1 In Brief: Elements of Statistical Inference

To prepare for what will be examined in the course, we will attempt to
develop a basic language concerning Statistical Estimation and Statistical
Hypothesis Testing. These, along with Statistical Forecasting processes,

constitute parts of the field of statistics known as Statistical Inference.

2 The Statistical Problem-Parametric Models

Statistical inference generally involves solving the following version of the
"statistical problem":! We are given a probability space equipped with a well-
defined probability distribution, the characteristics of which are unknown
and of interest to us. We have at our disposal observations, i.e., values
obtained from a random element following the given distribution. This
random element is called a (statistical) sample, and the values observed are
the values of the available sample. These values carry some information
about the unknown characteristics of the underlying distribution in which
we are interested. Is it possible to use the information from the sample to
determine or approximate these characteristics?

The previous description of the statistical problem is quite abstract.
A simple example from our social experience can help us understand it

in more familiar terms. Consider political polling processes, which aim,

among other things, to estimate the electoral influence of political parties

This version refers to the part of the statistical science known as Statistical Inference.
The other part of the statistical problem concerns the concise representation of the
information contained in the sample, which is the focus of Descriptive Statistics. Despite
their different purposes, these parts are not independent of each other.



within the electorate at a given point in time. The true and unknown
proportions of party influence form a discrete probability distribution; the
reference set is the collection of voters, equipped with the algebra formed
by the collection comprising the groups of voters for each party. On this
algebra, the distribution is defined, assigning to each pure group the ratio
of its members to the total population size. Through a random variable
that assigns each voter to their preferred political party, this distribution
is transferred to a probability distribution over the set of political parties;
this distribution ultimately becomes the subject of inference. The sample
consists of n independent realizations of the aforementioned random vari-
able. Its empirical distribution provides an approximation of the unknown
distribution mentioned above.

Based on the above, the general framework within which we will work is

composed of the following characteristics.

¢ The sample, which will be denoted as z, in the following, constitutes a
random element (e.g. random variable, or random vector, etc) defined
on some, potentially latent, probability space (£2, F,P) and takes values
in some Euclidean space, say R**". The k refers to the dimension
of each individual sample element, while n refers to the number of
these individual elements. The random variables constituting each
individual sample element, as a random k-dimensional vector, may,
in turn, be appropriately grouped according to the characteristics of
the related distribution that are the focus of inference. For example,
in the general linear model, which we will gradually develop and is

widely used in econometrics, we have z, = (Y,,,X,), where Y,, is an



n x 1 random vector called the dependent variable, and X, is an
n X p stochastic matrix whose column vectors are called independent
variables or regressors. Obviously, here k = p+ 1, while fori =1,... n,
the i-th individual sample element is the random row vector formed
by the i-th random variable of Y,, paired with the i-th row of X,, in the
order implied by the form of z,. Thus, in our framework, the sample
is essentially a collection of random variables grouped into random
vectors and possibly stochastic matrices according to the requirements
of statistical inference. Each sample element can be perceived as a
random vector of suitable dimension, while we assume the researcher
has n such elements at their disposal.? This is general enough for
what we want to develop next but does not constitute the most abstract
framework. Note that the sample should not be confused with the
observations available to the researcher. Observations are the value
that the sample, as a random element, takes when evaluated at some
element of its domain €2; this value is precisely what is available in the

context of sampling and may change when the sampling is repeated.

¢ The object of inference: the joint distribution of z,,, which will be at least
partially unknown. The goal of statistical inference is to determine
(or approximate) some of the unknown characteristics of the joint
distribution of the sample that are of interest and potentially feasible
to estimate/approximate. These characteristics, or the entire joint

distribution, or parts of it, will be symbolized, somewhat ambiguously,

2Somewhat abusively, we denote the i-th random k-dimensional member of the sample
as z;, fori =1,...,n. The abuse arises from the fact that z, simultaneously denotes the
sample and the n-th element of it. What is meant each time will be clear from the context.



as D,. In our framework, statistical inference will be considered as

the set of procedures aimed at determining (or approximating) D,.

(Semi-)Parametric Structure: We assume that our framework is supple-
mented by some exogenous structure with respect to z,, pertaining to
the unknown D,. Specifically, we consider that the object of inference
D, depends-possibly partially-on the unknown value of a Euclidean
parameter, i.e., a vector §, € © C R p € N*. This is equivalent to the
existence of a relationship between 60, and D,, which in various cases
is defined by the probabilistic properties of Dy,. Knowing 6, precisely
is equivalent to adequately knowing the characteristics of D, that are
of interest. Therefore, the issue of determining these characteristics
essentially reduces to locating ¢,.Reducing the statistical problem to
the problem of locating a point in a Euclidean space can be greatly
facilitating solving the statistical problem at hand; the mathematical
machinery of locating Euclidean points (e.g. equations, inequalities,

etc) is usable.

Example 1 (Conditional Mean - Linear Case (LLS)). Let us assume that in

the previously mentioned framework where z, = (¥, X,,), we are interested

in the unknown conditional mean of the dependent variable given the

independent variables, that is, the random vector E(Y,,/o(X,,)), provided it

is well-defined. If the involved random variables have marginal distributions

with first-order moments, then this is indeed well-defined (why?). Note

that here, and for reasons that will become clear as this example is further

developed, D, is considered to be the conditional distribution of Y,, given

the algebra ¢(X,,). Thus, the aforementioned conditional mean represents
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the first moment of this distribution. In the linear case of the problem, it is
assumed that the unknown E(Y,,/0(X,,)) is some unknown linear function
of 0(X,), so there necessarily exists some 6, € R? such that E(Y,,/0(X,,)) :=
X0y, which establishes the relationship between 6, and D,. Observe that,
although by construction the conditional mean depends on the sample
through X,,, the parameter value characterizing it, 6y, is independent of the
sample. In a way, 6, represents certain characteristics of the conditional
mean that are independent of the sample. If the above specification of the
conditional mean is correct, then finding the unknown 6, is equivalent to
finding the first moment of this conditional distribution, which is the goal.
Note that the above is equivalent to Y, = X,,0y + ¢,, where for the random

vector ¢, it necessarily holds that E(¢, /0(X,,)) = 0,, (Why?).

Example 2 (Conditional Mean - Not Necessarily Linear Case (NLLS)). Sup-
pose in the framework of the previous example, we have that E(Y,,/0(X,,)) :=
9(00,X,,), where g : R? x R"*? — R" is a known function, with 6, as before
being unknown. Clearly, here D, can also be considered as the conditional
distribution of Y,, given ¢(X,,), and the relationship between it and 6, is
given by the form of the conditional mean E(Y, /0(X,)) and the specific
way it depends on the parameter value. Similarly to the previous example,
the above is equivalent to Y,, = ¢g(6y, X,,) + £,, where again for the random
vector ¢,, it necessarily holds that E(e,/0(X,,)) = 0,, (why?). Observe that
this includes as a subcase the previous example when ¢ is (multi-)linear,
i.e., g(6h,X,) = X,0,. However, it also includes cases where the condi-
tional mean is not necessarily a linear function of ¢(X,,). For instance, let

9(00, X)) = (exp(X’(i)Go))i:L...,n, where X ;) denotes the i-th row of the matrix.



Finally, observe that here, just as in the previous example, z, = (V,,X,)

and £k =1+p.

Example 3 (Instrumental Variables (IV)). Given the linear relationship
Y, = X0y + £, mentioned above, we consider something generally weaker
than the relationship E(¢,,/0(X,,)) = 0,, that appeared in Example LLS. Recall
that this relationship implies, first-through the Law of Iterated Expectations-
that the marginal distribution of each element of ¢, has zero mean (Exercise:
prove it!). Secondly, it implies that each element of ¢, has zero covariance
with any measurable transformation of any random variable composing the
regressors’ matrix X,, (Exercise: prove it!). This can be particularly strong,
as, for example, in time series environments, and indicatively the AR(1)
process example, where ¢, relates to Xy, V& > n), it may not hold. It may also
fail in numerous other cases, such as when there is non-zero covariance
between an element of ¢,, and a nonlinear transformation of an element
of X,,. A weaker version, therefore, assumes the existence of a stochastic
matrix of instrumental variables W,, of dimension n x ¢, analogous to
X,, where ¢ essentially denotes the number of instrumental variables,
such that the orthogonality condition E(W/¢,) = E(W/, (Y, — X,6p)) = 0,
holds. In this case, the object of inference is to find the assumed linear-
relative to X,,-deviation of Y,,, for which the condition E(W/ (Y,, — X,,6,)) = 0,
holds. This ultimately reduces to finding the unknown 6,. Note that the
matrix of instrumental variables may include columns of the matrix X,,.
When these matrices coincide, we obtain a weaker version of Example LLS.
Moreover, the above can clearly be extended to cases where Y,, = g(6y, X,,)+¢,

and E(W'/e,,) = E(W/(Y,, — g(6,X,))) = 0,, where g is assumed known,



while 6,, which ultimately determines the object of inference, is unknown.
Observe that in each of the aforementioned cases, the sample is (potentially)
augmented by the matrix of instrumental variables, i.e., z, = (Y, X,,, W),
where W* is the matrix of instrumental variables remaining after excluding
columns corresponding to independent variables possibly appearing within
it (and which is considered empty when X,, = W,), while &£ = 1 + p + ¢*,

where ¢* is the number of columns of W’.

Further examples will be examined later. As previously mentioned,
the common feature of all the examples is the parametric description of
the characteristics of interest in D, and the reduction of finding them to
locating a point in Euclidean space. This can be generalized, e.g., through
the use of non-Euclidean parameters, though this is beyond the scope of
the present notes.

From now on-as explicitly mentioned in Example LLS-we will assume
that 6, is independent of n. Note that this holds in all the previously
mentioned examples, while the characteristics of D, indicated by it may
depend on n. For example, this is inherently true for the conditional
means in the first and second examples. We note that the assumption of
independence of 6, from n could be modified, though this would require
various changes in the asymptotic theory developed later.

The framework of the (semi-)parametric structure, which includes the
relationship between 6, and D,, may imply that there exists a corresponding
relationship between the elements of © and a family of distributions, say
D, that (may) include as a special case the aforementioned pair (6,, D). As

essentially indicated by the examples above, this relationship is constructed



based on assumptions about how the characteristics of D, of interest are
specified with respect to the involved parameter. When the latter is allowed
to take values over the entire parameter space, a mapping # — D is formed.
By construction, this mapping associates at least one distribution in D with
each element of ©. This ultimately gives us the definition of a statistical

model within our framework;

Definition 1 (Statistical Model). A statistical model in our framework is

defined as the aforementioned mapping © — D.

By construction, the statistical model is formed by (a) the choice of how
the characteristics of D, of interest are specified with respect to the involved
parameter, and (b) the choice of the possible values the parameter can take,
i.e., the determination of ©. Note that given (a), the absence of further
information regarding the location of ¢, in R” may guide the choice of the
parameter space to the least informative one, so that © = R’. However,
when additional information is available about where 6, may be located in
R™, it may be useful to use it, in which case © C R? may be chosen.

Essentially, the statistical model represents the relationship between
the possible values of the parameter and the corresponding distributions
for z,. Given the aforementioned (a) and (b), the concept includes both the
parameter space © and the collection D. The relationship defined by the
model through the above choices describes which elements of D correspond
to each element of ©. In many cases-as we will see below-the set D may
not be explicitly determined, but only implicitly.

In any case, a preliminary classification of statistical models of the

above form can be made based on the properties of this mapping. If this
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is functional, meaning that each element ¢ € © corresponds to a unique
distribution in D, then the statistical model is called fully parametric. In
such cases, D is in a one-to-one correspondence with the parameter space.
Each parameter value fully determines the corresponding element of D.
This will obviously occur when the relationship between the parameter and
distributions arises from sufficiently available information incorporated
into the aforementioned (a) and (b). In all other cases-i.e., when there exists
6 € © such that more than one distribution in D corresponds to it-the
model is called semi-parametric.3

Let us examine some examples:

Example 4 (LLS). As observed in Example LLS, the conditional mean can
be specified as a linear function of the matrix X,,, whereby its dependence
on the associated Euclidean parameter is immediate. This specification

leads to a statistical model of the form

{E(Y,/o(X,)) = X,0,0 € RP},

which can be viewed through the following mapping: (a) for each possible
value of ¢, any (conditionally corresponding) distribution on R” with mean
X,,0 is associated, and (b) since no further information about 6, is available,
the largest possible parameter space is chosen. Clearly, the collection
D in this case is implicitly determined by (a) and (b), and the model is
semi-parametric since each value of § corresponds to multiple distributions
(why?). If we introduce further information through (a), e.g., by assuming

that the conditional covariance matrix of ¢,, exists and equals I,,, the identity

3In this case, the mapping is called multivalued (or correspondence).
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matrix of size n x n*, the resulting model is

{E(Y,/o(X,)) =X,0,0 € RP, Var(Y,,/o(X,,)) =1,} (Exercise: prove this!),

which is clearly a subset of the previous model (why?) and is also semi-
parametric (why?). If we further assume, within the framework of spec-
ification (a), that ¢,/0(X,,) ~ N(0,,1,), we obtain a smaller subset of the

above:

{V,/o(X,) ~ N(X,0,1,),0 € R’} (Exercise: prove this!),

which is fully parametric (why?). Note that the description of the Gaussian
distributions composing D is explicit here. In this example, we specified
three statistical models by choosing the relationships in (a) and selecting ©
as the largest possible. If, for instance, we also know as external information
that 6, has integer components, this can be incorporated into the parameter
space selection, resulting in smaller versions of the above by replacing
O = RP with © = ZP. This yields three models, where the first two are

semi-parametric and the third is fully parametric (why?).

Example 5 (IV). Given the specification described in Example 6.2, and

similarly to the previous example, if no further information is available

“Note that this specification of the covariance matrix is particularly strong, as it assumes
it to be diagonal (which implies further assumptions about the dependence and conditional
distributions of the elements of ¢,, on ¢(X,,)) and fully known, so no parallel statistical
inference procedures are needed for it. This assumption is made without significant loss
of generality for the purposes we focus on.

10



about the location of 6,, we can choose a model of the form
{E(W;(Yn - Xne)) = Oqa NS Rp} )

which can be interpreted as follows: for each value of 6, any distribution
on R"** that satisfies the relationship E(W/ (Y, — X,,0)) = 0, is associated.
Clearly, this is semi-parametric (why?). Smaller versions of this model
can be obtained by allowing 6 to take values in a proper (non-empty-why?)
subset of R”, potentially utilizing relevant external information. Finally,
note that when W,, = X,,, we obtain a weaker version of Example LLS

(explain!).

If the specifications made in constructing a statistical model, or the
choice of parameter space, reflect information related to economics, we

then obtain the following classificatory definition:

Definition 2. The model § — D is called an econometric model if and
only if its specification or the choice of parameter space is based, at least
partially, on exogenous information that may stem from Economic Theory

or empirical characteristics of economic phenomena.

