
1 Optimization-based Inference

We will briefly examine, using the language and background previously

outlined, a broad class of statistical inference procedures widely used in

Econometrics. These are estimation and hypothesis testing procedures

based on mathematical optimization problems. In these cases, the un-

known value of the parameter θ0 is characterized as the solution to an

optimization problem arising from (part of) the structure of the underlying

statistical model.

Many (semi-)parametric inference procedures fall under the aforemen-

tioned framework. For instance, likelihood theory and the resulting Maxi-

mum Likelihood Estimator (MLE), along with related Likelihood Ratio and

Score (Lagrange Multipliers) tests in parametric models; the family of least

squares estimators (OLSE, GLSE, FGLSE, etc.) in various versions of the

semi-parametric linear model; the Generalized Method of Moments (GMM),

the associated GMM Estimator (GMME), and corresponding hypothesis

tests; and so on.

Here, we will describe a general framework for constructing estimators

derived via optimization, along with properties related to those discussed

in the previous chapter.

2 Objective Functions

In various cases, the unknown parameter value θ0 can be characterized

by a variational property, i.e., an optimality condition. The structure of

the statistical model, determined by its specification and parameterization
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properties, implies the existence of an objective function that is minimized,

potentially uniquely, at θ0.1

If this function were known, its minimization feasible, and its minimizer

unique, it would be possible to determine θ0 precisely, without necessarily

using the information contained in the sample. Typically, however, this

function depends (also) on θ0, rendering the above reasoning invalid. It

might, however, be approximated-in a suitable sense-by a sample-based

function. Under certain assumptions, minimizing this sample-based ap-

proximation with respect to θ may yield a stochastic approximation of θ0.

This analogy leads to the concept of Optimization-Based Estimators (OE).2

Let us first examine some simple examples of the formulation of such

objective functions.

Example 1. [LLS] For the model

{E(Yn/σ(Xn)) = Xnθ, θ ∈ Rp, Var(Yn/σ(Xn)) = In} ,

and given the assumption that rank(Xn) = p,34 and assuming Yn = Xnθ0+εn

1The choice of describing the process through minimization is made without loss of
generality. Maximization is the dual concept: maximizing f is equivalent to minimizing
−f .

2In the literature, these are also referred to as M-Estimators.
3Modifying the above terminology slightly, and given that this matrix is generally

stochastic, we could more broadly assume that the set of sample values for which its
columns become linearly dependent is negligible with respect to the underlying probability
distribution, i.e., that the rank condition holds with probability 1. We do not do so here
for simplicity of terminology.

4This means that the square matrix 1
nX

′
nXn is invertible (why?), and consequently, due

to its construction, it is strictly positive definite (why?). It also implies that necessarily
n ≥ p (why?).
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with E(εn | σ(Xn)) = 0n, we observe that

θ0 = argmin
θ∈Θ

E
(
1

n
(Yn −Xnθ)

′(Yn −Xnθ)/σ(Xn)

)
. (1)

This is because

E
(
1

n
(Yn −Xnθ)

′(Yn −Xnθ)/σ(Xn)

)

= (θ− θ0)
′E(X′

nXn/σ(Xn))

n
(θ− θ0)−

2

n
(θ− θ0)

′E(X′
nεn/σ(Xn))+

1

n
E(ε′nεn/σ(Xn)).

Using properties of the conditional expectation, we find that

E(X′
nXn/σ(Xn)) = X′

nXn, E(X′
nεn/σ(Xn)) = X′

nE(εn/σ(Xn)) = X′
n0n = 0p,

and

E(ε′nεn/σ(Xn)) = E(tr(ε′nεn/σ(Xn))) = tr(E(εnε′n/σ(Xn))) = tr(In) = n.

5

Thus,

E
(
1

n
(Yn −Xnθ)

′(Yn −Xnθ)/σ(Xn)

)
= (θ − θ0)

′X
′
nXn

n
(θ − θ0) + 1,

and the latter, due to the strict positive definiteness of X′
nXn

n
, is strictly

convex. It is therefore uniquely minimized if and only if θ − θ0 = 0p, and
5Recall that the trace tr of any square matrix is defined as the sum of its diagonal

elements. This is a linear operator and thus commutes with the integral, which is also
linear.
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consequently, (1) holds because by the already adopted well-specification

assumption θ0 ∈ Θ.

This objective function arises from the simple observation that, for a

distribution in Euclidean space with finite second moments, the mean is the

point minimizing the expected squared deviation around an arbitrary point

in the space (Exercise: Try to demonstrate this in R, using, for example,

an argument based on dominated convergence for a related observation to

facilitate the use of first-order conditions). It is thus based on variational

properties of moments.

Note that in the case where rank(Xn) < p, θ0 minimizes-but not uniquely-

the objective function. In any case, this function is not directly usable for

determining or approximating θ0-remember, this is the goal of inference-

because it is evident that it directly depends on θ0. Under certain conditions

(to be examined later), it is suitably approximated by

cn(θ) :=
1

n
(Yn −Xnθ)

′(Yn −Xnθ),

whose minimization6 over Θ yields the Ordinary Least Squares Estimator

(OLSE)-see below.

Example 2 (IVE). We consider the model of the form

{E(W′
n(Yn −Xnθ)) = 0q, θ ∈ Θ} .

Recall that the specification states that when integration is performed with

respect to D0, then θ = θ0 ⇔ E(W′
n(Yn −Xnθ)) = 0q. We strengthen this with

6Or a monotonic transformation of it.
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the assumption that, when integration is performed with respect to D0,

then

θ = θ0 ⇔ E(W′
n(Yn −Xnθ)) = 0q.

Given that

E(W′
n(Yn −Xnθ)) = E(W′

nXn)(θ0 − θ) + E(W′
nεn),

this is equivalent to the matrix E(W′
nXn) having rank p (why?), which

directly implies that q ≥ p and n ≥ q.

Let V be a strictly positive definite square matrix of dimension q × q. It

is easy to prove that the square root of the quadratic form with respect to

V , i.e., the function

Rq ∋ z→
√
z′V z

is a norm on Rq. (Exercise: prove this!)7

Therefore, based on the above, and because squaring and multiplication

by a positive number are monotonic transformations, as well as the fact

that θ0 ∈ Θ, it follows that

θ0 = argmin
θ∈Θ

(
1

n
E(W′

n(Yn −Xnθ))

)′

V

(
1

n
E(W′

n(Yn −Xnθ))

)
. (2)

Due to that (see above) the objective function is

1

n2
(θ0 − θ)′E(X′

nWn)V E(W′
nXn)(θ0 − θ),

which directly depends on θ0, it cannot be directly used to locate it. As in
7It is evident that when V is the identity matrix, the Euclidean norm is recovered.
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the previous example, under certain conditions (to be examined later), it is

suitably approximated by

cn(θ) :=
1

n2
(Yn −Xnθ)

′WnVW′
n(Yn −Xnθ),

whose minimization over Θ yields the Instrumental Variables Estimator

(IVE) corresponding to the choice of V -see below.

Questions arise, such as: (a) Does the issue of optimal selection of V

make sense? (b) Is it meaningful to use a norm that does not arise from a

quadratic form with respect to a strictly positive definite matrix?

Clearly, the above indicate that the underlying structure can support

the existence of a non-unique corresponding objective function.

Example 3 (GARCH(1,1)). In this example, it can be shown (see Chapter

5 of [10]) that when the model is enriched with the assumption that the

support of the distribution of z0 has cardinality greater than 2, then

P
(

σ2
0

h0(θ)
= 1

)
= 1⇔ θ = θ0.

Additionally, since the function x − ln(x), x > 0, is uniquely minimized

at 1 (Exercise: prove this!), and it can be shown that for every θ ∈ Θ,

0 < E
(

σ2
0

h0(θ)

)
< +∞, it follows that

θ0 = argmin
θ∈Θ

E
(
− ln

(
σ2
0

h0(θ)

)
+

σ2
0

h0(θ)

)
.

Clearly, the above depends directly on θ0, making its direct use for inference

infeasible. Under certain conditions (to be discussed later), the above is
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suitably approximated by the sample analogue

cn(θ) :=
1

n

n∑
t=1

(
lnh∗

t (θ) +
y2t

h∗
t (θ)

)
,

where h∗
0 is an arbitrary positive constant, and

h∗
t (θ) = ω + αy2t−1 + βh∗

t−1(θ), t = 1, . . . , n.

The above objective function is related to the (conditional) log-likelihood

function of the sample-see again [10]8 in the case of the parametric version

of the model where z0 ∼ N(0, 1). Even in the semi-parametric case, mini-

mizing it leads to what is called the Maximum Gaussian Quasi Likelihood

Estimator (Gaussian QMLE).

The objective functions cn can be viewed as stochastic processes as long

as they satisfy the relatively weak requirement that cn(θ) is a well-defined

random variable for every possible value of θ in Θ. The interested reader

is referred to Section 1.4 of [11] to examine how the Daniell-Kolmogorov

theorem’s validity follows from the fact that Θ has the topological property

of separability as a subset of Euclidean space. If Θ is uncountable, its

countable subset consisting of elements of Θ with rational components is

necessarily dense in Θ, and between any two elements of Θ, such a vector

exists. Consequently, the following essentially pertain to optimization issues

in stochastic processes, and the corresponding estimation procedures as

their extrema.
8Specifically, its negative version.
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3 Extremum Estimators

Let us assume-as in the previous examples-that the statistical model is

suitably structured so that there exists a function cn : Rk×n ×Θ→ R, i.e., a

function evaluated at the sample values and the parameter,9 and which

returns real numbers. This function may, as seen in the examples above,

represent some kind of sample analogue of another, not fully accessible,

function supported by the structure of the model. Optimizing the former

over Θ for every possible sample value will yield a well-defined function

of the sample with values in Θ, which we hope will be a sample-based

approximation of θ0. Thus, we arrive at an estimation procedure defined by

θn ∈ argmin
θ∈Θ

cn(θ),

the properties of which are of interest to us.

For this to be well-defined, it would be useful if the set of sample values

for which argminθ∈Θ cn(θ) = ∅ constitutes a negligible subset of Rn×k with

respect to the underlying distribution D0-i.e. a set of zero D0-probability.

This is not necessary, however, if it is simply ensured that cn(θ) is bounded

below on Θ for almost every possible sample value,10 and if some kind of

optimization error is tolerated:

Definition 1. Given cn and a random variable un, with P(un ≥ 0) = 1, θn will
9For the sake of symbolic simplicity, the dependence on the sample will be represented

only by the index n in the notation of the function.
10That is, on a set of full probability under D0.
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be called an extremum estimator (OE) for θ0 if and only if it satisfies

cn(θn) ≤ inf
θ∈Θ

cn(θ) + un. (3)

Regarding the existence of a solution to the above defining inequality,

we note that for any sample value where cn is bounded below, infθ∈Θ cn ∈ R.

If infθ∈Θ cn = minθ∈Θ cn,11 then argmin is non-empty, and un is allowed to take

the value zero. When the function has no minimum for a given sample

value, a simple argument referring to the properties of inf as the greatest

lower bound (with respect to θ) of the function implies that, in this case,

un > 0, and there will necessarily exist an element of Θ for which (3) is

satisfied. Thus, the existence of the random variable un, when it takes

appropriate values, ensures the existence of a solution to the above defining

inequality in any case where the infimum is well-defined. Hence, un can be

viewed as a random element that almost always allows the above inequality

to be satisfied when the infimum is almost always well-defined.

However, un also has another role. Even when argmin is non-empty, the

form of cn, and/or the characteristics of Θ, may imply that the solution to

the optimization problem-although well-defined-is not analytically known

due to its complexity. In such cases, the estimator is obtained via com-

putational methods, and optimization is carried out numerically, at least

for the sample values where it is not analytically feasible. Computational

methods are usually approximate and, therefore, may not yield the exact

minimizing point of the function but something that approximately min-
11This may not hold; the infimum can be well-defined without the function being mini-

mized. For a simple example, consider f(θ) = θ2 for θ ∈ (0, 1).
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imizes it. In these cases, un represents the approximation error and can

thus be characterized as the optimization error. Its inclusion is therefore

useful in covering estimators that, with positive probability, arise from

computational optimization procedures.

The second issue that needs to be ensured is the measurability of the

estimator. This will guarantee that it is a well-defined random vector and

thus-among other things-can be categorized based on the properties of

its distribution. We will not delve into this issue in detail. We note that

verifying measurability requires concepts that are beyond the scope of the

present notes. For example, even in the case where argmin is almost surely

non-empty but also non-unique with positive probability, the estimator

arises from some sort of selection from the set of minimizing points for each

sample value where non-uniqueness occurs. Therefore, this is outside the

scope of the current book. It is noted, however, that verifying measurability

is greatly facilitated by the fact that, by construction, Θ is a subset of

Euclidean space. Due to properties of the space,12 it can be shown that

when infθ∈Θ cn(θ) is almost always well-defined, it is a well-defined random

variable. The interested reader may consult the Measurable Projection

Theorem in Section 1.7 of [11].

It can therefore be shown that, for example, when:

• Θ is compact, and cn is continuous with respect to θ for almost

every sample value, or

12Specifically, its separability; this means that the space has a dense countable subset-
vectors with rational components. Between any two arbitrary elements of Rp, there is at
least one such vector-see, for instance, Section 1.4 in [11].
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• Θ is closed and convex, and cn is convex with respect to θ for almost

every sample value,

then θn, which arises from the above definition, is a well-defined esti-

mator.

Note that in the aforementioned cases, it is not necessary for the op-

timization error to be identically zero. Existence results can be derived

in much more general cases; we will not pursue these as the above cover

the cases we will deal with later. To orient the interested reader towards

the relevant literature, we provide a skeleton of the proof for the case of

compactness and continuity:

Theorem 1. If Θ is compact and cn is continuous with respect to θ for almost

every sample value, then there exists an estimator θn that satisfies 3.

Proof. The subset of Θ consisting of its elements that satisfy 3 is non-

empty and compact for almost every sample value due to the continuity

of the criterion and the compactness of the space. Continuity ensures

that c−1
n ({θ ∈ Θ : satisfies 3}) is closed for almost every sample value, while

compactness and continuity ensure it is non-empty and, therefore, compact

and non-empty. Lemma 1.4.1 in [11] and Proposition 3.10.(iii) in Chapter 5

of [7] guarantee the measurability of infθ∈Θ cn (θ) + un, and consequently the

measurability of the aforementioned set. The result follows from Theorem

2.13 in [7], which guarantees the existence of a measurable selection

function.

Let us examine the above within the context of our examples:

11



Example 4 (LLS). For the model

{E(Yn/σ(Xn)) = Xnθ, θ ∈ Rp,Var(Yn/σ(Xn)) = In} ,

supplemented with the assumption that rank(Xn) = p, we have that

cn(θ) :=
1

n
(Yn −Xnθ)

′(Yn −Xnθ)

is strictly convex. When Θ = Rp, the first-order conditions

∂cn(θ)

∂θ
= 0p ⇔ −

2

n
X′

n(Yn −Xnθ) = 0p

are both necessary and sufficient for optimization. Based on the pre-

vious observation regarding the strictly positive definiteness-and thus

invertibility-of X′
nXn

n
, the resulting unique solution, and consequently the

estimator corresponding to the choice un = 0 in the above definition, is

θn := (X′
nXn)

−1X′
nYn,

which is also the standard form of the OLSE.

Regarding optimization for general Θ ⊆ Rp, we observe the following: Us-

ing the second-order Taylor expansion of the criterion around (X′
nXn)

−1X′
nYn,

we obtain the expression

cn(θ) =
1

n
e′nen−

2

n
(θ−(X′

nXn)
−1X′

nYn)
′X′

nen+(θ−(X′
nXn)

−1X′
nYn)

′X
′
nXn

n
(θ−(X′

nXn)
−1X′

nYn),

where en := (In −Xn(X
′
nXn)

−1X′
n)Yn.
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Observing that X′
nen = 0p (Exercise: derive this!), and that the term 1

n
e′nen

does not depend on the parameter and thus does not affect the optimization,

we conclude that in the general case, the estimator equivalently satisfies

θn ∈ argmin
θ∈Θ

∥∥(X′
nXn)

−1X′
nYn − θ

∥∥
X′

nXn
n

.

Thus, due to the strict convexity and quadratic nature of the least squares

criterion, it minimizes the distance between the parameter space and the

unrestricted estimator derived from the quadratic form with respect to

the positive definite matrix X′
nXn

n
. This brings us back to the expression

(X′
nXn)

−1X′
nYn when Θ = Rp. When Θ is compact or closed and convex, the

above indicates that the estimator exists. In the case of convexity of the

parameter space, it is also the unique minimizing element.

Example 5 (IVE). Consider the model

{E(W′
n(Yn −Xnθ)) = 0q, θ ∈ Θ}

supplemented with the assumptions that rank(Xn) = p and rank(Wn) = q.

Due to this supplementation, the function

cn(θ) :=
1

n2
(Yn −Xnθ)

′WnVW′
n(Yn −Xnθ)

is strictly convex since V is strictly positive definite.13 When Θ = Rp, the
13Exercise: Try to prove this; you can use the so-called Cholesky factorization of a

positive definite matrix or consider the matrix as a composition of appropriate linear
operators, which under these conditions are one-to-one.
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first-order conditions

∂cn(θ)

∂θ
= 0p ⇔ −

2

n2
X′

nWnVW′
n(Yn −Xnθ) = 0p,

are both necessary and sufficient for optimization. Based on the previ-

ous observation regarding the strictly positive definiteness-and therefore

invertibility-of X′
nWnVW′

nXn, the resulting unique solution, and conse-

quently the estimator corresponding to the choice un = 0 in the above

definition, is

θn := (X′
nWnVW′

nXn)
−1X′

nWnVW′
nYn,

which is also the standard form of the Instrumental Variables Estimator

(IVE). We observe that when p = q, the above becomes

θn := (W′
nXn)

−1W′
nYn,

which does not depend on the choice of V . In the special case where Wn =

Xn, the standard form of the OLSE is recovered. When the optimization is

performed generally for Θ ⊆ Rp, it is shown (Exercise!) that the estimator

equivalently satisfies

θn ∈ argmin
θ∈Θ

∥∥(X′
nWnVW′

nXn)
−1X′

nWnVW′
nYn − θ

∥∥
X′

nWn
n

V
W′

nXn
n

,

i.e., similar to the above example, it minimizes the Euclidean distance

between the parameter space and the unrestricted estimator. This collapses

to the standard form when Θ = Rp. When Θ is compact or closed and convex,

the above tells us that the estimator exists. In the case where the parameter
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space is convex, it is also the unique minimizing element.

Example 6 (GARCH(1,1)). When Θ is compact, it can be shown-via inves-

tigating the solutions of the recursive relations involved in the likelihood

function that the existence of the estimator falls under Theorem 1. However,

the analytical solution to the optimization problem is not feasible. Thus,

we have a situation-frequently encountered in econometrics, though not

among the most complex ones-where the form of the estimator as a function

of the sample is unknown, even though it is well-defined. The estimation is

realized computationally, and the properties of the estimator are influenced

by the characteristics of the corresponding optimization algorithm used,

making the optimization error relevant in this context.

Our examples, though relatively simple, provide sufficient insight. OE

estimators often do not-and generally do not-have a known analytical form

due to the complexity of the underlying optimization process. In such

cases, they are obtained through computational procedures, meaning their

properties are generally influenced by the specific characteristics of the

corresponding optimization algorithm and the parameters determining its

operation. Generally, even their unknown analytical form is not a linear

function of the sample, so properties like unbiasedness are not expected to

hold. For example, within the context of Example 7.4, when Θ = Rp, it is

easy to show-using the Law of Iterated Expectations (LIE)-Exercise!-that

the OLSE is unbiased, due to the strong assumption that E(εn/σ(Xn)) = 0p

and the linear form of the estimator with respect to Yn, a property that can

be lost if the aforementioned strong assumption is replaced with the weaker

orthogonality assumption for instrumental variables with Wn = Xn, or if
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the parameter space is altered, which may distort the aforementioned linear

form.14 Similarly, the IVE, although linear with respect to Yn, is generally

not unbiased due to the insufficiency of the orthogonality condition that

constitutes the model. The QMLE in the GARCH case informs us that

exploring properties corresponding to a fixed and arbitrary n in even slightly

more complex models than linear ones is particularly challenging.

The following table describes in pseudo code a general algorithm for

the evaluation of such an estimator. The algorithms accepts as inputs the

sample, the criterion, an initial parameter value, as well as several stopping

criteria, evaluates the criterion at the initial value, changes the parameter

according to some computational optimization methodology, and continues

until at least one of the stopping criteria is fulfilled.
14Unbiasedness is a property not preserved under nonlinear transformations; integrals

are linear creatures!
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Algorithm 1 Optimization-Based Estimator (OE)
Input:Data: X (observed data sample) Objective function: cn(θ,X) (criterion depending

on parameters θ and data X) Parameter space: Θ (feasible set for θ) Error tolerance: ϵ
(convergence threshold for optimization) Maximum iterations: max_iter (to prevent infinite
loops in iterative optimization)
Output:

•••••• Estimator: θn (minimizer of cn)
Initialize:

• Choose initial guess: θinit (e.g., random point in Θ or domain-specific guess)
• Set iteration counter: iter← 0

• Set convergence flag: converged← False

Define stopping criteria:
• Condition 1: |cn(θk, X)− cn(θk+1, X)| < ϵ

• Condition 2: ∥θk+1 − θk∥ < ϵ

• Condition 3: iter ≥ max_iter

Optimization Loop: not converged (a) Compute gradient (if available) or approximate it:
• ∇ ← gradient(cn, θk, X)

• If gradient is unavailable, use a gradient-free optimization method (e.g., Nelder-Mead).
(b) Update parameters:

• For gradient descent: θk+1 ← θk − learning_rate · ∇
• For second-order methods (e.g., Newton-Raphson):

θk+1 ← θk −∇2cn(θk, X)−1∇

• For gradient-free methods:

θk+1 ← next_iterate(θk, X, cn)

(c) Check feasibility of θk+1 in Θ:
• If θk+1 /∈ Θ, project onto Θ (e.g., project(θk+1,Θ)).

(d) Update iteration counter:
iter← iter+ 1

(e) Evaluate stopping criteria:
• If any stopping condition is satisfied:

converged← True

Output Results:
• If converged: return θn ← θk+1

• Else: Print warning: “Optimization did not converge.” and return θn ← θk+1.
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4 Asymptotic Properties

The previous section essentially motivates us to investigate the asymptotic
properties of these estimators.15 We will limit ourselves to the properties
outlined in the previous chapter. The fact that we generally do not have
an analytical form of the estimator-as a function of the sample-compels
us to derive asymptotic properties from corresponding properties of the
criteria involved in their construction. We will see that it is crucial for these
properties to remain unaffected by the optimization procedures. In the
following, limits pertain to n→∞. Whenever this is not the case, it will be
explicitly mentioned.

4.1 Weak Consistency

We begin with the issue of weak consistency of the estimator defined in (3).
We expect this to result from a kind of asymptotic behavior of cn that also
influences its extrema. The methodology we will follow can be summarized
as follows:

1. The sequence of objective functions (cn) converges appropriately in
probability to a limiting function. The latter, denoted c, is non-stochastic
and maps Θ to R.16. The form of convergence ensures a kind of ap-
proximation of the optimizers of the sequence with those of c.

2. The function c has a unique minimum at θ0, and c(θ0) is not accessible
via diverging sequences of parameter values ("well distinguishability"
of the minimizing θ0).

15This could allow us to relax the measurability requirements in our definitions of
estimators. For example, a property that ensures measurability asymptotically could
suffice. Clearly, such an investigation lies well beyond the scope of this text. Readers
interested in such details are referred to [11]. In any case, such considerations are more
relevant in nonparametric statistical models.

16Although it could be stochastic and map to extended real values
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Let us start with the first component of our methodology. Our goal is to
describe a mode of convergence of cn to c that ensures the aforementioned
extrema approximation. We will not delve into the most general-and thus
weakest-convergence notion. Instead, we describe a relatively strong one,
which suffices for the examples we are developing.

Given the notion of convergence in probability for sequences of random
variables, a natural extension to sequences of stochastic processes taking
real values is pointwise convergence in probability. These processes can
be considered as collections of random variables, and the corresponding
sequences as collections of sequences of random variables. From this
perspective, pointwise convergence in probability simply involves the con-
vergence in probability of the random variable (more precisely, the n-th
member of the sequence17) cn(θ) to the real number c(θ) for each θ ∈ Θ:

Definition 2. cn converges pointwise in probability to c if and only if ∀θ ∈ Θ,
cn(θ)

p→ c(θ).

In some cases, the above may be facilitated by the validity of appropriate
Laws of Large Numbers, potentially combined with tools like the Continuous
Mapping Theorem. Unfortunately-as it can be shown-pointwise convergence
does not behave as we would wish with respect to optimization.18 The reason
is that it does not control how cn approaches c jointly across elements within
appropriate neighborhoods of the involved extrema. The following mode of
convergence is strong enough to preclude such "anomalies" and essentially
pertains to the characteristics of (cn) as a sequence of stochastic processes:

17We allow ourselves this slight abuse of terminology for brevity!
18A simple example, in a much simpler non-stochastic context-so here convergence in

probability is trivial-but indicative of how pointwise convergence fails to ensure the con-

vergence of optimization characteristics is as follows: let fn(θ) :=

{
exp(−nθ), θ ∈ (0, n)

n, θ ∈ [n,+∞)
.

This converges pointwise to the constant function f(θ) = 1 on (0,+∞). However,
maxθ∈(0,+∞) fn(θ) = n ↛ 1 = maxθ∈(0,+∞) f .
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Definition 3. The sequence cn converges continuously in probability to c,
denoted as cn

cp→ c, if and only if for all θ ∈ Θ and for all θn ∈ Θ such that
θn → θ, we have cn(θn)

p→ c(θ).19

Continuous convergence in probability concerns the asymptotic behavior
of cn when evaluated at members of convergent sequences of elements in Θ.
It is evidently stronger than pointwise convergence, as the latter pertains
only to one type of convergent sequences inside the parameter space-the
constant ones. Before showing that it suffices for our methodology, we
can ask how pointwise convergence in probability could be augmented to
imply continuous convergence. We will demonstrate that if cn is Lipschitz
continuous with respect to θ, with a Lipschitz constant that is suitably
bounded with probability converging to 1, then pointwise convergence
implies continuous convergence:

Lemma 1. Let cn converge pointwise in probability to c, and let there exist a
positive random variable kn and a positive constant C, such that limn→∞ P(kn >

C) = 0, and for all θ, θ⋆ ∈ Θ,

|cn(θ)− cn(θ⋆)| ≤ kn∥θ − θ⋆∥.

Then cn
cp→ c.

Proof. Let θ ∈ Θ, θn → θ with θn ∈ Θ, and let δ > 0. If we show that
limn→∞ P(|cn(θn)− c(θ)| > δ) = 0, we have proved the claim (why?).

Using the triangle inequality, we have:

|cn(θn)− c(θ)| ≤ |cn(θn)− cn(θ)|+ |cn(θ)− c(θ)|.

Due to the Lipschitz property of cn, the right-hand side is bounded by:

kn∥θn − θ∥+ |cn(θ)− c(θ)|.
19Both definitions 2 and 3 are readily extendable to the mode of almost sure convergence.

Provide the details!
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By the monotonicity of P and the above inequality, we obtain:

P(|cn(θn)− c(θ)| > δ) ≤ P(kn∥θn − θ∥+ |cn(θ)− c(θ)| > δ).

The probability on the right-hand side is further bounded by:

P(kn∥θn − θ∥ > δ

2
) + P(|cn(θ)− c(θ)| > δ

2
).20

Using the bound on kn, we have:

P(kn∥θn − θ∥ > δ

2
) ≤ P(∥θn − θ∥ > δ

2C
),

so summarizing, for each n, we get:

0 ≤ P(|cn(θn)− c(θ)| > δ) ≤ P(∥θn − θ∥ > δ

2C
) + P(|cn(θ)− c(θ)| > δ

2
).

The result follows by taking limits on both sides of the above inequality and
observing that since θn → θ, P(∥θn−θ∥ > δ

2C
) equals zero for sufficiently large

n, and that due to pointwise convergence in probability, limn→∞ P(|cn(θ)−
c(θ)| > δ

2
) = 0.

The aforementioned property addresses the Lipschitz continuity of cn
as a function of θ for every possible sample value and for every n. It
requires the corresponding set of functions Θ → R to exhibit a uniform
behavior regarding this strong continuity property-the collection of involved
Lipschitz constants (one for each possible sample value and for each n) must
be bounded above by a common constant, denoted C, with a probability
that converges to one.21 This constitutes a fairly strong requirement, which,
however-as we shall see below-is sufficient for our examples.

20Note that P(a+ b > ϵ) ≤ P(a > ϵ
2 ) + P(b > ϵ

2 ).
21The boundedness in probability condition for the Lipschitz coefficient, can be for

example substituted by a uniform integrability condition of the form supn E(kn) < +∞
without affecting the result. Provide the details!
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We will show that when the parameter space is compact and the involved
functions are continuous with respect to θ, then this type of convergence
suffices for infθ∈Θ cn(θ)

p→ infθ∈Θ c(θ). The limit is well-defined because c, by
necessity, must also be a continuous function due to the related property of
cn and the specific mode of convergence. The compactness of Θ then ensures
that c will have optimizers. However, this alone is not sufficient to guarantee
that the approximate minimizer of cn, and therefore the estimator, will
converge to a minimizer of c. It must first be ensured that the optimization
error asymptotically vanishes-this necessarily requires a strong assumption
that must be verified on a case-by-case basis. Yet, even this is not sufficient.
Without further restrictions on where the limiting function c achieves its
minimum, the approximate minimizer of cn might asymptotically approach
various elements of argminθ∈Θ c(θ) with a probability that tends to one, which
might not stabilize and could depend on the specific sample realization.22

To exclude such behavior, we employ the second part of our methodology,
namely that the limiting function has a unique and "well distinguishable"
minimum at θ0, thus eliminating the aforementioned complex asymptotic
behavior. This, which forms the second pillar of our methodology, is a
condition of asymptotic identification. In some sense, it ensures that the
structure of the model and the specific estimation process are sufficient to
allow the sample information to increasingly pinpoint θ0 as n→∞.

The above considerations lead us to the theorem of weak consistency
for θn, which we present below:

Theorem 2. Let (a) Θ be compact, (b) cn be continuous with respect to θ

almost surely, (c) there exist a function c : Θ→ R such that cn
cp→ c, (d) un

p→ 0,
and (e) θ0 = argminθ∈Θ c(θ). Then, given (a)-(d), infθ∈Θ cn(θ) + un

p→ infθ∈Θ c(θ).
Furthermore, given (e), θn

p→ θ0.

The proof will be provided without full details,23 but it will also direct
22This implies that the sequence might have stochastic accumulation points, but this is

a complex behavior outside the scope of the notes.
23In fact, we provide the framework of a proof that is more complex than necessary.
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the interested reader towards a relaxation of continuous convergence to a
form of convergence that is both more general and sufficient for the result
in question.

Proof. First, using a construction involving Skorokhod representations-see
the relevant footnote in the notes regarding convergence in distribution-it
is possible to reduce the examination of convergence in probability to the
examination of almost sure convergence. This is achieved by extending the
definitions of the involved random elements to a common, richer probability
space, which is permitted by Theorem 3.7.25 in [3].24

Let epin denote the stochastic epigraph of (the modified) cn, that is, the
set {(θ, x) ∈ Θ × R : x ≥ cn(θ)}. Due to the background of Theorem 1, it is
shown through Proposition A.2 in [7] that this is a suitably measurable
multivalued function with values in the subset of 2Θ consisting of the non-
empty closed subsets of the parameter space.25 Assumptions (a), (b), and
(c) essentially ensure (and in fact, are much stronger than) the almost
sure epiconvergence of cn to (the modified version of) c with respect to the
modified probability space (see Definition D.1 and Proposition D.2 in [7]).

Additionally, using the triangle inequality, for any θ ∈ Θ and any θ⋆n → θ

in Θ, we have:

|c(θ⋆n)− c(θ)| ≤ |c(θ⋆n)− cn(θ
⋆
n)|+ |c(θ)− cn(θ

⋆
n)|.

The second term on the right-hand side of the inequality above converges
almost surely to 0, due to (c). It can also be shown that, owing to (c) and
(a), the first term behaves similarly. Consequently, the (modified) version is
continuous, and its infimum is well-defined due to (a). Furthermore, the
epigraph of c, denoted epi, is closed. From Section 1.1 of [7] and Definition
4.5.1 in [6], this almost sure epiconvergence is equivalent to the following:

24Details of this construction are omitted. We are fortunate that continuous functions
on compact domains are bounded. Interested readers may consult Theorem 1.10.3 in [11].

25The intricate details regarding the sigma-algebra on its domain are beyond the scope
of this book. Interested readers may consult [7].
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1. For sufficiently large n, in a set of full probability with respect to
the modified distribution, epin ∩ (Θ × (infθ∈Θ c(θ),+∞)) ̸= ∅, because
(infθ∈Θ c(θ),+∞) is open and epi ∩ (Θ × (infθ∈Θ c(θ),+∞)) ̸= ∅. Hence,
infθ∈Θ cn(θ) ≥ infθ∈Θ c(θ) almost surely for sufficiently large n. Therefore,
lim infn infθ∈Θ cn(θ) ≤ infθ∈Θ c(θ) almost surely.

2. For any δ > 0, there exists a sufficiently large n⋆ such that for every
n ≥ n⋆, epin ∩ (Θ × [infθ∈Θ c(θ) − 2δ, infθ∈Θ c(θ) − δ]) = ∅ almost surely,
because Θ × [infθ∈Θ c(θ) − 2δ, infθ∈Θ c(θ) − δ] is compact and epi ∩ (Θ ×
[infθ∈Θ c(θ)−2δ, infθ∈Θ c(θ)−δ]) = ∅. Thus, lim supn infθ∈Θ cn(θ) ≤ infθ∈Θ c(θ)

almost surely.

Combining the above with (d) and returning to the original probability
space, we obtain the first conclusion. Now, if xn arises from a measurable
selection from:

{θ ∈ Θ : cn(θ) ≤ inf
θ∈Θ

cn(θ) + un},

such that x is a limit point almost surely, its existence follows from Theorem
2.13 in [7] and (a). Working in the modified probability space, we have
almost surely:

c(x) ≤ lim inf
n
cn(xn) ≤ lim sup

n
cn(xn) ≤ lim sup

n
(inf
θ∈Θ

cn(θ) + un) ≤ inf
θ∈Θ

c(θ),

which, given (e), ensures the second conclusion due to (a), once we return
to the original probability space. The continuous convergence in probability
to the limiting c along with the continuity of cn, imply that the limiting
criterion is continuous. Continuity and the compactness of Θ imply that
the unique optimizer is "well distinguishable"; minimizing c outside any
neighborhood of θ0 results into something strictly greater than c(θ0). Then,
if θn does not converge in probability to θ0, there must exist some ε, δ > 0

such that P(∥θn − θ0∥ > ε) ≥ δ for an infinite number of n’s. But this and
"well distinguishability" imply that there exists some ϵ > 0 such that for
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those events P(|c(θn)− c(θ0)| > ϵ) > δ, and thus for those events

P(|c(θn)− c(θ0)| > ϵ) > δ ⇒

P(|c(θn)− cn(θn)| >
ϵ

2
) + P(|cn(θn)− c(θ0)| >

ϵ

2
) > δ ⇒

P(sup
θ∈Θ
|c(θ)− cn(θ)| >

ϵ

2
) + P(| inf

θ∈Θ
cn − inf

θ∈Θ
c| > ϵ

4
) + P(un >

ϵ

4
) > δ.

But the each of the three probabilities converges to zero due to the assump-
tions and the previous result, and thereby their sum cannot remain above
δ for an infinite number of n’s. We arrived at a contradiction due to the
hypothesis that θn does not converge in probability to θ0.

The above proof is relatively complex; however, as previously mentioned,
it implicitly suggests that:

(i) The aforementioned form of continuous convergence is stronger than
necessary. To ensure the convergence of the infima when Θ is compact,
weaker forms of convergence (yet stronger than the pointwise) are sufficient,
e.g. epi-convergence.

(ii) The "well distinguishability" of the unique minimizer θ0 essentially
follows from its uniqueness, the continuity of c and the compactness of Θ.

(iii) Changing the assumptions involving convergence in probability to
almost sure convergence leads to almost sure convergence of the estimator
to θ0, yielding a stronger form of consistency (the estimator is then termed
strongly consistent).

The above can be generalized to cases where Θ is not compact. One way
to generalize the theorem is to consider cases where the estimator can be
shown to belong to a compact subset of Θ containing θ0 with probability
converging to 1. If this is ensured, an application of the arguments leading
to the above proof would also yield the weak consistency of the estimator.
Sufficient conditions facilitating the asymptotic containment of the estima-
tor in such a compact set with probability converging to 1 could arise from
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additional structure in the involved functions.
For example, it can be shown that if cn is also strictly convex almost

surely for each sample realization, and c is also strictly convex, then the
aforementioned containment holds. Moreover, it can be shown (see, for
instance, Corollary 2.C in [9]) that in this case, pointwise convergence
suffices for the convergence of the infima, while . While we do not provide
a proof here, let us explicitly state this result as it will be useful later:

Theorem 3. Suppose that:

(a’) Θ is closed and convex.

(b’) cn is continuous and strictly convex with respect to θ almost surely for
each sample realization.

(c’) There exists a function c : Θ→ R, continuous and strictly convex, such
that cn

p→ c.

(d’) un
p→ 0.

(e’) θ0 ∈ argminθ∈Θ c(θ).

Then, given (a’)-(c’) and (d’), we have:

inf
θ∈Θ

cn(θ) + un
p→ inf

θ∈Θ
c(θ).

Moreover, if (e’) holds, then θn
p→ θ0.

We observe that in (e’), it is not explicitly necessary to assume that θ0

uniquely minimizes the limiting function. Conditions (c’) and (e’) together
ensure identification (why?). The continuity assumptions in the previous
theorems can be further generalized; however, we will not elaborate on this.

Even more general results are possible in the context of continuous
convergence in probability. For example, if Θ is not compact, yet the
remaining conditions of Theorem 2 hold, while convexity fails, then weak
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consistency would be the case, as long as it is further ensured that (a.) the
sequence (θn) is tight, and (b.) that "well distinguishability" does not fail for
θ0; for any δ > 0, c(θ0) < infθ∈Bc

δ(θ0)
c(θ).

The above are sufficient for examining the issue of consistency in our
examples. Let us now analyze them:

Example 7. [LLS] We know that when Θ = Rp, then

θn := (X′
nXn)

−1X′
nYn.

By substituting Yn = Xnθ0+εn and multiplying by n
n
, we obtain the equivalent

expression:26

θn = θ0 +

(
1

n
X′

nXn

)−1
1

n
X′

nεn.

This expression can be used to study consistency without resorting to
the previous theorems. Thus, guided by the Continuous Mapping Theorem,
we consider the following High-Order Conditions (HOCs):27

1. 1
n
X′

nεn
p→ 0p,

2. There exists a non-stochastic p× p positive definite matrix MX′X such
that 1

n
X′

nXn
p→MX′X,

3. rank(MX′X) = p.

Since 1
n
X′

nεn is a vector of sample averages of the form 1
n

∑n
i=1Xi,jεi, j =

1, . . . , p, where Xi,j is the i, j-th entry of Xn and εi is the i-th entry of εn,
Condition (1)-and given the assumption about the conditional mean of εn in
the model-can be facilitated by the validity of a Law of Large Numbers, e.g.,
in iid settings or under stationarity and ergodicity, provided E(|X0,jε0|) <
+∞, ∀j = 1, . . . , p.

26This expression is not useful for estimation as it depends on the unknown θ0 and the
latent εn. However, it is useful for studying the properties of the estimator.

27These conditions do not specify the probabilistic properties of the involved random
elements to ensure their validity.
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Similarly, Condition (2) would hold under the aforementioned frame-
works if E(X2

0,j) < +∞, ∀j = 1, . . . , p. The matrix MX′X in such cases is the
covariance matrix of the random vector formed by the first row of the matrix
of independent variables. Due to its construction as a Gram matrix (see,
e.g., [4]), Condition (3) will hold in the above frameworks if and only if the
random variables forming this row are linearly independent.

Conditions (2), (3), and the Continuous Mapping Theorem28 imply that(
1
n
X′

nXn

)−1 p→M−1
X′X. Hence, by the Continuous Mapping Theorem and Con-

dition (1),
(
1
n
X′

nXn

)−1 1
n
X′

nεn
p→M−1

X′X0p = 0p. Therefore, by the Continuous
Mapping Theorem, Conditions (1)–(3) ensure the weak consistency of the
OLSE when Θ = Rp.

The question that arises is whether this holds in other cases for this
parameter space. Recall that, in general, the estimator equivalently satisfies

θn ∈ argmin
θ∈Θ

∥∥(X′
nXn)

−1X′
nYn − θ

∥∥
X′

nXn
n

.

We can attempt to apply the previous theorems in this general case.
Note first that the previous result, combined with the Continuous Mapping
Theorem,29 implies that for any θ ∈ Θ,

∥(X′
nXn)

−1X′
nYn − θ∥X′

nXn
n

p→ ∥θ0 − θ∥MX′X
.

Furthermore, due to the triangle inequality-in its dual form,30 for any
θ, θ⋆ ∈ Θ,

|∥(X′
nXn)

−1X′
nYn − θ∥X′

nXn
n

− ∥(X′
nXn)

−1X′
nYn − θ⋆∥X′

nXn
n

| ≤ ∥θ⋆ − θ∥X′
nXn
n

.

The above, combined with the submultiplicative property of the Frobe-
28Condition (3) implies that inversion of matrices near MX′X is a continuous operator-

why?
29The root of the associated quadratic form is continuous both with respect to its

argument and the matrix in the center.
30|∥a∥ − ∥b∥| ≤ ∥a− b∥.
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nius norm and Condition (2), implies that Lemma 1 applies with kn = ∥X
′
nXn

n
∥,

and thus,
∥(X′

nXn)
−1X′

nYn − θ∥X′
nXn
n

cp→ ∥θ0 − θ∥MX′X
.

Additionally, since by Condition (3), θ0 ∈ Θ, we have θ0 = argminθ∈Θ ∥θ0 −
θ∥MX′X

. Therefore, when Θ is compact, Theorem 2 tells us that Conditions
(1)-(3) are also sufficient for weak consistency.

In the case where Θ is closed and convex, we also note that

θn = argmin
θ∈Θ

[
(θ − θ0)

′X
′
nXn

n
(θ − θ0)− 2(θ − θ0)

X′
nεn
n

]

(Exercise: Show this! You may use the fact that ε′nεn
n

is independent of θ).
The objective function is strictly convex because rank(X

′
nXn

n
) = p, and due

to (1)-(2), it converges pointwise in probability to (θ− θ0)
′MX′X(θ− θ0), which,

due to (3), is also strictly convex. Therefore, Theorem 3 informs us that
even in this case-where the parameter space is closed and convex-(1)–(3)
are also sufficient for weak consistency.

Exersice: Show that when θ0 is an interior point of a closed and convex
subset of Θ, then (1)-(3) are sufficient for weak consistency.

Exersice: Show that when θ0 is an interior point of a compact subset of
Θ, then (1) and (3) are sufficient for weak consistency.

Exersice: Use (θ−θ0)
′X′

nXn

n
(θ−θ0)−2(θ−θ0)

X′
nεn
n

and Theorem 2 to derive
the sufficiency of (1)-(3) in the case of compactness. Use Lemma 1,
including-among other things-the fact that due to compactness, Θ is
necessarily bounded.

The handling of the IVE is analogous to that of the previous example. It is
outlined in the following exercises:
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Exersice: Within the framework of Example 7.5, find the asymptotic
theory of the IVE when Θ = Rp, under the high-order conditions:

1. 1
n
W′

nεn
p→ 0p,

2. There exists a non-stochastic square p× p matrix MX′W , such that
1
n
X′

nWn
p→MX′W , and

3. rank(MX′W ) = p.

Exersice: Using the above, show that high-order conditions (I)-(III) are
sufficient for the weak consistency of the IVE when Θ = Rp.

Exersice: Using the representation

θn ∈ argmin
θ∈Θ

∥∥(X′
nWnVW′

nXn)
−1X′

nWnVW′
nYn − θ

∥∥
X′

nWn
n

V
W′

nXn
n

,

and Theorem 2, show that high-order conditions (I)-(III) are sufficient
for the weak consistency of the IVE when Θ is compact.

Exersice: Using Theorem 3, show that high-order conditions (I)-(III) are
sufficient for the weak consistency of the IVE when Θ is closed and
convex.

Exersice: Adapt the above results for the IVE to the more general case
where the matrix V depends on n and/or is stochastic.

Example 8 (GARCH(1,1)). It is proven that the description of the example
so far includes all the sufficient conditions for the weak consistency of
the QMLE. The corresponding derivations-see, for example, Chapter 5 of
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[10]-include the use of results for SREs (see the relevant part of the notes
about stochastic processes), to show that

cn(θ) :=
1

n

n∑
t=1

(
ln(h∗

t (θ)) +
y2t

h∗
t (θ)

)
,

from which the estimator is derived, is approximated, with probability con-
verging to one, by the stationary and ergodic (ht). It is further shown that
supθ∈Θ

(
ln(h0(θ)) +

y20
h0(θ)

)
is integrable, ensuring the applicability of a uni-

form version of Birkhoff’s Law of Large Numbers to 1
n

∑n
t=1

(
ln(ht(θ)) +

y2t
ht(θ)

)
.

Through this, it is finally shown that

1

n

n∑
t=1

(
ln(h∗

t (θ)) +
y2t

h∗
t (θ)

)
cp→ E

(
ln(h0(θ)) +

σ2
0

h0(θ)

)
,

which makes Theorem 2 applicable.31

4.2 Rate of Convergence and Asymptotic Distribution

Given the consistency of the estimator, we are concerned with formulat-
ing sufficient conditions to determine the rate of convergence and the
asymptotic distribution when these are well-defined.

The conditions that led us to consistency pertained to the global behavior
of the criterion cn; they imposed restrictions on the asymptotic behavior
of the sequence of stochastic processes forming the objective functions
in neighborhoods of every point in the parameter space. By definition,
they led to a property-weak consistency-that is equivalent to the estimator
being within an arbitrary neighborhood of θ0 with probability converging to
one. This implies that the analysis leading to the rate of convergence and
the asymptotic distribution will be more local, as it essentially concerns

31In fact, it is shown that the QMLE converges almost surely to θ0; it is, as commonly
stated, strongly consistent.
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the asymptotic behavior of the process relative to sequences converging
at suitable rates to θ0. The approach below partially follows the standard
practice in the literature.

The latter relies on a local quadratic approximation of the criterion in
a suitable neighborhood of θ0, derived from the local second-order Taylor
expansion of cn with respect to θ around θ0. Therefore, it requires that θ0 is
in the interior of Θ.32 It also requires the criterion to be twice continuously
differentiable in some neighborhood of θ0, so that the expansion is valid.
Consequently, consistency implies that, at least with probability converg-
ing to one, the estimator-as the minimizer of the objective function-will
satisfy first-order conditions. These are used to obtain, under suitable as-
sumptions, an asymptotic representation of the estimator that leads to the
determination of the rate of convergence and the asymptotic distribution.

The approach followed here is somewhat more general, as it allows θ0 to lie
on the boundary of the parameter space. In this case, first-order conditions
may not hold-even asymptotically-unless the optimization problem can, at
least asymptotically, be characterized by first- and second-order conditions
involving some Lagrangian function. Our analysis will be slightly more
general and will not involve such characterizations. However, it will involve
a notion of an asymptotic parameter space constructed as some kind of
limit of sets, essentially forming the support of the asymptotic distribution.
Under assumptions analogous to those mentioned earlier, when θ0 ∈ Θo

(interior of Θ), the analysis will determine the rate and characterize the
asymptotic distribution through the minimizer of a strictly convex quadratic
form over a convex set.

Before proceeding with the relevant formulation, we need the following
concept of the limit of a sequence of Euclidean sets:

32Consequently, Θ cannot have an empty interior; for instance, it cannot be discrete.
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Let (Hn) be a sequence of non-empty subsets of Rp. The Painlevé-
Kuratowski limit of this sequence-if it exists-is defined as the non-empty
subset H ⊂ Rp, consisting of all x ∈ Rp such that x = limxn for some
sequence xn ∈ Hn, ∀n ∈ N, and simultaneously, there does not exist any
accumulation point of a sequence (xn) with xn ∈ Hn, ∀n ∈ N, that is not
in H. By construction, when it exists, the limit is a closed subset of
Rp. For example, for p = 1 and An = (0, n), the limit is H = [0,+∞). As
a counterexample, consider Hn := {−n, n}. Clearly, the limit does not
exist in this case. It can be shown that if Hn is convex and the sequence
is increasing,then the limit exists and is also convex.

In what follows, for a sequence rn → +∞, which will be specified later,
we define Hn := rn (Θ− θ0) = {rn(θ− θ0) : θ ∈ Θ}. The Hn, given the aforemen-
tioned sequence, will act as a modified parameter space. It is constructed
by translating Θ by θ0 and scaling the Euclidean norm of the elements in
the translated set by rn. Since θ0 ∈ Θ, we have Hn ̸= ∅, as it will contain at
least 0p. If rn represents the rate of convergence of the estimator, then Hn

will include all possible values of rn(θn − θ0).
Since we are interested in the asymptotic behavior of the latter, an

argument based on the aforementioned Skorokhod representations (see,
e.g., the proof of Theorem 2) will indicate that, if it exists, H, the Painlevé
limit of Hn, will contain the possible values that the random element
rn(θn − θ0)-if it exists-can asymptotically take in distribution.

We begin our analysis with the following assumption, which specifies the
local (around θ0) asymptotic behavior of the criterion process cn, the asymp-
totic behavior of the modified parameter space Hn, and the optimization
error involved in the general definition of θn.

Assumption 1. Let the following conditions hold:

1. For any sequence (θ⋆n) with values in Θ such that θ⋆n → θ0,

cn (θ
⋆
n)− cn (θ0) = (θ⋆n − θ0)

′ qn (θ0) + (θ⋆n − θ0)
′ gn (θ

⋆⋆
n ) (θ⋆n − θ0) ,
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with probability converging to 1, where θ⋆⋆n lies on the line segment
connecting θ⋆n and θ0 within Rp. The matrix gn is a stochastic p× p matrix
that is well-defined with probability converging to 1 at every point on
the aforementioned line. The vector qn is a random p× 1 vector.

2. For some non-negative sequence rn → +∞, rnqn (θ0)⇝ zθ0, where zθ0 is a
random vector with a well-defined distribution that may depend on θ0.
Moreover, gn (θ⋆⋆n )

p→ J̆θ0, where J̆θ0 is a non-stochastic, strictly positive
definite matrix that may depend on θ0.

3. The Painlevé-Kuratowski limit H exists and is convex.

4. For the optimization error, we have un = op (r
−2
n ).

The first condition of the above assumption is trivially satisfied when θ0

is an interior point and the criterion is twice continuously differentiable
in a neighborhood of θ0 (with probability converging to 1). In this case,
the validity of the assumption follows from the corresponding local Taylor
expansion of the criterion with a remainder term given by the Mean Value
Theorem. When θ0 is a boundary point, a similar condition can hold if, for
example, cn can be suitably extended to an open neighborhood of θ0 within
Rp. Even when this is not feasible, the validity of the assumption may be
ensured by a similar Taylor expansion involving appropriately one-sided or
oriented derivatives (see, e.g., [1]). In such cases, the vector qn corresponds
to the relevant first-order derivatives, and the matrix gn to the associated
Hessian matrix. Note that by construction, θ⋆⋆n → θ0 (why?).

The second condition specifies the asymptotic behavior of the "deriva-
tives"; the first part can be ensured by some Central Limit Theorem or
an analysis such as the current one involving the asymptotic behavior of
some primary auxiliary estimator. In many cases, rn =

√
n and zθ0 follows

some Gaussian distribution on Rp. However, asymptotic normality may
exist without the rate necessarily being

√
n. The second part involves a

local (only for sequences converging to θ0) version of the aforementioned
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continuous convergence in probability and may be facilitated by some uni-
form Law of Large Numbers. The non-singularity of the limiting matrix may
follow from some kind of asymptotic linear algebraic independence of the
columns of gn.

The third condition states that Hn must have a convex limit. It is trivially
satisfied when θ0 is an interior point, in which case H = Rp. As mentioned
earlier, it will hold when there is convexity and monotonicity. In any case,
it presupposes that Θ has a non-empty interior. An example where the
limit exists but is not convex is as follows: let Θ be a countable union of
line segments, each centered at θ0 with the same finite radius. Clearly,
the parameter set is not convex unless these are collinear, in which case
there is only one segment. The limit exists and is a countable union
of one-dimensional lines. It will not be convex unless all segments are
collinear.

The last condition, given the second, places restrictions on how slowly
the optimization error can converge to zero in probability.

Given the above, we obtain the following fundamental result:

Theorem 4. Let the estimator be weakly consistent and suppose that As-
sumptions 1.1, 1.2, and 1.4 hold. Then,

rn (θn − θ0) = Op (1) . (4)

If, in addition, Assumption 1.3 holds, then

rn (θn − θ0)⇝ h̃θ0 , (5)

where
h̃θ0 := argmin

h∈H

(
h+

1

2
J̆−1
θ0
zθ0

)′

J̆θ0

(
h+

1

2
J̆−1
θ0
zθ0

)
.

Proof. From the definition of θn and Assumption 1.4, we have:

cn (θn)− cn (θ0) ≤ op
(
r−2
n

)
.
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Due to consistency and Assumptions 1.1 and 1.2, we have:

h′
nrnqn (θ0) + h′

ngn (θ
⋆⋆
n )hn ≤ op (1) ,

where hn := rn (θn − θ0) and θ⋆⋆n is stochastic and arises as in Assumption
1.1. By consistency, we have:

h′
nrnqn (θ0) + h′

n

(
J̆θ0 + op (1)

)
hn ≤ op (1) .

Assumption 1.2 then implies that there exists c > 0 such that:

Op (∥hn∥)− c ∥hn∥2 + ∥hn∥2 op (1) ≥ op (1) ,

which implies:

Op (1) ≥ ∥hn∥2 (1 + op (1))− 2 ∥hn∥ (1 + op (1))Op (1) +Op (1) .

Thus:
∥hn∥ (1 + op (1)) ≤ Op (1) ,

which proves (4).
Using Assumption 1, we have, with probability tending to 1,33

ϖn (h) := r2n

(
cn

(
θ0 +

h

rn

)
− cn (θ0)

)
= h′rnqn (θ0) + h′gn (θ

⋆⋆
n )h.

From the first part of this proof and Assumption 1.2, for any arbitrary
compact non-empty subset A of Rp and for every h ∈ A, A ∋ hn → h, we
have:

ϖn(h)⇝ h′zθ0 + h′J̆θ0h.

Thus, by the Continuous Mapping Theorem (see also the proof of Theorem
33Clearly, for any h ∈ Rp, θ0 + h

rn
→ θ0, so Assumption 1 is applicable.
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2):
inf
h∈A

ϖn (h)⇝ inf
h∈A

(
h′zθ0 + h′J̆θ0h

)
. (6)

If F is a closed, non-empty subset of Rp and hn ∈ F , then for sufficiently
large n, Hn ∩ F ̸= ∅. In any case, due to the definition of θn, ϖn, and the
fact that by assumption un = op(r

−2
n ), we have:

inf
h∈Hn∩F

ϖn(h) ≤ inf
h∈Hn

ϖn(h) + op(1),

and therefore, due to the Continuous Mapping Theorem,

P (hn ∈ F ) ≤ P
(

inf
h∈Hn∩F

ϖn(h) ≤ inf
h∈Hn

ϖn(h) + op(1)

)
.

≤ P
(

inf
h∈Hn∩F

ϖn(h) ≤ inf
h∈Hn

ϖn(h)

)
+ o(1).

Equation 6 and the Continuous Mapping Theorem imply that Lemma
7.13.2-3 in [12] is applicable, and therefore, the preceding probability is
less than or equal to:

P
(

inf
h∈H∩F

ϖn(h) ≤ inf
h∈H

ϖn(h) + op(1)

)
.

≤ P
(

inf
h∈H∩F

ϖn(h) ≤ inf
h∈H

ϖn(h)

)
+ o(1),

where the last inequality arises from the Continuous Mapping Theorem.
From 6, the Continuous Mapping Theorem, and the Portmanteau Theorem
(see the part of the notes about convergence in distribution), the lim sup of
the probability on the right-hand side of the previous expression is bounded
above by:

P
(

inf
h∈H∩F

h′zθ0 + h′J̆θ0h ≤ inf
h∈H

h′zθ0 + h′J̆θ0h

)
,

37



which is equal to:

P
(

inf
h∈H∩F

2h′J̆θ0J̆
−1
θ0

1

2
zθ0 + h′J̆θ0h±

1

4
z′θ0J̆

−1
θ0
zθ0 ≤ inf

h∈H
2h′J̆θ0J̆

−1
θ0

1

2
zθ0 +

1

2
h′J̆θ0h±

1

4
z′θ0J̆

−1
θ0
zθ0

)
,

which is in turn equal to:

P
(

inf
h∈H∩F

(
h+

1

2
J̆−1
θ0
zθ0

)′

J̆θ0

(
h+

1

2
J̆−1
θ0
zθ0

)
≤ inf

h∈H

(
h+

1

2
J̆−1
θ0
zθ0

)′

J̆θ0

(
h+

1

2
J̆−1
θ0
zθ0

))
.

Since H is closed and convex, and J̆θ0 is positive definite, h̃θ0 is unique.
Hence, when:

inf
h∈H∩F

(
h+

1

2
J̆−1
θ0
zθ0

)′

J̆θ0

(
h+

1

2
J̆−1
θ0
zθ0

)
≤ inf

h∈H

(
h+

1

2
J̆−1
θ0
zθ0

)′

J̆θ0

(
h+

1

2
J̆−1
θ0
zθ0

)
,

we have:
h̃θ0 ∈ H ∩ F.

Thus, the probability is at most:

P
(
h̃θ0 ∈ H ∩ F

)
≤ P

(
h̃θ0 ∈ F

)
.

Therefore, we have shown that:

lim sup
n→∞

P (hn ∈ F ) ≤ P
(
h̃θ0 ∈ F

)
,

and hence 5 follows from the Portmanteau Theorem and the fact that F

was chosen arbitrarily.

Given the quadratic expansion in Assumption 1.1, the rate in 1.2, and
the non-singularity of the limiting matrix in the same assumption, the rate
of the estimator is determined as rn. In many cases-but not always-this rate
is the classical

√
n. The asymptotic distribution is well-defined because the

random element h̃θ0 is uniquely determined due to the strict convexity of
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the involved quadratic form and the convexity of the asymptotic parameter
space H.

It can be shown that if Assumption 1.2 did not hold with the positive
definiteness of the asymptotic matrix, then extending the analysis to a
higher-order polynomial-if feasible-would imply that the convergence rate
would not equal rn but would depend on rn and the degree of this polynomial
(see, for instance, [5]). When θ0 is an interior point, then due to the afore-
mentioned observation, we have h̃θ0 = −1

2
J̆−1
θ0
zθ0, giving us an asymptotic

expression for the estimator.34

In this case, if rn =
√
n and zθ0 ∼ N(0p, Vθ0) for some positive definite Vθ0,

then the standard asymptotic theory is recovered:

√
n(θn − θ0)⇝ N

(
0p,

1

4
J̆−1
θ0
Vθ0J̆

−1
θ0

)
,

indicating that the estimator is asymptotically normal with asymptotic
variance 1

4
J̆−1
θ0
Vθ0J̆

−1
θ0

.
However, when rn =

√
n and zθ0 ∼ N(0p, Vθ0), but θ0 is a boundary point,

the asymptotic distribution is not normal but some form of a projection
of N

(
0p,

1
4
J̆−1
θ0
Vθ0J̆

−1
θ0

)
onto H. The estimator has a smaller asymptotic vari-

ance35 than 1
4
J̆−1
θ0
Vθ0J̆

−1
θ0

, in the sense that the difference between the latter
and the former is necessarily a positive definite matrix.

This indicates that when there is external information about θ0, it may
34Recall that we typically do not have the analytical form of the estimator as a function of

the sample. This analysis provides a relative expression based on the local characteristics
of the criterion.

35The projection is determined by the optimization problem described in the theorem.
When − 1

2 J̆
−1
θ0

zθ0 ∈ H, we have h̃θ0 = − 1
2 J̆

−1
θ0

zθ0 . Otherwise, h̃θ0 equals the unique-due to
the related convexities-element of H with the smallest possible distance, in terms of the
quadratic form with respect to the matrix J̆θ0 , from − 1

2 J̆
−1
θ0

zθ0 . Thus, the resulting distri-
bution assigns the probability given by N

(
0p,

1
4 J̆

−1
θ0

Vθ0 J̆
−1
θ0

)
to any measurable subset of H

entirely within its interior, zero probability to anything disjoint from H, and probabilities
for measurable portions of the boundary derived from the corresponding probabilities
assigned by N

(
0p,

1
4 J̆

−1
θ0

Vθ0 J̆
−1
θ0

)
to what projects there via the aforementioned process.
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be worthwhile-concerning the criterion of asymptotic variance and if the
above holds-to incorporate it into the choice of Θ when this implies that θ0

will be a boundary point. It can be shown that the boundaries of subsets
of R have zero Lebesgue measure. Therefore, in the absence of additional
information, such scenarios are not expected to occur "frequently." However,
when a related theory suggests that the target parameter value is likely
to be on the boundary, it may be advantageous to use this information in
terms of asymptotic variance.

4.2.1 Examples and Exercises

Let us now examine how the above concepts apply to our examples:

Example 9 (Linear Model). We first consider the case where Θ = Rp. To
the assumptions (1)-(3) developed in Example 7.7, we add the following
high-order assumption:

4. Assume there exists z ∼ N(0p,MX′X) such that 1√
n
X′

nεn ⇝ z.

Given the specification assumption Var(εn) = In and Assumption (2), (4)
can be derived in an iid setting or more generally within the framework of
our established Central Limit Theorem if E(|X0,jε0|k) < +∞, ∀j = 1, . . . , p, for
some k > 2, due to the uniform integrability property.

Given (2)-(4) and the expression θn = θ0 + ( 1
n
X′

nXn)
−1 1

n
X′

nεn, which equiv-
alently and under (4) can be restated as

√
n(θn − θ0) = (

1

n
X′

nXn)
−1 1√

n
X′

nεn.

Slutsky’s Lemma, the Continuous Mapping Theorem, and assumptions
(2)-(4) imply that the right-hand side of the above expression converges in
distribution to M−1

X′Xz. Hence, (2)-(4) imply that36

√
n(θn − θ0)⇝M−1

X′Xz ∼ N(0p,M
−1
X′XMX′XM

−1
X′X) = N(0p,M

−1
X′X).

36Recall that MX′X and its inverse are symmetric matrices.
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How does the above change when the parameter space does not coincide
with Rp? What do (2)-(4) imply about the asymptotic theory of the OLSE?
Recall that in this case, the estimator is equivalently the minimizer of
cn(θ) = (θ − θ0)

′X′
nXn

n
(θ − θ0) − 2(θ − θ0)

X′
nεn
n

, so Assumption 1.1 is satisfied
with qn(θ0) = −2X′

nεn
n

-independent of θ0-and gn(θ
⋆⋆) = X′

nXn

n
-also independent

of the parameter in this case. Clearly, (2)-(4) imply Assumption 1.2.
If Assumption 1.3 is also satisfied and the estimator is weakly consistent,

then we have

√
n(θn − θ0)⇝ argmin

h∈H

(
h−M−1

X′Xz
)′
MX′X

(
h−M−1

X′Xz
)
,

where H is the convex limit of the corresponding
√
n(Θ−θ0) if it exists. When

θ0 is an interior point, we recover the standard asymptotic theory of the
unrestricted estimator, as in this case H = Rp. When θ0 is on the boundary
of the parameter space, we obtain a projection of the above distribution
with "reduced variance."

Exersice: Show that within the framework of the previous example, (4)
implies (1).

Exersice: Let p = 1, the matrix Xn consists entirely of ones, the elements
of εn are iid with mean 0 and unit variance, Θ = [0,+∞), and θ0 = 0.
Find the rate of convergence and the asymptotic distribution of the
OLSE.

The handling of the IVE is analogous to that of the previous example. As
in the previous section, it is explored through the following exercises:

Exersice: Within the framework of Example 7.5, derive the asymptotic
theory of the IVE under the assumptions:

2. There exists a non-stochastic square p× p matrix MX′W such that
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1
n
X′

nWn
p→MX′W ,

3. rank(MX′W ) = p, and,

4. 1√
n
W′

nεn ⇝ z ∼ N(0p, VW ′ε), where VW ′ε is a strictly positive-definite
matrix.

Exersice: Under the above assumptions, derive the corresponding
asymptotic theory when the IVE is consistent and Θ does not nec-
essarily coincide with Rp. When is the asymptotic theory independent
of V ?

Exersice: Adapt the above results concerning the IVE to the more
general case where the matrix V depends on n and/or is stochastic.

Example 10 (GARCH(1,1)). It can be shown-see, for example, Chapter 5
of [10]-using among others our general CLT and Theorem 4, the theory of
SREs for the existence, uniqueness, and approximability of solutions to
recursive relations derived from first- and second-order differentiations of
the recursion defining (ht(θ)), and under the conditions E(z40) < +∞, the
algebraic linear independence of the random variables forming the random
vector (1, y0, σ

2
0), and that the optimization error satisfies the asymptotic

behavior prescribed in Assumption 1.4, that for the QMLE:

√
n(θn − θ0)⇝ argmin

h∈H

(
h− J̆−1

θ0
z
)′
J̆θ0

(
h− J̆−1

θ0
z
)
,

where J̆θ0 := E
[
h′
0(θ0)h

′
0(θ0)

T

σ4
0

]
, z ∼ N

(
03, (E(z40)− 1) J̆θ0

)
, and H is the convex

limit of the corresponding
√
n(Θ − θ0) if it exists. Here, (h′

t(θ)) represents
the stationary and ergodic solution to the recursive relation derived by
differentiating with respect to the parameter in the recursion defining ht(θ).

Note that in this example, unlike the previous ones, the involved z (via
the variance of its distribution) and J̆θ0 are related to θ0. When E(z40) = +∞,
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and if, as M → +∞, the truncated moment E(z401(|z0| ≤M)) is asymptotically
proportional to C ln(M) for some positive constant C, it is shown that there
exists a positive constant C⋆ such that√

n

ln(n)
(θn − θ0)⇝ argmin

h∈H

(
h− J̆−1

θ0
z
)′
J̆θ0

(
h− J̆−1

θ0
z
)
,

where J̆θ0 is as before, and z ∼ N
(
03, C

⋆J̆θ0

)
-see, for instance, [2] for a

similar result in a different constrained heteroskedasticity model. Proving
such a result cannot rely on a result like our general CLT and requires a
partial generalization of it (to be considered along with tools like the Wold
device). This result illustrates the possibility of asymptotic normality with
a convergence rate different from the standard

√
n, even when the criterion

has a non-degenerate local quadratic expansion.

5 Asymptotic Hypothesis Tests

Consider, in relation to the framework we have developed for hypothesis
tests in the previous notes that for some θ⋆ ∈ Θ, we are interested in testing
the hypothesis structure:

H0 : θ0 = θ⋆,

H1 : θ0 ∈ Θ− {θ⋆},
(7)

which contains a simple null and a composite alternative hypothesis.
The structure of the preceding sections allows us to construct asymptotic

hypothesis tests using test statistics derived from the criterion cn and the
estimator, with rejection regions based on the aforementioned asymptotic
theory.

One such approach is described below.37 Under the framework described
37This is not an exhaustive approach.

43



by Theorems 2, 3, and 4, and using an argument that shows the asymptotic
independence of the estimator (which, as consistent, converges to something
non-stochastic) and r2n(cn(θ)− cn(θ0)), it follows-tracing the proof of Theorem
4-that:

r2n(cn(θ0)−cn(θn))⇝ Z(θ0) := z′θ0
1

4
J−1
θ0
zθ0−min

h∈H

(
h+

1

2
J̆−1
θ0
zθ0

)′

J̆θ0

(
h+

1

2
J−1
θ0
zθ0

)
.

Moreover, when θ0 is an interior point, the second term in the above limit
vanishes, since H = Rp and thus h is free to admit every value −1

2
J−1
θ0
zθ0

admits, and thus we have:

r2n(cn(θ0)− cn(θn))⇝ z′θ0
1

4
J−1
θ0
zθ0 .

In the case where zθ0 ∼ N(0p, 4J̆θ0), the asymptotic distribution of r2n(cn(θ0)−
cn(θn)) has a special relationship with the standard normal distributions:

If k is a strictly positive integer, the chi-squared distribution with k

degrees of freedom-χ2
k-is defined as the distribution on R with support

[0,+∞) and density function:

f(x; k) =

0, x < 0,

x
k
2−1

2k/2Γ( k
2
)
exp (−x

2
), x ≥ 0,

where Γ(x) :=
∫ +∞
0

tx−1 exp(−t)dt is the gamma function. Exercise: Show
that this is a well-defined density function. It can be shown that if
x ∼ N(0k, V ), with V non-singular, then the quadratic form x′V −1x ∼ χ2

k.
Exercise: Prove this!

Thus, in this case, by the Continuous Mapping Theorem, r2n(cn(θ0)−cn(θn))⇝
χ2
p.
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Exersice: Prove this!

When θ0 is a boundary point, and zθ0 ∼ N(0p, 4J̆θ0), then-and due to that
minh∈H

(
h+ 1

2
J̆−1
θ0
zθ0

)′
J̆θ0

(
h+ 1

2
J−1
θ0
zθ0

)
is non-negative (why?)-it can be shown

that the distribution of the limit is stochastically dominated in the first-
order sense by χ2

p; the cumulative distribution function of the latter is
pointwise less than or equal to that of the former.

5.1 The Testing Procedure

Consider the previously mentioned hypothesis structure:

Algorithm 2 A Testing Procedure Based on the Criterion

1. Use as test statistic Ln := r2n(cn(θ
⋆)− cn(θn)).

2. Choose a significance level α ∈ (0, 1).

3. Based on α, determine:

qα := inf

{
x ∈ (0,+∞) :

∫ x

0

z
k
2
−1

2k/2Γ(k
2
)
exp (−z

2
)dz ≥ 1− α

}
.38

4. Define the rejection region for H0 as the interval (q1−α,+∞).

5. Evaluate the test statistic on the sample, and reject H0 if and only
if Ln ∈ (q1−α,+∞).

Note that the above procedure relies on the knowledge of the conver-
gence rate rn. In many econometric settings, this rate is known and equals
√
n, so the test statistic simplifies to Ln := n(cn(θ

⋆) − cn(θn)). When the
rate is unknown, it may sometimes be approximated through statistical
inference, or alternatively, the test statistic may be modified using a known
sample-based function that asymptotically mimics the rate.39 Addition-

39In such cases, it is referred to as self-normalized.
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ally, computing the statistic requires the extraction of the estimator. The
rejection region is based on χ2

p, which-under the stated framework-is the
asymptotic distribution of the test statistic under the null hypothesis when
θ0 is an interior point; this exemplifies the characterization of the procedure
as asymptotic: the decision is based on the limiting properties of the test
statistic.

If θ0 is not an interior point, then due to the previously mentioned dom-
inance relationship between the two distributions, using this rejection
region results in an asymptotic probability of rejecting the null hypothesis
that is smaller than the nominal level α.40 The distribution of the test
statistic under the null hypothesis belongs to a broader family and is re-
lated to the chi-squared distribution. Direct use of this distribution may
be challenging-for instance, it may depend on the potentially latent H. Nev-
ertheless, it is possible to construct tests with stochastic rejection regions
that asymptotically approximate those derived using this distribution by
employing resampling techniques-see, for example, [8].

Based on the above discussion and given that under the null hypothesis
θ⋆ = θ0, i.e. when it is true, Ln ⇝ Z(θ0). Furthermore, When θ0 is an interior
point, the second term in Z(θ0) vanishes. Due to the construction of the
rejection region and Portmanteau Theorem, we have:

lim
n→∞

P(Reject H0 | H0 true) = α.

When θ0 is not an interior point, it can be shown (Exercise: Prove this
using Footnote 3.) that the above limit is strictly less than α.

If the null hypothesis is false, i.e., θ⋆ ̸= θ0, we have:

r2n(cn(θ
⋆)− cn(θn)) = r2n(cn(θ0)− cn(θn)) + r2n(cn(θ

⋆)− cn(θ0)).

40It is relatively straightforward to show that if F,G satisfy the first-order stochastic dom-
inance relationship F (x) ≤ G(x), ∀x ∈ R, then for any α ∈ (0, 1), inf {x ∈ R : F (x) ≥ 1− α} ≤
inf {x ∈ R : G(x) ≥ 1− α}.
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The first term on the right-hand side of the equality converges in distribution
(why?) to Z(θ0). The second term, due to the assumption of continuous
convergence in probability of the criterion and the uniqueness of θ0 as the
minimizing point of the asymptotic criterion, diverges to +∞.

Therefore, it can be proven that under H1, not only the test statistic is
not tight, but diverges to infinity with probability approaching one. Conse-
quently:

lim
n→∞

P(Accept H0 | H0 false) = 0.

The above outline serves as the proof of the following theorem:

Theorem 5. Under the assumptions of Theorem 4 and the described hypoth-
esis testing procedure, and if zθ0 ∼ N(0p, 4J̆θ0):

1. If θ0 is an interior point of Θ, then the asymptotic size of the test equals
the nominal significance level α, i.e.,

lim
n→∞

P(Reject H0 | H0 true) = α.

2. If θ0 is not an interior point of Θ, the asymptotic size of the test is strictly
less than α, i.e.,

lim
n→∞

P(Reject H0 | H0 true) < α.

3. If the null hypothesis is false, the test is consistent, i.e.,

lim
n→∞

P(Accept H0 | H0 false) = 0.

Remark 1. If Var(zθ0) is not necessarily 4J̆θ0, then it can be proven that the
distribution of the quadratic form z′θ0

1
4
J−1
θ0
zθ0 is that of the random variable∑p

i=1 λiWi, where the Wi ∼ χ2
1 and are independent across i = 1, . . . , p, and

λi is the ith eigenvalue of 1
4
J−1
θ0
Var(zθ0). If the testing procedure is performed

as designed above, i.e. using the χ2
p quantile, and maxi λi ≤ 1, then it
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can be easily proven that the procedure is conservative, even in the case
where θ0 is an interior point. In any case the procedure is consistent
(why?). Notice that the design of a modified procedure that approximates
the quantile of the distribution of

∑p
i=1 λiWi, via the consistent estimation

of the eigenvalues, and/or some resampling procedure is feasible; it would
result in an asymptotically exact test in the interior case.

Example 11. In the context of LS Example, and for a hypothesis structure
like the one described above, the test statistic is given by:

Ln = (Yn −Xnθ
⋆)′(Yn −Xnθ

⋆)− e′nen,

where en := Yn − Xnθn. However, if Var(εn) ̸= In, then the null limiting
distribution of the test statistic is not necessarily the χ2

p, since generally
Var(zθ0) ̸= 4J̆θ0. In the more general case of homoskedasticity and zero
correlations case, where Var(εn) = σ2In for some latent σ2 > 0, a simple
modification of Ln works; under the high-order assumptions for the LS
model (Assumption (4) would be appropriately modified for the presence of σ2

in the variance of z), e′nen
n

p→ σ2, and hence under the null L⋆
n := n

e′nen
Ln ⇝ χ2

p

due to Slutsky’s Lemma-notice that L⋆
n = n(Yn−Xnθ⋆)′(Yn−Xnθ⋆)

e′nen
− 1).

Example 12. The following is the Python/Matlab code for the implemen-
tation of such a test in a simple version of the exponential/linear NLLS
example (notice that under the high level assumptions adopted for this
model the χ2

p null limiting distribution for the statistic is also the case here
(why?) since Var(εn) ̸= In. The Var(εn) = σ2In could be handled analogously
to the previous example):

1 Python Code:
2

3 import numpy as np
4 from scipy.optimize import minimize
5 from scipy.stats import chi2
6 import matplotlib.pyplot as plt
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7

8 # Generate synthetic data for NLLS
9 def generate_nlls_data(n, beta_true , sigma , seed =42):

10 np.random.seed(seed)
11 x = np.linspace(0, 10, n)
12 y = np.exp(beta_true [0] +beta_true [1] * x) + sigma * np.random.

randn(n)
13 return x, y
14

15 # Define the NLLS model
16 def model(x, beta):
17 return np.exp(beta [0] +beta [1] * x)
18

19 # Sum of squared residuals (SSR) function
20 def ssr(beta , x, y):
21 return np.sum((y - model(x, beta))**2)
22

23 # Chi -squared test using SSR difference
24 def chi_squared_test_ssr(x, y, beta_null , alpha =0.05):
25 q = len(beta_null) # Number of restrictions
26

27 # SSR under the null hypothesis
28 ssr_null = ssr(beta_null , x, y)
29

30 # SSR under the alternative hypothesis
31 res = minimize(ssr , beta_null , args=(x, y), method=’BFGS’)
32 ssr_alt = res.fun
33

34 # Chi -squared test statistic
35 chi_stat = ssr_null - ssr_alt
36

37 # Critical value and p-value
38 critical_value = chi2.ppf(1 - alpha , df=q)
39 p_value = 1 - chi2.cdf(chi_stat , df=q)
40

41 return chi_stat , critical_value , p_value , res.x
42
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43 # Main script
44 n = 100 # Sample size
45 beta_true = [2.0, 0.3] # True parameters
46 sigma = 0.5 # Noise standard deviation
47 alpha = 0.05 # Significance level
48

49 # Generate synthetic data
50 x, y = generate_nlls_data(n, beta_true , sigma)
51

52 # Hypothesis: Test beta_null = [1.5, 0.2]
53 beta_null = [1.5, 0.2]
54

55 # Perform Chi -squared test
56 chi_stat , critical_value , p_value , beta_est = chi_squared_test_ssr(x

, y, beta_null , alpha)
57

58 # Output results
59 print(f"Chi -squared Statistic: {chi_stat :.4f}")
60 print(f"Critical Value (chi -squared): {critical_value :.4f}")
61 print(f"p-value: {p_value :.4f}")
62 print(f"Estimated Parameters under Alternative: {beta_est}")
63

64 # Visualization of fit
65 plt.figure(figsize =(8, 6))
66 plt.scatter(x, y, label=’Data’, color=’blue’, alpha =0.7)
67 plt.plot(x, model(x, beta_null), label=f’Null Hypothesis Model: beta

={ beta_null}’, color=’red’, linestyle=’--’)
68 plt.plot(x, model(x, beta_est), label=f’Estimated Model: beta={

beta_est}’, color=’green’)
69 plt.xlabel(’x’)
70 plt.ylabel(’y’)
71 plt.title(’NLLS Model Fit and Chi -Squared Test’)
72 plt.legend ()
73 plt.show()

1 Matlab Code:
2

3 % Generate synthetic data for NLLS
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4 function [x, y] = generate_nlls_data(n, beta_true , sigma , seed)
5 rng(seed);
6 x = linspace(0, 10, n)’;
7 y = exp(beta_true (1)+beta_true (2) * x) + sigma * randn(n, 1);
8 end
9

10 % Define the NLLS model
11 function y_model = model(x, beta)
12 y_model = exp(beta (1)+beta (2) * x);
13 end
14

15 % Sum of squared residuals (SSR) function
16 function ssr_val = ssr(beta , x, y)
17 residuals = y - model(x, beta);
18 ssr_val = sum(residuals .^ 2);
19 end
20

21 % Chi -squared test using SSR difference
22 function [chi_stat , critical_value , p_value , beta_est] =

chi_squared_test_ssr(x, y, beta_null , alpha)
23 q = length(beta_null); % Number of restrictions
24

25 % SSR under the null hypothesis
26 ssr_null = ssr(beta_null , x, y);
27

28 % SSR under the alternative hypothesis (unrestricted)
29 options = optimset(’Display ’, ’off’); % Suppress output
30 beta_init = beta_null; % Use beta_null as the starting point
31 [beta_est , ssr_alt] = fminsearch(@(b) ssr(b, x, y), beta_init ,

options);
32

33 % Chi -squared statistic
34 chi_stat = ssr_null - ssr_alt;
35

36 % Critical value and p-value
37 critical_value = chi2inv (1 - alpha , q);
38 p_value = 1 - chi2cdf(chi_stat , q);
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39 end
40

41 % Main Script
42 n = 100; % Sample size
43 beta_true = [2.0, 0.3]; % True parameters
44 sigma = 0.5; % Noise standard deviation
45 alpha = 0.05; % Significance level
46

47 % Generate synthetic data
48 [x, y] = generate_nlls_data(n, beta_true , sigma , 42);
49

50 % Hypothesis: Test beta_null = [1.5, 0.2]
51 beta_null = [1.5, 0.2];
52

53 % Perform Chi -squared test
54 [chi_stat , critical_value , p_value , beta_est] = chi_squared_test_ssr

(x, y, beta_null , alpha);
55

56 % Output results
57 fprintf(’Chi -squared Statistic: %.4f\n’, chi_stat);
58 fprintf(’Critical Value (chi -squared): %.4f\n’, critical_value);
59 fprintf(’p-value: %.4f\n’, p_value);
60 fprintf(’Estimated Parameters under Alternative: [%.4f, %.4f]\n’,

beta_est);
61

62 % Visualization of fit
63 figure;
64 scatter(x, y, ’b’, ’DisplayName ’, ’Data’);
65 hold on;
66 plot(x, model(x, beta_null), ’r--’, ’LineWidth ’, 1.5, ’DisplayName ’,

sprintf(’Null Hypothesis Model: beta = [%0.2f, %0.2f]’,
beta_null));

67 plot(x, model(x, beta_est), ’g’, ’LineWidth ’, 1.5, ’DisplayName ’,
sprintf(’Estimated Model: beta = [%0.2f, %0.2f]’, beta_est));

68 xlabel(’x’);
69 ylabel(’y’);
70 title(’NLLS Model Fit and Chi -Squared Test’);
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71 legend(’Location ’, ’Best’);
72 grid on;
73 hold off;

5.1.1 Hypothesis Testing with a bit more complicated Null

Exercise: Suppose Θ⋆ is more generally a non-empty closed subset of Θ,
and we aim to test the following more general hypothesis structure:

H0 : θ0 ∈ Θ⋆, (8)

H1 : θ0 ∈ Θ−Θ⋆. (9)

Using arguments similar to those in the current section, show that the
following testing procedure described by:

Algorithm 3 The Testing Procedure for LS and a non simple Null Hypothesis

1. Given that the convergence rate rn is known, the test statistic is
Ln := r2n minθ∈Θ⋆(cn(θ)− cn(θn)) = r2n(minθ∈Θ⋆ cn(θ)−minθ∈Θ cn(θ)).

2. Choose a significance level α ∈ (0, 1).

3. For the given α, find:

qα := inf

{
x ∈ (0,+∞) :

∫ x

0

z
k
2
−1

2k/2Γ(k
2
)
exp(−z

2
)dz ≥ 1− α

}
.

4. Define the rejection region for H0 as the interval (q1−α,+∞).

5. Compute the test statistic from the sample and reject H0 if and only
if Ln ∈ (q1−α,+∞).

is, when the conditions of Theorem 2 or 3, and Assumption 1 hold, with
zθ0 ∼ N(0p, 4J̆θ0):

(a) Asymptotically exact , when θ0 is an interior point of Θ.
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(b) Asymptotically conservative, when θ0 is a boundary point of Θ.

(c) Consistent .

Hint: Using the previous asymptotic framework, show that:

r2n(cn(θ)−min
θ∈Θ

cn(θ))⇝ {Z(θ0), θ=θ0
+∞, θ ̸=θ0

.

Then, conclude that under the null hypothesis:

r2n(min
θ∈Θ⋆

cn(θ)−min
θ∈Θ

cn(θ))⇝ Z(θ0),

and similarly, under the alternative hypothesis, that:

r2n(min
θ∈Θ⋆

cn(θ)−min
θ∈Θ

cn(θ))⇝ +∞.

5.2 Wald-type Tests with Unknown Asymptotic Variance

Consider the hypothesis structure in 7 and the assumptions described in
Theorem 5. Another hypothesis testing procedure can be constructed using
the limit theory of the estimator. Suppose θ⋆ is an interior point. Under
the null hypothesis, the quadratic form

r2n(θn − θ⋆)′
(
1

4
J̆−1
θ0
Vθ0J̆

−1
θ0

)−1

(θn − θ⋆)

converges in distribution to χ2
p, and can therefore be used as a test statistic

in a similar manner.
The challenge with directly using this quadratic form is the relatively

common scenario where the asymptotic variance is unknown, and only
its functional form is known. In such cases, having a weakly consistent
estimator of the asymptotic variance would be helpful. If there exists
a stochastic matrix Vn that converges in probability to the asymptotic
variance 1

4
J̆−1
θ0
Vθ0J̆

−1
θ0

, then, by Slutsky’s Lemma and the Continuous Mapping
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Theorem (explain!), the modified quadratic form

r2n(θn − θ⋆)′V −1
n (θn − θ⋆)

converges in distribution under the null hypothesis to χ2
p.

Remark 2. Notice that the assumption zθ0 ∼ N(0p, 4J̆θ0) is not needed here
since the quadratic form is constructed so as to be asymptotically χ2

p. It
however requires the consistent estimattion of the asymptotic variance of
the estimator, something that the previous procedure avoided.

41

Exersice: Construct an asymptotic hypothesis testing procedure based
on the modified quadratic form, and show that it satisfies the properties
of asymptotic exactness and consistency, given that θ⋆ is an interior
point.

Exersice: What happens to these properties if θ⋆ lies on the boundary
of Θ?

41For instance, in the context of the linear model developed so far, and given Assumptions
(2)-(3) and the Continuous Mapping Theorem, the matrix (

X′
nXn

n )−1 is by construction a
consistent estimator of the asymptotic variance MX′X . Thus, the modified test statistic in
this case could take the form (θn − θ⋆)′X′

nXn(θn − θ⋆). Generally, note that the asymptotic
variance might be unknown either as a function of θ or because this function is evaluated
at the unknown θ0. Therefore, estimating the asymptotic variance can often be decomposed
into: (a) the existence of an estimator for the function itself-this estimator should converge
in probability to the function evaluated at θ0 when applied to any sequence converging to
θ0, representing a version of the aforementioned continuous convergence in probability at
θ0; and (b) the existence of a consistent estimator for θ0-such an estimator already exists
in θn. Given (a) and (b), the estimator of the function evaluated at θ0 would provide a
consistent estimator of the asymptotic variance. In the specific case of the linear model,
(b) is unnecessary, and the continuous convergence trivially follows from the assumptions
since the asymptotic variance is a fixed function of θ0.
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Exersice: Building on the previous exercise but considering the hypoth-
esis structure in 8, construct an asymptotic hypothesis test that uses
as the test statistic

r2n min
θ∈Θ⋆

(θn − θ)′V −1
n (θn − θ),

and prove that the test satisfies the properties of asymptotic exactness
and consistency, given that θ0 is an interior point.

5.2.1 Using the Delta Method

Suppose that θ0 is an interior point, and for a function f : Rp → Rq, f is
continuously differentiable in a neighborhood of θ0, with ∂f(θ0)

∂θ′
being the

Jacobian matrix evaluated at θ0.42 By the mean value theorem, and since
the estimator is consistent under our assumptions, it holds with probability
tending to 1 that

f(θn)− f(θ0) =
∂f(θ⋆n)

∂θ′
(θn − θ0),

where θ⋆n lies on the line segment in Rp joining θn and θ0. Consequently,
θ⋆n

p→ θ0, and thus, by the Continuous Mapping Theorem, ∂f(θ⋆n)
∂θ′

p→ ∂f(θ0)
∂θ′

.
Therefore, under the framework of the previous exercise, and by Slutsky’s
Lemma and the Continuous Mapping Theorem (explain!), the asymptotic
distribution for the transformed estimator f(θn) is given by:

rn (f(θn)− f(θ0))⇝ N

(
0q,

1

4

∂f(θ0)

∂θ′
J̆−1
θ0
Vθ0J̆

−1
θ0

∂f ′(θ0)

∂θ

)
.

This result is a special case of the Delta Method, which, among other
things, is useful for deriving the asymptotic theory of sufficiently smooth
transformations of estimators when the transformed parameter of interest

42Recall that this is the q × p matrix containing all the partial derivatives of f at θ0.
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is a function of θ0. 43 For instance, in the framework of the linear model, let
q = 1 and f is the function that select the first component of the associated
vector.44 Then, under our assumptions, it follows that

√
n(θn,1 − θ0,1) ⇝

N(0,MX′X,(1,1)) (why?).
Now let ϕ⋆ ∈ Rq, and consider the hypothesis structure:45

H0 : f(θ0) = ϕ⋆,

H1 : f(θ0) ̸= ