Rates (10 year) 



Structural Break-point models: 
Introduction and motivation: Multiple break-points 
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Hedge Fund Investment Indices: (a) Emerging markets, (b) Equity hedge, (c) Macro,  

(d) Distressed securities, (e)Fixed Income arbitrage, (f) Merger arbitrage 

 



Structural Break-point models:  
Regression-type models (Piecewise regression models) 

 Single break-point regression models: 

 
Y𝑡 = β0𝑗 + β1𝑗X1,t + β2jX2,𝑡 +⋯+ βkjX𝑘,𝑡 + u𝑡 ,  

                           u𝑡~𝑁 0, 𝜎𝑗
2 ,    𝑗 =  

1, 𝑓𝑜𝑟  1 ≤ 𝑡 ≤ 𝑇0
2, 𝑓𝑜𝑟  𝑇0 < 𝑡 ≤ 𝑇

  

      

 Multiple break-point regression models: 

 
Y𝑡 = β0𝑗 + β1𝑗X1,t + β2jX2,𝑡 +⋯+ βkjX𝑘,𝑡 + u𝑡 ,  

 

u𝑡~𝑁 0, 𝜎𝑗
2 , 𝑓𝑜𝑟  𝜏𝑗−1 < 𝑡 ≤ 𝜏𝑗  

 𝜏0 = 0 < 𝜏1 < 𝜏2 < ⋯ < 𝜏𝑚 < 𝜏𝑚+1 = 𝑇 are the m breaks, that define m+1 
disjoint segments 

 β0𝑗 , β1𝑗 , ⋯ βkj, 𝜎𝑗
2 are the regression model parameters associated with segment j 
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Structural Break-point models:  
Time series models (Piecewise AR models) 

 Single break-point Autoregressive models: 

 

Y𝑡 = μ𝑗 + β𝑗𝑡 +  𝜑𝑖𝑗(Y𝑡−𝑖 − μ𝑗 − β𝑗 𝑡 − 𝑖 )

𝑝

𝑖=1

+ u𝑡 ,  

                           u𝑡~𝑁 0, 𝜎𝑗
2 ,    𝑗 =  

1, 𝑓𝑜𝑟  1 ≤ 𝑡 ≤ 𝑇0
2, 𝑓𝑜𝑟  𝑇0 < 𝑡 ≤ 𝑇

  

 

 Multiple break-point Autoregressive models : 

Y𝑡 = μ𝑗 + β𝑗𝑡 +  𝜑𝑖𝑗(Y𝑡−𝑖 − μ𝑗 − β𝑗 𝑡 − 𝑖 )

𝑝

𝑖=1

+ u𝑡 ,  

 

u𝑡~𝑁 0, 𝜎𝑗
2 , 𝑓𝑜𝑟  𝜏𝑗−1 < 𝑡 ≤ 𝜏𝑗  

 𝜏0 = 0 < 𝜏1 < 𝜏2 < ⋯ < 𝜏𝑚 < 𝜏𝑚+1 = 𝑇 are the m breaks, that define m+1 
disjoint segments 
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Testing for Structural Break-points:  
Different types of tests 

 There are different types of tests for structural breaks in the linear regression and 
time series models 

 Classical methods/techniques 

 Based on dummy variables 

 Fluctuation tests 

 F-tests 

 Tests based on least squares (dynamic programming) 

 Bayesian methods 
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Testing for Structural Break-points:  
Based on Dummy variables 

 Testing for structural Break-point models using Dummy variables 

 Dummy variables are used in the regression set up to examine the effect of a qualitative 
variable to the dependent variable. These variables have predetermined values of 0 and 
1, and are technically constructed to examine if specific levels of a categorical variable are 
important (statistically significant) to explain the variability of the dependent variable. 

 In structural break-point regression models, they can be used to examine the stability of 
the model parameters, i.e. if the constant and/or the beta coefficients are statistically 
different in disjoint segments of the data.  

 They can also be used to identify seasonality effects and/or the effects of market events 
and crises to the dependent variable. 
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Testing for Structural Break-points:  
Fluctuation tests 

 Fluctuation processes based on cumulative sums (CUSUM) of recursive residuals 

 In this case, testing for structural breaks in linear regression models is performed using 
fluctuation processes based on cumulative sums (CUSUM) of recursive residuals. Linear 
and alternative non-linear bounds, which are more sensitive to early and late breaks, 
have been proposed for the recursive CUSUM process. The process crossing these 
boundaries suggests deviation from parameter constancy.  

 Fluctuation processes based on cumulative sums (CUSUM) of OLS residuals 

 A CUSUM test is based on standard OLS residuals, which usually change whenever a new 
observation is added to the sample. Again, linear and alternative boundaries are available 
for the OLS CUSUM fluctuation process.  

