
1 In Brief: Elements of Statistical Inference

To prepare for what will be examined in the course, we will attempt to

develop a basic language concerning Statistical Estimation and Statistical

Hypothesis Testing. These, along with Statistical Forecasting processes,

constitute parts of the field of statistics known as Statistical Inference.

2 The Statistical Problem-Parametric Models

Statistical inference generally involves solving the following version of the

"statistical problem":1 We are given a probability space equipped with a well-

defined probability distribution, the characteristics of which are unknown

and of interest to us. We have at our disposal observations, i.e., values

obtained from a random element following the given distribution. This

random element is called a (statistical) sample, and the values observed are

the values of the available sample. These values carry some information

about the unknown characteristics of the underlying distribution in which

we are interested. Is it possible to use the information from the sample to

determine or approximate these characteristics?

The previous description of the statistical problem is quite abstract.

A simple example from our social experience can help us understand it

in more familiar terms. Consider political polling processes, which aim,

among other things, to estimate the electoral influence of political parties
1This version refers to the part of the statistical science known as Statistical Inference.

The other part of the statistical problem concerns the concise representation of the
information contained in the sample, which is the focus of Descriptive Statistics. Despite
their different purposes, these parts are not independent of each other.
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within the electorate at a given point in time. The true and unknown

proportions of party influence form a discrete probability distribution; the

reference set is the collection of voters, equipped with the algebra formed

by the collection comprising the groups of voters for each party. On this

algebra, the distribution is defined, assigning to each pure group the ratio

of its members to the total population size. Through a random variable

that assigns each voter to their preferred political party, this distribution

is transferred to a probability distribution over the set of political parties;

this distribution ultimately becomes the subject of inference. The sample

consists of n independent realizations of the aforementioned random vari-

able. Its empirical distribution provides an approximation of the unknown

distribution mentioned above.

Based on the above, the general framework within which we will work is

composed of the following characteristics.

• The sample, which will be denoted as zn in the following, constitutes a

random element (e.g. random variable, or random vector, etc) defined

on some, potentially latent, probability space (Ω,F ,P) and takes values

in some Euclidean space, say Rk×n. The k refers to the dimension

of each individual sample element, while n refers to the number of

these individual elements. The random variables constituting each

individual sample element, as a random k-dimensional vector, may,

in turn, be appropriately grouped according to the characteristics of

the related distribution that are the focus of inference. For example,

in the general linear model, which we will gradually develop and is

widely used in econometrics, we have zn = (Yn,Xn), where Yn is an
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n × 1 random vector called the dependent variable, and Xn is an

n× p stochastic matrix whose column vectors are called independent

variables or regressors. Obviously, here k = p+ 1, while for i = 1, . . . , n,

the i-th individual sample element is the random row vector formed

by the i-th random variable of Yn paired with the i-th row of Xn in the

order implied by the form of zn. Thus, in our framework, the sample

is essentially a collection of random variables grouped into random

vectors and possibly stochastic matrices according to the requirements

of statistical inference. Each sample element can be perceived as a

random vector of suitable dimension, while we assume the researcher

has n such elements at their disposal.2 This is general enough for

what we want to develop next but does not constitute the most abstract

framework. Note that the sample should not be confused with the

observations available to the researcher. Observations are the value

that the sample, as a random element, takes when evaluated at some

element of its domain Ω; this value is precisely what is available in the

context of sampling and may change when the sampling is repeated.

• The object of inference: the joint distribution of zn, which will be at least

partially unknown. The goal of statistical inference is to determine

(or approximate) some of the unknown characteristics of the joint

distribution of the sample that are of interest and potentially feasible

to estimate/approximate. These characteristics, or the entire joint

distribution, or parts of it, will be symbolized, somewhat ambiguously,
2Somewhat abusively, we denote the i-th random k-dimensional member of the sample

as zi, for i = 1, . . . , n. The abuse arises from the fact that zn simultaneously denotes the
sample and the n-th element of it. What is meant each time will be clear from the context.
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as D0. In our framework, statistical inference will be considered as

the set of procedures aimed at determining (or approximating) D0.

• (Semi-)Parametric Structure: We assume that our framework is supple-

mented by some exogenous structure with respect to zn, pertaining to

the unknown D0. Specifically, we consider that the object of inference

D0 depends-possibly partially-on the unknown value of a Euclidean

parameter, i.e., a vector θ0 ∈ Θ ⊆ Rp, p ∈ N⋆. This is equivalent to the

existence of a relationship between θ0 and D0, which in various cases

is defined by the probabilistic properties of D0. Knowing θ0 precisely

is equivalent to adequately knowing the characteristics of D0 that are

of interest. Therefore, the issue of determining these characteristics

essentially reduces to locating θ0.Reducing the statistical problem to

the problem of locating a point in a Euclidean space can be greatly

facilitating solving the statistical problem at hand; the mathematical

machinery of locating Euclidean points (e.g. equations, inequalities,

etc) is usable.