In econometric models, the purpose of statistical inference-in our frame-
work, approximating 6,-is related to verifying the empirical validity of claims
made by economic theory about the functioning of phenomena it addresses.
More generally, it aims at probabilistic inference, i.e., verifying properties of
distributions that may characterize such phenomena, to assist economic
theory in understanding them. Note that constructing econometric models,

studying their properties, designing statistical inference procedures for
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them, analyzing the properties of these procedures and their computa-
tional complexity, and applying them to specific econometric models are

processes that constitute the field of Econometrics.®

Example 6 (CAPM-IV). Suppose that, within the framework of Example
IV, Y,, consists of a time series of observed logarithmic excess returns of a
stock (defined by the consecutive time differences of its logarithmic price
after subtracting the logarithm of the risk-free rate at the current time),
and X,, consists of the observed excess logarithmic returns of the market
portfolio-adequately approximated, e.g., by a suitable stock index, so p = 1.

The financial CAPM pricing model-see, for example, ?-predicts that
E(X! (Y, — X,.00)) =0

for some unknown 6, representing the relationship between the stock and
systematic risk, as depicted by the market portfolio. Note that the econo-
metric model can often-and typically does-expand, allowing the matrix X,
to include additional variables, e.g., a constant column of ones. This is
a way to test the validity of CAPM, as if it holds true, the corresponding
components of f, should be zero. Clearly, the above constitutes a special

case of Example IV with W, = X,,.

Example 7 (Market Entry Game). Suppose that firm j € {1,2} decides
whether to enter market m, with m € {1,2,...,n}. The decision is repre-

sented by the variable Z;,,, where Z,,, = 1 means the firm decides to enter,

5We note the existence of econometric models that do not involve Euclidean parameters.
These pertain to the subfield of non-parametric Econometrics, which lies outside the
current scope. Interested readers may refer to ? for more information.
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and Z;,, = 0 means it decides not to enter. The decision is based on the

profit function:

Hj,m = (Ej,m - 90,]‘ij,m)]1{zj,m:1},

where ¢, ,, ~ Unif[0,1] and is i.i.d. for j = 1,2, m = 1,...,n (Exercise: is the
function of the event {Z,,, = 1}, and Z_;,, is the decision of the other firm.
The random variable ¢;,, represents the benefit of firm j from entering
market m. Therefore, the parameter 6, ; represents the loss of benefit due
to the other firm’s entry into the same market. It summarizes a form of
sensitivity to the presence of a competitor, and importantly, it does not

depend on the market. The parameter

0o = (0o,1,002) € © = (0,1) x (0,1)

is unknown. Due to the form of the profit function, we have a strategic
interaction environment-a game-theoretic framework. It can be shown that

this framework has the following (stochastic) Nash equilibria:
1. (Zl,m7 ZQ,m) = (1, ].), if €jm Z eo’j,\V/j = ].,2,

2. (Zims Zom) = (1,0), if €1, > 61, €2.m < bo2,

3. (Zl,ma Zg,m) = (0, 1), if E1,m < (9071,82,771 > (9072, and

(0,1)
4. (Zymy Zom) = , if €., < 6p;,Vj = 1,2-in this case, we have

(1,0)
multiple equilibria.
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The equilibrium is stochastic and depends on the relationship between
the involved random variables and parameters. Knowledge of 6, provides a

probabilistic understanding of the firms’ entry decisions in these markets.

Example 8 (GARCH(1,1)). The empirical characteristics of logarithmic
returns for certain classes of financial securities often indicate various
properties of conditional heteroskedasticity for the corresponding stochas-
tic processes.® Among other things, the conditional (on an appropriate
information set) variances of these processes appear to vary over time and
exhibit properties that partially align with those of a GARCH(1,1) process.
If a researcher has a time series of related logarithmic returns (y;);=1..
at their disposal, which are considered part of a stationary and ergodic
GARCH(1,1) process with an unknown parameter vector 6, = (wy, ao, 5o),
and it is known that wy > 0, ag,bp > 0, and a¢ + by < 1, the statistical
model can be chosen as the collection of such processes related to the
sample (y;);—1.._», uniquely described by the following systems of stochastic

recursive relationships:

( ( \

2z iid, E(29) = 0, E(23) = 1,

Yy = 2/ he(0), t=1,...,n,

hi(0) = w+ ay? | + Bhi_1(0)

\

0= (w,a,p) € 0B,

\@z{(w,a,ﬁ)€R3:w>0,a,520,a+6<1}.)

The above is semi-parametric since no further specification is made about

5There is an extensive related literature. Interested readers may refer to ? for an
example.
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the distribution of z;, beyond its first two moments. Additionally, the pa-
rameter space consists of all three-dimensional real vectors with a strictly
positive first component, non-negative remaining components, and a sum
less than one. The positivity constraints are natural for the strict positivity
of 0;, and the last constraint reflects external information available to the
researcher about 6, related to the existence of E(¢?). This constraint is
stronger (Exercise: prove this using Jensen’s inequality) than the condition
ensuring the existence of a unique stationary and ergodic solution to the

system.

The two previous examples established econometric models through
which we gained an initial sense of how-firstly-claims of economic theory,
and-secondly-empirical characteristics of economic variables, can guide
the construction of statistical models. Moreover, all the examples we have
discussed so far indicate the following: statistical models can be repre-
sented in various ways, e.g., using the distributions that compose them
directly, or describing these distributions through their moments, recursive
equations whose unique solutions are random elements following these
distributions, and so on. This is clearly related to the numerous ways
in which a probability distribution can be represented, which we briefly
explored in the previous chapters of the first part.

A final concept that concerns us relates to the relationship between
D, and the involved statistical model. In describing the models in the
previous examples, the phrase "[...] the statistical model can be chosen [...]"
was sometimes used verbatim, implying that the statistical/econometric

model we work with in each case is essentially a matter of choice. Re-
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call that its construction was based on (a) relationships (in what we do
parametrically) specifying the characteristics of the unknown distribution
of interest, and (b) the selection of permissible parameter values. Both
aspects may be influenced by (exogenous to the sample) information avail-
able to the researcher, natural constraints related to the properties of
the involved random elements-e.g., the positivity constraints in the last
example-information derived from theoretical claims related to the sample,
and so on. In any case, deciding which of the available information to
use in specifying the model is a matter of decision and may relate to the
researcher’s preferences regarding the risk that D, ¢ D,i.e., the unknown
distribution having characteristics not accounted for by the chosen model.
This is called specification risk of the model and is typically present. Thus,
the specification and choice of a statistical model can itself constitute a de-
cision problem, for which statistical inference procedures can be employed
to resolve. In this part of the book, we will not delve deeply into this, but
in a later chapter, we will briefly explore a case where this risk materializes
and a statistical test for the specification of certain semi-parametric models.

For now, we complete our terminology with the following definition:

Definition 3. A statistical model is called well-specified if and only if D, € D.

Otherwise, it is called misspecified.

Note that, based on how the parametricity of our framework was con-
structed, misspecification can arise for two reasons: (a) the specification
relationships leading to the parametrization of the characteristics of D
are incorrect. For example, within the framework of the linear model, the

conditional mean is not actually a linear function of X,,, or X,, does not
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include all relevant independent variables. For instance, within the frame-
work of the last example, the process constituting the sample is not of the
GARCH(1,1) type, and so on. In such cases, 6, has no meaning, although
a parameter value may exist that relates to D, in some "optimal way." (b)
Although the parametric specification is correct, the parameter space-due
to, e.g., erroneous external information-was chosen such that 6, ¢ ©. For
instance, in the last example, it may not hold that a; + by < 1, but rather
the more general E(In(apz3 + by)) < 0 holds.

In any case, in what follows, we will deal minimally with specification
issues. The statistical model will be considered given and (mostly) well-

specified.
Assumption 1. For © — D, there exists 0, € © such that 6, — D,.

From the preceding discussion, it should be apparent that in (semi-
Jparametric models, the risk of misspecification cannot exceed that of their
parametric counterparts; the former are supersets of the latter. Conse-
quently, in various cases in Econometrics, semi-parametric models-when
available-are considered a golden mean between models without Euclidean
parameters (with their accompanying difficulties, e.g., in the properties of
statistical inference procedures) and parametric models with their higher

risk of misspecification.

3 Summary: Issues in Statistical Inference

In this section, we will briefly address some fundamental characteristics of

point estimation and hypothesis testing procedures. Within the parametric
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framework, we will examine general definitions and attempt to describe-
by no means exhaustively-the minimum properties that these procedures
should ideally possess. Note that we will not delve into set estimation issues
(e.g., confidence intervals), although such estimations can be derived from
the hypothesis testing procedures discussed. The properties we describe
will be asymptotic properties, focusing on the behavior of these procedures
as the sample size grows to infinity (n — o), leading to unbounded growth
in the information available to the inferential procedures in order to locate
0. These properties necessarily involve concepts of stochastic convergence.
These ideas will be extensively used later on, where we will examine a rather

general class of statistical inference procedures of this kind.

3.1 Elements of Point Estimation

Within our framework, point estimators are procedures that use the sample
to leverage relevant information to approximate ¢, within ©. Mathematically,
they are functions defined on the sample space, R¥*" in our framework, with
values in ©. Their properties-pertaining to the quality of this approximation-
derive from the properties of their distributions, provided the latter are
well-defined. To ensure this, we require that they are also Borel measurable

functions, i.e. effectively random vectors:

Definition 4. An estimator of 6, is any Borel measurable function 6, :

R — ©.7

"The term "estimate" refers to the value assigned by the estimator when computed for a
specific sample.
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For example, within any version of the linear model in Example 6.5,
when © = RP, both 6, = 0, and what we later call the Least Squares
Estimator, 0, = (X’ X, ) 'X,Y,, fall within this definition (Exercise: prove
this!). The former is a constant function of the sample, while the latter
is linear in Y,,. Clearly, there is an abundance of estimators for ¢,, posing
a selection problem. This can be addressed by crystallizing desirable
properties for the estimators we work with. These properties are essentially
properties of their distributions. For instance, 6, is called unbiased if and
only if its distribution has a first moment equal to 6,, i.e., E(0,) = 6y. This
property is often loosely interpreted as meaning that the estimator "on
average over possible sample values" identifies 6,." Similarly, it might be
desirable for the estimator’s distribution to exhibit "maximum possible
concentration" around 6,, characterized by some efficiency property. Note
that such properties, in all but the simplest econometric models, are either
particularly difficult to derive due to the unknown analytical form of the
estimators as functions of the sample or generally do not hold due to the
complexity of this (even unknown) form. In the following, we will describe
some properties that are usually easier to verify, as they concern the
asymptotic behavior of estimators as n — oo, enabling], facilitating forms of

asymptotic approximation to the structure of estimators.

It is often convenient-particularly in proving asymptotic properties-
to use concise expressions to denote asymptotic properties, such as
convergence in probability or asymptotic tightness of a sequence of
random variables. The expression O,(1) denotes that the sequence is

asymptotically tight, while o,(1) denotes convergence in probability to
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zero. More generally, if z,,, y,, and z, represent the general terms of
related sequences, then z, = O,(z,) means z,, = y,z, and y, = O,(1).
Similarly, z, = 0,(z,) means z, = y,z, and y, = o,(1). It is clear from
the above definitions that O,(z,) = 2,0,(1), 0,(z,) = 2,0,(1), and it is
easy to prove properties like 0,(1) + 0,(1) = 0,(1), O,(1) + O,(1) = O,(1),
0p(1) + Op(1) = Op(1). 0,(1)0p(1) = 0p(L). Op(1)Oy(1) = Op(1). 0,(1)0p(1) =

0p(1), and so on.

Next, we will work with appropriate limits as the sample size grows

unbounded, with ||-|| denoting the Euclidean norm:

Definition 5. An estimator 6, is called weakly consistent if and only if

0, 2 0o, i.e., if and only if Ve > 0, lim,,_,o0 P(]|0,, — 00|l > ) = 0.

Thus, an estimator is weakly consistent if and only if it converges in
probability to 6,. This is a relatively weak property that is desirable to
satisfy, and its validity can (among many other methods!) be facilitated by
relevant Laws of Large Numbers. A stronger version of the above applies
when the convergence is almost sure instead of in probability, leading to
the property of strong consistency.

Given consistency, the rate at which the estimator converges to the
unknown parameter value may be of interest. This rate can be represented
by some unbounded real sequence, say r,, — oo, such that if the distance
of the estimator from 6, is pointwise multiplied by r,, we obtain a random

variable that exhibits asymptotic tightness:

Definition 6. If 9, is weakly consistent and there exists r,, — oo such that
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Ve > 0,dM, > 0 such that
lim P(r, ||0,, — 6Oo|| > M.) <e,
n—oo

i.e., equivalently r, ||6, — 6y|| = O,(1), then the sequence (r,) is called the

rate of convergence of the estimator.

The property of asymptotic tightness may arise for more than one rate,
so the rate may need to be optimally chosen Among consistent estimators,
it seems reasonable to prefer the one (if it exists) with the fastest optimal
rate of convergence. In many cases (but not always!), the optimal rate of
convergence (when it exists) in our (semi-)parametric framework for many
cases of estimators is /n. Given the optimal rate of convergence, the issue

of the weak convergence of r, (6, — 6y) becomes interesting:

Definition 7. If ¢, is weakly consistent and has an optimal rate r,, — oo,
then it is called asymptotically Gaussian if and only if there exists a random
vector Z and a positive definite matrix V' of dimensions p x p such that
Z ~ N(0,,V,,) and

Tn(0n — 6g) ~ Z.

The covariance matrix of the distribution of Z is called the asymptotic

variance of the estimator.

The convergence in distribution of r,(6,, — 6;) may hold even if the asymp-
totic distribution is not Gaussian. It is shown that in specific frameworks,
which largely encompass what will be discussed later, having 6,, asymp-

totically Gaussian makes it preferable, in terms of certain categories of
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preferences regarding the risk of "deviation of the estimator from 6,," to esti-
mators that are not asymptotically Gaussian but may share the properties
of consistency and the same rate of convergence. Among estimators that
have the aforementioned properties and are also asymptotically Gaussian,
the preferred one (if it exists) will be the one with the smaller asymptotic
variance.® It is noted that deriving the optimal rate and the property of
asymptotic normality can be facilitated (among many other methods!) by

the action of some Central Limit Theorem.

3.2 Elements of Hypothesis Testing

In this section, for ©* being a non-empty proper subset of ©, we consider a
researcher interested in determining whether 6, € ©*. This may stem from
(possibly additional) claims of relevant theory or from some form of external
information available about the location of §,. For example, in Example 6.8
above, the researcher might be interested in testing whether there is no
temporal variation in the evolution of the conditional variance o2, but that
it remains constant over time and equal to wy. In this case, we would have
©* = {0 € ©:a =0b=0}. If the researcher tends to trust the hypothesis
0y € ©*, they can use empirical information from the sample to test the

following structure of hypotheses:

Hy: 0y € 6*,
(1)
Hl . 90 € e°.

8To be elaborated!

22



The H, is called the null hypothesis, and its complement H; is the alternative
hypothesis.®

A testing procedure usually involves selecting a test statistic-a measur-
able function of the sample taking values in the reals-choosing a rejection
region for the null hypothesis, which is a measurable subset of the reals,
constructed based on the properties of the statistic under the null hy-
pothesis,!? and determining the acceptable probability of rejecting the null
hypothesis when H, is true. This probability is called the level of statistical

significance.

Definition 8. Given the significance level « € (0, 1), a test for the hypothesis

structure 1 is any measurable function 7, («) : R**" — {fail to reject Hy, reject Hy}.

The definition describes such a testing procedure as a decision-making
process, which is a function of the sample that takes values in the set of
possible decisions:

{fail to reject Hy, reject Hy}.

The quality of this procedure depends on the properties of this function
and the way in which the probabilities of possible errors are formed in
the decision-making process. Specifically, these are P(reject H, | Hy true)!!
and P(fail to reject Hy | H not true)!2, as well as on the form of these prob-

abilities change on the boundary between the hypotheses.

Definition 9 (First Order Properties). The 7,(«) is called asymptotically

91t must be the case that ©* N ©° = (). In several circumstances 6° = © — ©*.
10This represents the confidence in the null hypothesis.

11This is the probability of a Type I error.

12This is the probability of a Type II error.
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conservative if and only if

lim sup P(reject Hy | Hy true) < a.'®

n—oo

It is called asymptotically exact if and only if

lim P(reject Hy | Hy true) = a.

n—o0

Finally, it is called consistent if and only if

lim inf P(reject Hy | Hy not true) = 1.4

n—oo

Asymptotic conservativeness refers to the case where the probability
of making a Type I error in the decision-making process is asymptotically
strictly less than the nominal level chosen for this. This is interpreted as
greater asymptotic confidence in the null hypothesis than the nominal level.
In the case of asymptotic exactness, this is not true. The test asymptotically
recalls the nominal significance level. Finally, when the test is consistent,

the probability of making a Type II error asymptotically vanishing.

13The term lim sup refers to the limit of the decreasing sequence of upper bounds of the
successive truncations of this sequence of probabilities. When the sequence has a limit,
it coincides with this.

14Dual to limsup, the term liminf refers to the limit of the increasing sequence of lower
bounds of the successive truncations of this sequence of probabilities. When the sequence
has a limit, it coincides with this.
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3.3 Epilogue

Statistical models are collections of objects concerning probability distribu-
tions. Statistical inference procedures are random elements taking values
in, for example, parameter spaces, decision spaces, etc. The probability
distributions of these are (co-)shaped by the mapping of the unknown
distribution of the sample onto the corresponding decision space. Their
properties are essentially determined by the properties of this mapping.
The asymptotic behavior of the corresponding sequences of estimators,
testing procedures, etc, as the sample size grows to infinity, provide with-in
many cases convenient-large sample approximations of those properties.
Those approximations can in turn be used to further shape the inferential
procedures at hand.

The process of selecting a statistical model, estimator, test, etc., is es-
sentially a decision problem under risk (e.g., of making incorrect decisions).
For example, some preferences towards risk, could allow for the selec-
tion of an estimator that is "slightly" inconsistent but more "precise." Note
that solving optimal selection problems may be performed via the use of
auxiliary statistical inference procedures, whose selection itself may also
constitute such problems. The asymptotic properties mentioned above are
rudimentary. Finer aspects of asymptotic theory, such as the study of
how an asymptotically normal estimator approaches the corresponding

distribution, form additional criteria for selection.
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Appendix: Further Examples

Brief Introduction to Binary Response Models

Binary response models are a class of statistical models used to analyze
outcomes that take one of two possible values, such as success/failure,
yes/no, or 1/0. These models are designed to estimate the probability of
one of the outcomes occurring, given a set of explanatory variables.
Formally, using the notation employed in the LLS and NLLS examples,
Y; represents the binary response variable, i.e. Y; € {0,1}. The probability

of Y; = 1, given the regressors’ matrix X,,, is modeled as:
PY;=1]0(X,)) = F(Xi6),i=1,...,n,

where F(-) : R — [0, 1] is a link function that ensures the probability remains
in the interval [0, 1], and 6, is the latent true value of the parameter to be
estimated.

This is interpretable via the existence of a latent regression model, of the
form YV’ = X,,0 +¢,, where Y;* is unobservable (at least for some ), and what
is instead observed, is the event Y; := [(Y* > 0) := LY >0 . Then P(Y; =

0,Y*<0
L o(X,)) =EYi | o(Xn) = E(I(Y > 0) | o(X,) = PV > 0] 0(Xq)) = P(Xif0) +
gi > 0] 0(X,)) =Ple; > =Xliby) | 0(X,)) =1 —-P(e; < —Xlbp) | 0(X,,)). If the
distribution of ¢; conditionally on ¢(X,,) is independent of i ( conditionally on
0(X,,)) the elements of ¢ are more generally homogeneous), and G is the cdf

of this common distribution, then it is obtained that the latter probability is

also expressible as 1 — G(—X!6,). Thus F(z) :=1— G(—z). If the distribution
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is symmetric, i.e. it holds that for all z € R, 1 — G(—z) = G(z), then the link
function is actually the cdf of the conditional on the regressors, marginal
distribution of the errors, evaluated at X!6,. In both the considered cases

below symmetry holds.

Common Binary Response Models and Extensions

Two widely used binary response models are:

* Logistic Regression: In this model, the link function F(-) is the cdf

of the standard logistic distribution:

Logistic regression is popular due to its simplicity and interpretability.

* Probit Model: Here, the link function F(+) is the cumulative distribu-

tion function (CDF) of the standard normal distribution:

F(z) = ®(z) := / (27?)_1exp(—%)dx.

Probit models are often used when the error term in the latent regres-

sion is assumed to follow a normal distribution.

Both of these models are parametric (why?). Semi-parametric flavors of
binary response models exist; those necessarily leave the link function F,

partially unspecified. E.g. some of those models may only assume that G
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is symmetric, and/or that it has several analytical properties, e.g. satisfy
some form of continuity, it is differentiable/smooth, etc.

Part of the specification of these models is found in the LLS structure
for the latent variable Y *. Could this be generalized so as to conform to the

NLLS structure? (exercise!)

Applications

Binary response models are widely applied in fields such as:

* Economics: Modeling consumer choice, such as whether a product
is purchased, or binary decisions of whether to enter or not a labour

market, etc.

* Medicine: Predicting disease presence or absence based on patient

characteristics.
* Finance: Assessing credit default risk.

These models provide a flexible framework for analyzing dichotomous

outcomes and are a cornerstone of predictive modeling in many domains.

Brief Introduction to Linear Causal Processes and

ARMA Models

Linear causal processes and ARMA (AutoRegressive Moving Average) models
are fundamental tools in time series analysis, allowing researchers to model,

analyze, and predict stochastic processes evolving in time. These models
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provide a structured approach to capturing the dependence and dynamics

within time-dependent data.

Linear Causal Processes

A linear causal process models a time series as a function of past values
and random disturbances. For a stationary process {X,}, it can often be

expressed as:
oo
Xt = E Vi€,
Jj=0
where:

* ¢, are independent, identically distributed random shocks, or more

generally a white noise with zero mean and finite variance o?).
* 1); are coefficients determining the impact of past shocks.

* Convergence of the series Z‘;’;O 1/1]2 < oo, that the process is well defined
with zero mean and variance equal to 0%} 7 7. If the white noise
process is additionally stationary and ergodic (e.g. iid), then the

resulting process is also stationary and ergodic.

This formulation captures how past shocks influence the current state,

emphasizing causality in time series evolution.

ARMA Models

ARMA models are a specific class of linear models combining autoregressive

(AR) and moving average (MA) components. An ARMA(p, q) process is defined
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as:

Xi=1 X+ Xy o+ + 0 X+ e+ 0161+ + 046,
where:

* ¢, are the autoregressive parameters, capturing dependence on past

values of X;.

* ¢, are the moving average parameters, capturing dependence on past

EITOrS €.
* ¢, represents white noise.

ARMA models provide a flexible yet parsimonious framework for repre-
senting stationary time series with short-term dependence. Under station-
arity and ergodicity for the white noise process, appropriate restrictions
on the autoregressive parameters, ensure that the recurrence equation
defining the process, has a unique stationary and ergodic solution in the
form of a linear causal process with coefficients depending polynomially of

the ARMA coefficients.

Applications
Linear causal processes and ARMA models are widely applied in:

¢ Economics: Modeling and forecasting macroeconomic indicators such

as GDP or inflation.
* Finance: Analyzing stock prices or interest rate movements.

* Engineering: Signal processing and control systems.
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¢ Environmental Science: Modeling climate or weather patterns.

A statistical model involving ARMA(p,q) processes, is a collection of
suchlike processes, for different values of the associated parameters. For
example a statistical model involving stationary and ergodic AR(1) processes,

is a collection of the form

{(Xt)te, where Xy = ¢ X; 1 + €1, ¢ € (—1,1), (6¢)ce is stationary ergodic White Noise} .

This is semi-parametric (why?), and adheres to the structure of the LLS

example for Y, := (X;)i—1 ns€n = (&t)t=1,..n, for which

77777

however E(¢,/X;_;,j7 > 0) = 0 holds, instead of the stricter E(¢,,/0(X,)) = 0,,.

-----

A parametric subset of this statistical model could be obtained by further
restricting £y ~ N(0,0?), which would directly imply that X;/X;,_;,j > 0 ~
N(¢X;_1,0%). Analogous reductions to versions of the LLS examples hold
for any model comrpised of AR(p) parameters, for any p > 0, but not for
models involving non-trivial MA parts, due to the latency of the white noise

process.
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