 Fluctuation processes based on moving sums (MOSUM) of recursive and OLS 
residuals 

 Testing for structural breaks is based on moving sums (MOSUM) of recursive and OLS 
residuals of a fixed-size window. This approach seems intuitively appealing because 
moving sums are more sensitive to parameter changes than the CUSUM tests.  
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Testing for Structural Break-points:  
F-tests 

 The F-tests are tests for the null hypothesis of parameter constancy against the alternative of 
a single structural change.  

 Chow (1960) first suggested an F-test for the case that the break-date is known. A 
straightforward generalization of the Chow test was to calculate the F statistics for all possible 
break-dates and reject the null hypothesis if any of those statistics were too large (Quandt, 
1960).  

 Andrews (1993) and Andrews and Ploberger (1994) proposed F-tests based on quantities 
obtained from the sequence of the F statistics. The time at which the F-statistic becomes 
maximum provides an estimate for the break-date.  

 The class of F-tests for a structural break of unknown position enjoy optimality properties in 
the case of a single break alternative (Andrews, 1993). On the other hand the MOSUM tests 
have greater power at detecting double structural changes (Chu et al. 1995). In general, the 
above classical tests for structural breaks are complementary and can be used together as a 
first attempt to visualize possible deviations from parameter constancy and test for the 
presence of structural breaks.  
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Testing for Structural Break-points:  
Dynamic programming based on sum of squared residuals 

 Bai and Perron (1998, 2003) considered theoretical and computational issues regarding the 
estimation of and testing for multiple structural breaks in linear regression models.  

 Their method is a dynamic programming approach based on the calculation of the sums of 
squared residuals in all possible segments of the data, with the minimum size of each segment 
being pre-specified. Then a sequential procedure is used for the global minimization of the 
overall sum of squared residuals. The method produces a single optimal m-breaks partition for 
each given value of m.  

 Bai and Perron method selects the optimal number of breaks given the estimated break-
dates, by sequentially testing the hypothesis of l breaks versus l + 1 breaks using significance 
tests, or using information based criteria such as the AIC and the BIC.  
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Testing for Structural Break-points:  
Bayesian methods 

 Bayesian techniques have also been used to examine the presence of a single or of multiple 
break points in regression and/or time series models (Meligkotsidou, Tzavalis and Vrontos, 
2011, 2017, Meligkotsidou and Vrontos, 2008, 2011). 

 Bayesian methods allow the analyst to search for the relevant explanatory variables which 
best describe the underlying dependent variable, taking into account the presence of single or 
multiple structural breaks in the series.  

 Bayesian model comparison allows to compute posterior model probabilities for a large 
number of competing models (without and/or with breaks), and enables to obtain the 
posterior distributions of the model parameters, i.e. the alphas, the betas and the variances in 
different segments (sub-periods in the observed sample).  

 Thus, we are able to compute reliable estimates for the model parameters, and assess the 
parameter uncertainty 

19 Ioannis Vrontos, Department of Statistics, AUEB 



Regression models  
with Dummy variables (Reminder) 

 Recall the use of dummy variables in the standard linear regression framework: 

1. Simple Linear Regression model:  

 Yi = β0 + β1Xi + ui 

 

2. Linear Regression model with dummy variable (test if the constant is different): 
Yi = β0 + β1Xi + 𝛾Zi + ui 

 

3. Linear Regression model with dummy variable (test if the slope is different): 
Yi = β0 + β1Xi + δ(ΖΧ)i+ui 

 

4. Linear Regression model with dummy variable (test if the constant and the slope are 
different): 

Yi = β0 + β1Xi + 𝛾Zi + δ(ZΧ)i+ui 
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Estimate Linear model 1: 
 Yi = β0 + β1Xi + ui 

fit<-lm(consumption ~ income) 

summary(fit) 

 

#Call: 

#  lm(formula = consumption ~ income) 

 

#Coefficients: 

#                      Estimate  Std. Error t value  Pr(>|t|)     

#(Intercept) 66.50939   54.84543   1.213    0.231     

#income         0.82285     0.02999  27.436   <2e-16 *** 

 

#Residual standard error: 130.1 on 48 degrees of freedom 

#Multiple R-squared:  0.9401, Adjusted R-squared:  0.9388  

#F-statistic: 752.8 on 1 and 48 DF,  p-value: < 2.2e-16 
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Estimate Linear Model 2: 
 Yi = β0 + β1Xi + 𝛾Zi + ui 

 fit2<-lm(consumption ~ income + z) 

summary(fit2) 