Example 1 (Conditional Mean - Linear Case (LLS)). Let us assume that in

the previously mentioned framework where zn = (Yn,Xn), we are interested

in the unknown conditional mean of the dependent variable given the

independent variables, that is, the random vector E(Yn/σ(Xn)), provided it

is well-defined. If the involved random variables have marginal distributions

with first-order moments, then this is indeed well-defined (why?). Note

that here, and for reasons that will become clear as this example is further

developed, D0 is considered to be the conditional distribution of Yn given

the algebra σ(Xn). Thus, the aforementioned conditional mean represents
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the first moment of this distribution. In the linear case of the problem, it is

assumed that the unknown E(Yn/σ(Xn)) is some unknown linear function

of σ(Xn), so there necessarily exists some θ0 ∈ Rp such that E(Yn/σ(Xn)) :=

Xnθ0, which establishes the relationship between θ0 and D0. Observe that,

although by construction the conditional mean depends on the sample

through Xn, the parameter value characterizing it, θ0, is independent of the

sample. In a way, θ0 represents certain characteristics of the conditional

mean that are independent of the sample. If the above specification of the

conditional mean is correct, then finding the unknown θ0 is equivalent to

finding the first moment of this conditional distribution, which is the goal.

Note that the above is equivalent to Yn = Xnθ0 + εn, where for the random

vector εn, it necessarily holds that E(εn/σ(Xn)) = 0n (why?).

Example 2 (Conditional Mean - Not Necessarily Linear Case (NLLS)). Sup-

pose in the framework of the previous example, we have that E(Yn/σ(Xn)) :=

g(θ0,Xn), where g : Rp × Rn×p → Rn is a known function, with θ0 as before

being unknown. Clearly, here D0 can also be considered as the conditional

distribution of Yn given σ(Xn), and the relationship between it and θ0 is

given by the form of the conditional mean E(Yn/σ(Xn)) and the specific

way it depends on the parameter value. Similarly to the previous example,

the above is equivalent to Yn = g(θ0,Xn) + εn, where again for the random

vector εn, it necessarily holds that E(εn/σ(Xn)) = 0n (why?). Observe that

this includes as a subcase the previous example when g is (multi-)linear,

i.e., g(θ0,Xn) = Xnθ0. However, it also includes cases where the condi-

tional mean is not necessarily a linear function of σ(Xn). For instance, let

g(θ0, Xn) = (exp(X′
(i)θ0))i=1,··· ,n, where X(i) denotes the i-th row of the matrix.
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Finally, observe that here, just as in the previous example, zn = (Yn,Xn)

and k = 1 + p.

Example 3 (Instrumental Variables (IV)). Given the linear relationship

Yn = Xnθ0 + εn mentioned above, we consider something generally weaker

than the relationship E(εn/σ(Xn)) = 0n that appeared in Example LLS. Recall

that this relationship implies, first-through the Law of Iterated Expectations-

that the marginal distribution of each element of εn has zero mean (Exercise:

prove it!). Secondly, it implies that each element of εn has zero covariance

with any measurable transformation of any random variable composing the

regressors’ matrix Xn (Exercise: prove it!). This can be particularly strong,

as, for example, in time series environments, and indicatively the AR(1)

process example, where εn relates to Xk, ∀k ≥ n), it may not hold. It may also

fail in numerous other cases, such as when there is non-zero covariance

between an element of εn and a nonlinear transformation of an element

of Xn. A weaker version, therefore, assumes the existence of a stochastic

matrix of instrumental variables Wn of dimension n × q, analogous to

Xn, where q essentially denotes the number of instrumental variables,

such that the orthogonality condition E(W′
nεn) = E(W′

n(Yn − Xnθ0)) = 0q

holds. In this case, the object of inference is to find the assumed linear-

relative to Xn-deviation of Yn, for which the condition E(W′
n(Yn−Xnθ0)) = 0q

holds. This ultimately reduces to finding the unknown θ0. Note that the

matrix of instrumental variables may include columns of the matrix Xn.

When these matrices coincide, we obtain a weaker version of Example LLS.

Moreover, the above can clearly be extended to cases where Yn = g(θ0,Xn)+εn

and E(W′
nεn) = E(W′

n(Yn − g(θ0,Xn))) = 0q, where g is assumed known,
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while θ0, which ultimately determines the object of inference, is unknown.

Observe that in each of the aforementioned cases, the sample is (potentially)

augmented by the matrix of instrumental variables, i.e., zn = (Yn,Xn,W
⋆
n),

where W⋆
n is the matrix of instrumental variables remaining after excluding

columns corresponding to independent variables possibly appearing within

it (and which is considered empty when Xn = Wn), while k = 1 + p + q⋆,

where q⋆ is the number of columns of W⋆
n.

Further examples will be examined later. As previously mentioned,

the common feature of all the examples is the parametric description of

the characteristics of interest in D0 and the reduction of finding them to

locating a point in Euclidean space. This can be generalized, e.g., through

the use of non-Euclidean parameters, though this is beyond the scope of

the present notes.

From now on-as explicitly mentioned in Example LLS-we will assume

that θ0 is independent of n. Note that this holds in all the previously

mentioned examples, while the characteristics of D0 indicated by it may

depend on n. For example, this is inherently true for the conditional

means in the first and second examples. We note that the assumption of

independence of θ0 from n could be modified, though this would require

various changes in the asymptotic theory developed later.

The framework of the (semi-)parametric structure, which includes the

relationship between θ0 and D0, may imply that there exists a corresponding

relationship between the elements of Θ and a family of distributions, say

D, that (may) include as a special case the aforementioned pair (θ0, D0). As

essentially indicated by the examples above, this relationship is constructed
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based on assumptions about how the characteristics of D0 of interest are

specified with respect to the involved parameter. When the latter is allowed

to take values over the entire parameter space, a mapping θ → D is formed.

By construction, this mapping associates at least one distribution in D with

each element of Θ. This ultimately gives us the definition of a statistical

model within our framework:

Definition 1 (Statistical Model). A statistical model in our framework is

defined as the aforementioned mapping Θ → D.

By construction, the statistical model is formed by (a) the choice of how

the characteristics of D0 of interest are specified with respect to the involved

parameter, and (b) the choice of the possible values the parameter can take,

i.e., the determination of Θ. Note that given (a), the absence of further

information regarding the location of θ0 in Rn may guide the choice of the

parameter space to the least informative one, so that Θ = Rp. However,

when additional information is available about where θ0 may be located in

Rn, it may be useful to use it, in which case Θ ⊂ Rp may be chosen.

Essentially, the statistical model represents the relationship between

the possible values of the parameter and the corresponding distributions

for zn. Given the aforementioned (a) and (b), the concept includes both the

parameter space Θ and the collection D. The relationship defined by the

model through the above choices describes which elements of D correspond

to each element of Θ. In many cases-as we will see below-the set D may

not be explicitly determined, but only implicitly.

In any case, a preliminary classification of statistical models of the

above form can be made based on the properties of this mapping. If this
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is functional, meaning that each element θ ∈ Θ corresponds to a unique

distribution in D, then the statistical model is called fully parametric. In

such cases, D is in a one-to-one correspondence with the parameter space.

Each parameter value fully determines the corresponding element of D.

This will obviously occur when the relationship between the parameter and

distributions arises from sufficiently available information incorporated

into the aforementioned (a) and (b). In all other cases-i.e., when there exists

θ ∈ Θ such that more than one distribution in D corresponds to it-the

model is called semi-parametric.3

Let us examine some examples:

Example 4 (LLS). As observed in Example LLS, the conditional mean can

be specified as a linear function of the matrix Xn, whereby its dependence

on the associated Euclidean parameter is immediate. This specification

leads to a statistical model of the form

{E(Yn/σ(Xn)) = Xnθ, θ ∈ Rp} ,

which can be viewed through the following mapping: (a) for each possible

value of θ, any (conditionally corresponding) distribution on Rn with mean

Xnθ is associated, and (b) since no further information about θ0 is available,

the largest possible parameter space is chosen. Clearly, the collection

D in this case is implicitly determined by (a) and (b), and the model is

semi-parametric since each value of θ corresponds to multiple distributions

(why?). If we introduce further information through (a), e.g., by assuming

that the conditional covariance matrix of εn exists and equals In, the identity
3In this case, the mapping is called multivalued (or correspondence).
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matrix of size n× n4, the resulting model is

{E(Yn/σ(Xn)) = Xnθ, θ ∈ Rp,Var(Yn/σ(Xn)) = In} (Exercise: prove this!),

which is clearly a subset of the previous model (why?) and is also semi-

parametric (why?). If we further assume, within the framework of spec-

ification (a), that εn/σ(Xn) ∼ N(0n, In), we obtain a smaller subset of the

above:

{Yn/σ(Xn) ∼ N(Xnθ, In), θ ∈ Rp} (Exercise: prove this!),

which is fully parametric (why?). Note that the description of the Gaussian

distributions composing D is explicit here. In this example, we specified

three statistical models by choosing the relationships in (a) and selecting Θ

as the largest possible. If, for instance, we also know as external information

that θ0 has integer components, this can be incorporated into the parameter

space selection, resulting in smaller versions of the above by replacing

Θ = Rp with Θ = Zp. This yields three models, where the first two are

semi-parametric and the third is fully parametric (why?).

Example 5 (IV). Given the specification described in Example 6.2, and

similarly to the previous example, if no further information is available
4Note that this specification of the covariance matrix is particularly strong, as it assumes

it to be diagonal (which implies further assumptions about the dependence and conditional
distributions of the elements of εn on σ(Xn)) and fully known, so no parallel statistical
inference procedures are needed for it. This assumption is made without significant loss
of generality for the purposes we focus on.
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about the location of θ0, we can choose a model of the form

{E(W′
n(Yn −Xnθ)) = 0q, θ ∈ Rp} ,

which can be interpreted as follows: for each value of θ, any distribution

on Rn×k that satisfies the relationship E(W′
n(Yn −Xnθ)) = 0q is associated.

Clearly, this is semi-parametric (why?). Smaller versions of this model

can be obtained by allowing θ to take values in a proper (non-empty-why?)

subset of Rn, potentially utilizing relevant external information. Finally,

note that when Wn = Xn, we obtain a weaker version of Example LLS

(explain!).

If the specifications made in constructing a statistical model, or the

choice of parameter space, reflect information related to economics, we

then obtain the following classificatory definition:

Definition 2. The model θ → D is called an econometric model if and

only if its specification or the choice of parameter space is based, at least

partially, on exogenous information that may stem from Economic Theory

or empirical characteristics of economic phenomena.

In econometric models, the purpose of statistical inference-in our frame-

work, approximating θ0-is related to verifying the empirical validity of claims

made by economic theory about the functioning of phenomena it addresses.