 

#Call: 

#  lm(formula = consumption ~ income + z) 

 

#Coefficients: 

#                       Estimate   Std. Error   t value    Pr(>|t|)     

#(Intercept)  97.88728    29.39477      3.33      0.0017 **  

#  income        0.70345      0.01932    36.42     < 2e-16 *** 

#  z               272.36597    24.69108    11.03   1.23e-14 *** 

 

#Residual standard error: 69.41 on 47 degrees of freedom 

#Multiple R-squared:  0.9833, Adjusted R-squared:  0.9826  

#F-statistic:  1384 on 2 and 47 DF,  p-value: < 2.2e-16 
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Estimate Linear Model 3: 
Yi = β0 + β1Xi + δ(ΖΧ)i+ui 

 fit3<-lm(consumption ~ income + zx) 

summary(fit3) 

 

#Call: 

#  lm(formula = consumption ~ income + zx) 

 

#Coefficients: 

#                          Estimate   Std. Error  t value  Pr(>|t|)     

#(Intercept)   290.88749   32.52130     8.945   1.03e-11 *** 

#  income           0.55372     0.02635    21.017     < 2e-16 *** 

#  zx                    0.18876     0.01532    12.323   2.50e-16 *** 

 

#Residual standard error: 63.93 on 47 degrees of freedom 

#Multiple R-squared:  0.9858, Adjusted R-squared:  0.9852  

#F-statistic:  1635 on 2 and 47 DF,  p-value: < 2.2e-16 
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Estimate Linear Model 4: 
Yi = β0 + β1Xi + 𝛾Zi + δ(ZΧ)i+ui 

 fit4<-lm(consumption ~ income + z + zx) 

summary(fit4) 

 

#Call: 

#  lm(formula = consumption ~ income + z + zx) 

 

#Coefficients: 

#                          Estimate   Std. Error  t value   Pr(>|t|)     

#(Intercept)   243.24425   53.99953    4.505    4.54e-05 *** 

#  income           0.58848     0.04102  14.345      < 2e-16 *** 

#  z                    74.56259   67.55380    1.104     0.27544     

#zx                      0.14145     0.04550    3.109      0.00322 **  

 

#Residual standard error: 63.78 on 46 degrees of freedom 

#Multiple R-squared:  0.9862, Adjusted R-squared:  0.9853  

#F-statistic:  1096 on 3 and 46 DF,  p-value: < 2.2e-16 
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Testing for Structural Break-points:  
Based on Dummy variables 

Testing for structural Break in the intercept (only) of the model using Dummy 
variable  

 

 Define the dummy variable dt =  
1, if the characteristic happens                
0, if the characteristic does not happen

 

 

 Examine if there is a structural change in the constant of the model 
Yt = β0 + δdt + β1X1,t + ut,  ut~N 0, σ2  

 

 If dt = 0, then the model can be written:  
Yt = β0 + β1𝑋1,𝑡 + ut 

 

 If dt = 1 and δ is statistically significant, then the model can be written:  

 
Yt = (β0+δ) + β1𝑋1,𝑡 + ut 
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Testing for Structural Break-points:  
Based on Dummy variables 

Testing for structural Break in the beta coefficient (only) of the model using Dummy 
variable  

 Define the variable dtX1,t =  
X1,t, if the characteristic happens (dt = 1)                

0,    if the characteristic does not happen (dt = 0)
 

 

 Examine if there is a structural change in the beta coefficient of the model 
Yt = β0 + β1X1,t + 𝛾(dtX1,t) + ut,  ut~N 0, σ2  

 

 If dt = 0, then the model can be written:  
Yt = β0 + β1𝑋1,𝑡 + ut 

 

 If dt = 1 𝑖. 𝑒.  dtX1,t = X1,t, and 𝛾 is statistically significant, then the model can be 
written:  

 
Yt = β0 + (β1 + 𝛾)𝑋1,𝑡 + ut 
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Testing for Structural Break-points:  
Based on Dummy variables 

Testing for structural Break in the intercept and the beta coefficient of the model 
using Dummy variables 

 

 Examine if there is a structural change in the beta coefficient of the model 
Yt = β0 + β1X1,t + δdt + 𝛾(dt𝐶) + ut,  ut~N 0, σ2  

 

 If dt = 0, then the model can be written:  
Yt = β0 + β1𝑋1,𝑡 + ut 

 

 If dt = 1 𝑖. 𝑒.  dtX1,t = X1,t, and 𝛾 and δ are statistically significant, then the model 
can be written:  

 
Yt = (β0 + δ) + (β1 + 𝛾)𝑋1,𝑡 + ut 
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