More generally, it aims at probabilistic inference, i.e., verifying properties of

distributions that may characterize such phenomena, to assist economic

theory in understanding them. Note that constructing econometric models,

studying their properties, designing statistical inference procedures for
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them, analyzing the properties of these procedures and their computa-

tional complexity, and applying them to specific econometric models are

processes that constitute the field of Econometrics.5

Example 6 (CAPM-IV). Suppose that, within the framework of Example

IV, Yn consists of a time series of observed logarithmic excess returns of a

stock (defined by the consecutive time differences of its logarithmic price

after subtracting the logarithm of the risk-free rate at the current time),

and Xn consists of the observed excess logarithmic returns of the market

portfolio-adequately approximated, e.g., by a suitable stock index, so p = 1.

The financial CAPM pricing model-see, for example, ?-predicts that

E(X′
n(Yn −Xnθ0)) = 0

for some unknown θ0 representing the relationship between the stock and

systematic risk, as depicted by the market portfolio. Note that the econo-

metric model can often-and typically does-expand, allowing the matrix Xn

to include additional variables, e.g., a constant column of ones. This is

a way to test the validity of CAPM, as if it holds true, the corresponding

components of θ0 should be zero. Clearly, the above constitutes a special

case of Example IV with Wn = Xn.

Example 7 (Market Entry Game). Suppose that firm j ∈ {1, 2} decides

whether to enter market m, with m ∈ {1, 2, . . . , n}. The decision is repre-

sented by the variable Zj,m, where Zj,m = 1 means the firm decides to enter,
5We note the existence of econometric models that do not involve Euclidean parameters.

These pertain to the subfield of non-parametric Econometrics, which lies outside the
current scope. Interested readers may refer to ? for more information.

12



and Zj,m = 0 means it decides not to enter. The decision is based on the

profit function:

Πj,m = (εj,m − θ0,jZ−j,m)I{Zj,m=1},

where εj,m ∼ Unif[0, 1] and is i.i.d. for j = 1, 2, m = 1, . . . , n (Exercise: is the

collection (εj,m)j=1,2, m=1,...,n a stochastic process?), I{Zj,m=1} is the indicator

function of the event {Zj,m = 1}, and Z−j,m is the decision of the other firm.

The random variable εj,m represents the benefit of firm j from entering

market m. Therefore, the parameter θ0,j represents the loss of benefit due

to the other firm’s entry into the same market. It summarizes a form of

sensitivity to the presence of a competitor, and importantly, it does not

depend on the market. The parameter

θ0 = (θ0,1, θ0,2) ∈ Θ = (0, 1)× (0, 1)

is unknown. Due to the form of the profit function, we have a strategic

interaction environment-a game-theoretic framework. It can be shown that

this framework has the following (stochastic) Nash equilibria:

1. (Z1,m, Z2,m) = (1, 1), if εj,m ≥ θ0,j,∀j = 1, 2,

2. (Z1,m, Z2,m) = (1, 0), if ε1,m ≥ θ0,1, ε2,m < θ0,2,

3. (Z1,m, Z2,m) = (0, 1), if ε1,m < θ0,1, ε2,m ≥ θ0,2, and

4. (Z1,m, Z2,m) =

(0, 1)

(1, 0)

, if εj,m < θ0,j,∀j = 1, 2-in this case, we have

multiple equilibria.
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The equilibrium is stochastic and depends on the relationship between

the involved random variables and parameters. Knowledge of θ0 provides a

probabilistic understanding of the firms’ entry decisions in these markets.

Example 8 (GARCH(1,1)). The empirical characteristics of logarithmic

returns for certain classes of financial securities often indicate various

properties of conditional heteroskedasticity for the corresponding stochas-

tic processes.6 Among other things, the conditional (on an appropriate

information set) variances of these processes appear to vary over time and

exhibit properties that partially align with those of a GARCH(1,1) process.

If a researcher has a time series of related logarithmic returns (yt)t=1,...,n

at their disposal, which are considered part of a stationary and ergodic

GARCH(1,1) process with an unknown parameter vector θ0 = (ω0, a0, β0),

and it is known that ω0 > 0, a0, b0 ≥ 0, and a0 + b0 < 1, the statistical

model can be chosen as the collection of such processes related to the

sample (yt)t=1,...,n, uniquely described by the following systems of stochastic

recursive relationships:


zt iid,E(z0) = 0,E(z20) = 1,

yt = zt
√
ht(θ),

ht(θ) = ω + αy2t−1 + βht−1(θ)

, t = 1, . . . , n,

θ = (ω, α, β) ∈ Θ,

Θ = {(ω, α, β) ∈ R3 : ω > 0, α, β ≥ 0, α+ β < 1}.


.

The above is semi-parametric since no further specification is made about
6There is an extensive related literature. Interested readers may refer to ? for an

example.
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the distribution of z0 beyond its first two moments. Additionally, the pa-

rameter space consists of all three-dimensional real vectors with a strictly

positive first component, non-negative remaining components, and a sum

less than one. The positivity constraints are natural for the strict positivity

of σt, and the last constraint reflects external information available to the

researcher about θ0, related to the existence of E(σ2
0). This constraint is

stronger (Exercise: prove this using Jensen’s inequality) than the condition

ensuring the existence of a unique stationary and ergodic solution to the

system.

The two previous examples established econometric models through

which we gained an initial sense of how-firstly-claims of economic theory,

and-secondly-empirical characteristics of economic variables, can guide

the construction of statistical models. Moreover, all the examples we have

discussed so far indicate the following: statistical models can be repre-

sented in various ways, e.g., using the distributions that compose them

directly, or describing these distributions through their moments, recursive

equations whose unique solutions are random elements following these

distributions, and so on. This is clearly related to the numerous ways

in which a probability distribution can be represented, which we briefly

explored in the previous chapters of the first part.

A final concept that concerns us relates to the relationship between

D0 and the involved statistical model. In describing the models in the

previous examples, the phrase "[...] the statistical model can be chosen [...]"

was sometimes used verbatim, implying that the statistical/econometric

model we work with in each case is essentially a matter of choice. Re-
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call that its construction was based on (a) relationships (in what we do

parametrically) specifying the characteristics of the unknown distribution

of interest, and (b) the selection of permissible parameter values. Both

aspects may be influenced by (exogenous to the sample) information avail-

able to the researcher, natural constraints related to the properties of

the involved random elements-e.g., the positivity constraints in the last

example-information derived from theoretical claims related to the sample,

and so on. In any case, deciding which of the available information to

use in specifying the model is a matter of decision and may relate to the

researcher’s preferences regarding the risk that D0 /∈ D,i.e., the unknown

distribution having characteristics not accounted for by the chosen model.

This is called specification risk of the model and is typically present. Thus,

the specification and choice of a statistical model can itself constitute a de-

cision problem, for which statistical inference procedures can be employed

to resolve. In this part of the book, we will not delve deeply into this, but

in a later chapter, we will briefly explore a case where this risk materializes

and a statistical test for the specification of certain semi-parametric models.

For now, we complete our terminology with the following definition:

Definition 3. A statistical model is called well-specified if and only if D0 ∈ D.

Otherwise, it is called misspecified.

Note that, based on how the parametricity of our framework was con-

structed, misspecification can arise for two reasons: (a) the specification

relationships leading to the parametrization of the characteristics of D0

are incorrect. For example, within the framework of the linear model, the

conditional mean is not actually a linear function of Xn, or Xn does not
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include all relevant independent variables. For instance, within the frame-

work of the last example, the process constituting the sample is not of the

GARCH(1,1) type, and so on. In such cases, θ0 has no meaning, although

a parameter value may exist that relates to D0 in some "optimal way." (b)

Although the parametric specification is correct, the parameter space-due

to, e.g., erroneous external information-was chosen such that θ0 /∈ Θ. For

instance, in the last example, it may not hold that a0 + b0 < 1, but rather

the more general E(ln(a0z20 + b0)) < 0 holds.

In any case, in what follows, we will deal minimally with specification

issues. The statistical model will be considered given and (mostly) well-

specified.

Assumption 1. For Θ → D, there exists θ0 ∈ Θ such that θ0 → D0.

From the preceding discussion, it should be apparent that in (semi-

)parametric models, the risk of misspecification cannot exceed that of their

parametric counterparts; the former are supersets of the latter. Conse-

quently, in various cases in Econometrics, semi-parametric models-when

available-are considered a golden mean between models without Euclidean

parameters (with their accompanying difficulties, e.g., in the properties of

statistical inference procedures) and parametric models with their higher

risk of misspecification.

3 Summary: Issues in Statistical Inference

In this section, we will briefly address some fundamental characteristics of

point estimation and hypothesis testing procedures. Within the parametric
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framework, we will examine general definitions and attempt to describe-

by no means exhaustively-the minimum properties that these procedures

should ideally possess. Note that we will not delve into set estimation issues

(e.g., confidence intervals), although such estimations can be derived from

the hypothesis testing procedures discussed. The properties we describe

will be asymptotic properties, focusing on the behavior of these procedures

as the sample size grows to infinity (n→ ∞), leading to unbounded growth

in the information available to the inferential procedures in order to locate

θ0. These properties necessarily involve concepts of stochastic convergence.

These ideas will be extensively used later on, where we will examine a rather

general class of statistical inference procedures of this kind.

3.1 Elements of Point Estimation

Within our framework, point estimators are procedures that use the sample

to leverage relevant information to approximate θ0 within Θ. Mathematically,

they are functions defined on the sample space, Rk×n in our framework, with

values in Θ. Their properties-pertaining to the quality of this approximation-

derive from the properties of their distributions, provided the latter are

well-defined. To ensure this, we require that they are also Borel measurable

functions, i.e. effectively random vectors:

Definition 4. An estimator of θ0 is any Borel measurable function θn :

Rk×n → Θ.7

7The term "estimate" refers to the value assigned by the estimator when computed for a
specific sample.
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For example, within any version of the linear model in Example 6.5,

when Θ = Rp, both θn = 0p and what we later call the Least Squares

Estimator, θn = (X′
nXn)

−1XnYn, fall within this definition (Exercise: prove

this!). The former is a constant function of the sample, while the latter

is linear in Yn. Clearly, there is an abundance of estimators for θ0, posing

a selection problem. This can be addressed by crystallizing desirable

properties for the estimators we work with. These properties are essentially

properties of their distributions. For instance, θn is called unbiased if and

only if its distribution has a first moment equal to θ0, i.e., E(θn) = θ0. This

property is often loosely interpreted as meaning that the estimator "on

average over possible sample values" identifies θ0." Similarly, it might be

desirable for the estimator’s distribution to exhibit "maximum possible

concentration" around θ0, characterized by some efficiency property. Note

that such properties, in all but the simplest econometric models, are either

particularly difficult to derive due to the unknown analytical form of the

estimators as functions of the sample or generally do not hold due to the

complexity of this (even unknown) form. In the following, we will describe

some properties that are usually easier to verify, as they concern the

asymptotic behavior of estimators as n→ ∞, enabling], facilitating forms of

asymptotic approximation to the structure of estimators.

It is often convenient-particularly in proving asymptotic properties-

to use concise expressions to denote asymptotic properties, such as

convergence in probability or asymptotic tightness of a sequence of

random variables. The expression Op(1) denotes that the sequence is

asymptotically tight, while op(1) denotes convergence in probability to
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zero. More generally, if xn, yn, and zn represent the general terms of

related sequences, then xn = Op(zn) means xn = ynzn and yn = Op(1).

Similarly, xn = op(zn) means xn = ynzn and yn = op(1). It is clear from

the above definitions that Op(zn) = znOp(1), op(zn) = znop(1), and it is

easy to prove properties like op(1) + op(1) = op(1), Op(1) + Op(1) = Op(1),

op(1) + Op(1) = Op(1), op(1)op(1) = op(1), Op(1)Op(1) = Op(1), op(1)Op(1) =

op(1), and so on.

Next, we will work with appropriate limits as the sample size grows

unbounded, with ∥·∥ denoting the Euclidean norm:

Definition 5. An estimator θn is called weakly consistent if and only if

θn
p→ θ0, i.e., if and only if ∀ε > 0, limn→∞ P(∥θn − θ0∥ > ε) = 0.

Thus, an estimator is weakly consistent if and only if it converges in

probability to θ0. This is a relatively weak property that is desirable to

satisfy, and its validity can (among many other methods!) be facilitated by

relevant Laws of Large Numbers. A stronger version of the above applies

when the convergence is almost sure instead of in probability, leading to

the property of strong consistency.

Given consistency, the rate at which the estimator converges to the

unknown parameter value may be of interest. This rate can be represented

by some unbounded real sequence, say rn → ∞, such that if the distance

of the estimator from θ0 is pointwise multiplied by rn, we obtain a random

variable that exhibits asymptotic tightness:

Definition 6. If θn is weakly consistent and there exists rn → ∞ such that
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∀ε > 0,∃Mε > 0 such that

lim
n→∞

P(rn ∥θn − θ0∥ > Mε) ≤ ε,

i.e., equivalently rn ∥θn − θ0∥ = Op(1), then the sequence (rn) is called the

rate of convergence of the estimator.

The property of asymptotic tightness may arise for more than one rate,

so the rate may need to be optimally chosen Among consistent estimators,

it seems reasonable to prefer the one (if it exists) with the fastest optimal

rate of convergence. In many cases (but not always!), the optimal rate of

convergence (when it exists) in our (semi-)parametric framework for many

cases of estimators is
√
n. Given the optimal rate of convergence, the issue

of the weak convergence of rn(θn − θ0) becomes interesting:

Definition 7. If θn is weakly consistent and has an optimal rate rn → ∞,

then it is called asymptotically Gaussian if and only if there exists a random

vector Z and a positive definite matrix V of dimensions p × p such that

Z ∼ N(0p, Vp×p) and

rn(θn − θ0)⇝ Z.

The covariance matrix of the distribution of Z is called the asymptotic

variance of the estimator.

The convergence in distribution of rn(θn− θ0) may hold even if the asymp-

totic distribution is not Gaussian. It is shown that in specific frameworks,

which largely encompass what will be discussed later, having θn asymp-

totically Gaussian makes it preferable, in terms of certain categories of
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preferences regarding the risk of "deviation of the estimator from θ0," to esti-

mators that are not asymptotically Gaussian but may share the properties

of consistency and the same rate of convergence. Among estimators that

have the aforementioned properties and are also asymptotically Gaussian,

the preferred one (if it exists) will be the one with the smaller asymptotic

variance.8 It is noted that deriving the optimal rate and the property of

asymptotic normality can be facilitated (among many other methods!) by

the action of some Central Limit Theorem.

3.2 Elements of Hypothesis Testing

In this section, for Θ⋆ being a non-empty proper subset of Θ, we consider a

researcher interested in determining whether θ0 ∈ Θ⋆. This may stem from

(possibly additional) claims of relevant theory or from some form of external

information available about the location of θ0. For example, in Example 6.8

above, the researcher might be interested in testing whether there is no

temporal variation in the evolution of the conditional variance σ2
t , but that

it remains constant over time and equal to ω0. In this case, we would have

Θ⋆ = {θ ∈ Θ : a = b = 0}. If the researcher tends to trust the hypothesis

θ0 ∈ Θ⋆, they can use empirical information from the sample to test the

following structure of hypotheses:

H0 : θ0 ∈ Θ⋆,

H1 : θ0 ∈ Θ◦.
(1)

8To be elaborated!
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The H0 is called the null hypothesis, and its complement H1 is the alternative

hypothesis.9

A testing procedure usually involves selecting a test statistic-a measur-

able function of the sample taking values in the reals-choosing a rejection

region for the null hypothesis, which is a measurable subset of the reals,

constructed based on the properties of the statistic under the null hy-

pothesis,10 and determining the acceptable probability of rejecting the null

hypothesis when H0 is true. This probability is called the level of statistical

significance.

Definition 8. Given the significance level α ∈ (0, 1), a test for the hypothesis

structure 1 is any measurable function τn(α) : Rk×n → {fail to reject H0, reject H0}.

The definition describes such a testing procedure as a decision-making

process, which is a function of the sample that takes values in the set of

possible decisions:

{fail to reject H0, reject H0}.

The quality of this procedure depends on the properties of this function

and the way in which the probabilities of possible errors are formed in

the decision-making process. Specifically, these are P(reject H0 | H0 true)11

and P(fail to reject H0 | H0 not true)12, as well as on the form of these prob-

abilities change on the boundary between the hypotheses.

Definition 9 (First Order Properties). The τn(α) is called asymptotically
9It must be the case that Θ⋆ ∩Θ◦ = ∅. In several circumstances Θ◦ = Θ−Θ⋆.

10This represents the confidence in the null hypothesis.
11This is the probability of a Type I error.
12This is the probability of a Type II error.
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conservative if and only if

lim sup
n→∞

P(reject H0 | H0 true) < α.13

It is called asymptotically exact if and only if

lim
n→∞

P(reject H0 | H0 true) = α.

Finally, it is called consistent if and only if

lim inf
n→∞

P(reject H0 | H0 not true) = 1.14

Asymptotic conservativeness refers to the case where the probability

of making a Type I error in the decision-making process is asymptotically

strictly less than the nominal level chosen for this. This is interpreted as

greater asymptotic confidence in the null hypothesis than the nominal level.

In the case of asymptotic exactness, this is not true. The test asymptotically

recalls the nominal significance level. Finally, when the test is consistent,

the probability of making a Type II error asymptotically vanishing.
13The term lim sup refers to the limit of the decreasing sequence of upper bounds of the

successive truncations of this sequence of probabilities. When the sequence has a limit,
it coincides with this.

14Dual to lim sup, the term lim inf refers to the limit of the increasing sequence of lower
bounds of the successive truncations of this sequence of probabilities. When the sequence
has a limit, it coincides with this.
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3.3 Epilogue

Statistical models are collections of objects concerning probability distribu-

tions. Statistical inference procedures are random elements taking values

in, for example, parameter spaces, decision spaces, etc. The probability

distributions of these are (co-)shaped by the mapping of the unknown

distribution of the sample onto the corresponding decision space. Their

properties are essentially determined by the properties of this mapping.

The asymptotic behavior of the corresponding sequences of estimators,

testing procedures, etc, as the sample size grows to infinity, provide with-in

many cases convenient-large sample approximations of those properties.

Those approximations can in turn be used to further shape the inferential

procedures at hand.

The process of selecting a statistical model, estimator, test, etc., is es-

sentially a decision problem under risk (e.g., of making incorrect decisions).

For example, some preferences towards risk, could allow for the selec-

tion of an estimator that is "slightly" inconsistent but more "precise." Note

that solving optimal selection problems may be performed via the use of

auxiliary statistical inference procedures, whose selection itself may also

constitute such problems. The asymptotic properties mentioned above are

rudimentary. Finer aspects of asymptotic theory, such as the study of

how an asymptotically normal estimator approaches the corresponding

distribution, form additional criteria for selection.
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Appendix: Further Examples

Brief Introduction to Binary Response Models

Binary response models are a class of statistical models used to analyze

outcomes that take one of two possible values, such as success/failure,

yes/no, or 1/0. These models are designed to estimate the probability of

one of the outcomes occurring, given a set of explanatory variables.

Formally, using the notation employed in the LLS and NLLS examples,

Yi represents the binary response variable, i.e. Yi ∈ {0, 1}. The probability

of Yi = 1, given the regressors’ matrix Xn, is modeled as:

P(Yi = 1 | σ(Xn)) = F (X′
iθ0), i = 1, . . . , n,

where F (·) : R → [0, 1] is a link function that ensures the probability remains

in the interval [0, 1], and θ0 is the latent true value of the parameter to be

estimated.

This is interpretable via the existence of a latent regression model, of the

form Y ⋆
n = Xnθ+ εn, where Y ⋆

i is unobservable (at least for some i), and what

is instead observed, is the event Yi := I(Y ⋆
i > 0) :=

1, Y ⋆
i > 0

0, Y ⋆
i ≤ 0

. Then P(Yi =

1 | σ(Xn)) = E(Yi | σ(Xn) = E(I(Y ⋆
i > 0) | σ(Xn) = P(Y ⋆

i > 0 | σ(Xn)) = P(X′
iθ0) +

εi > 0 | σ(Xn)) = P(εi > −X′
iθ0) | σ(Xn)) = 1 − P(εi ≤ −X′

iθ0) | σ(Xn)). If the

distribution of εi conditionally on σ(Xn) is independent of i ( conditionally on

σ(Xn)) the elements of ε are more generally homogeneous), and G is the cdf

of this common distribution, then it is obtained that the latter probability is

also expressible as 1−G(−X′
iθ0). Thus F (z) := 1−G(−z). If the distribution
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is symmetric, i.e. it holds that for all z ∈ R, 1−G(−z) = G(z), then the link

function is actually the cdf of the conditional on the regressors, marginal

distribution of the errors, evaluated at X′
iθ0. In both the considered cases

below symmetry holds.

Common Binary Response Models and Extensions

Two widely used binary response models are:

• Logistic Regression: In this model, the link function F (·) is the cdf

of the standard logistic distribution:

F (z) =
1

1 + e−z
.

Logistic regression is popular due to its simplicity and interpretability.

• Probit Model: Here, the link function F (·) is the cumulative distribu-

tion function (CDF) of the standard normal distribution:

F (z) = Φ(z) :=

∫ z

−∞
(2π)−1 exp(−x

2

2
)dx.

Probit models are often used when the error term in the latent regres-

sion is assumed to follow a normal distribution.

Both of these models are parametric (why?). Semi-parametric flavors of

binary response models exist; those necessarily leave the link function F ,

partially unspecified. E.g. some of those models may only assume that G
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is symmetric, and/or that it has several analytical properties, e.g. satisfy

some form of continuity, it is differentiable/smooth, etc.

Part of the specification of these models is found in the LLS structure

for the latent variable Y ⋆
n . Could this be generalized so as to conform to the

NLLS structure? (exercise!)

Applications

Binary response models are widely applied in fields such as:

• Economics: Modeling consumer choice, such as whether a product

is purchased, or binary decisions of whether to enter or not a labour

market, etc.

• Medicine: Predicting disease presence or absence based on patient

characteristics.

• Finance: Assessing credit default risk.

These models provide a flexible framework for analyzing dichotomous

outcomes and are a cornerstone of predictive modeling in many domains.

Brief Introduction to Linear Causal Processes and

ARMA Models

Linear causal processes and ARMA (AutoRegressive Moving Average) models

are fundamental tools in time series analysis, allowing researchers to model,

analyze, and predict stochastic processes evolving in time. These models
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provide a structured approach to capturing the dependence and dynamics

within time-dependent data.

Linear Causal Processes

A linear causal process models a time series as a function of past values

and random disturbances. For a stationary process {Xt}, it can often be

expressed as:

Xt =
∞∑
j=0

ψjϵt−j,

where:

• ϵt are independent, identically distributed random shocks, or more

generally a white noise with zero mean and finite variance σ2).

• ψj are coefficients determining the impact of past shocks.

• Convergence of the series
∑∞

j=0 ψ
2
j <∞, that the process is well defined

with zero mean and variance equal to σ2
∑∞

j=0 ψ
2
j . If the white noise

process is additionally stationary and ergodic (e.g. iid), then the

resulting process is also stationary and ergodic.

This formulation captures how past shocks influence the current state,

emphasizing causality in time series evolution.

ARMA Models

ARMA models are a specific class of linear models combining autoregressive

(AR) and moving average (MA) components. An ARMA(p, q) process is defined
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as:

Xt = ϕ1Xt−1 + ϕ2Xt−2 + · · ·+ ϕpXt−p + ϵt + θ1ϵt−1 + · · ·+ θqϵt−q,

where:

• ϕi are the autoregressive parameters, capturing dependence on past

values of Xt.

• θj are the moving average parameters, capturing dependence on past

errors ϵt.

• ϵt represents white noise.

ARMA models provide a flexible yet parsimonious framework for repre-

senting stationary time series with short-term dependence. Under station-

arity and ergodicity for the white noise process, appropriate restrictions

on the autoregressive parameters, ensure that the recurrence equation

defining the process, has a unique stationary and ergodic solution in the

form of a linear causal process with coefficients depending polynomially of

the ARMA coefficients.

Applications

Linear causal processes and ARMA models are widely applied in:

• Economics: Modeling and forecasting macroeconomic indicators such

as GDP or inflation.

• Finance: Analyzing stock prices or interest rate movements.

• Engineering: Signal processing and control systems.
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• Environmental Science: Modeling climate or weather patterns.

A statistical model involving ARMA(p,q) processes, is a collection of

suchlike processes, for different values of the associated parameters. For

example a statistical model involving stationary and ergodic AR(1) processes,

is a collection of the form

{(Xt)t∈,whereXt = ϕXt−1 + εt, ϕ ∈ (−1, 1), (εt)t∈ is stationary ergodic White Noise} .

This is semi-parametric (why?), and adheres to the structure of the LLS

example for Yn := (Xt)t=1,...,n,Xn := (Xt−1)t=1,...,n, εn = (εt)t=1,...,n, for which

however E(εt/Xt−j, j > 0) = 0 holds, instead of the stricter E(εn/σ(Xn)) = 0n.

A parametric subset of this statistical model could be obtained by further

restricting ε0 ∼ N(0, σ2), which would directly imply that Xt/Xt−j, j > 0 ∼

N(ϕXt−1, σ
2). Analogous reductions to versions of the LLS examples hold

for any model comrpised of AR(p) parameters, for any p > 0, but not for

models involving non-trivial MA parts, due to the latency of the white noise

process.
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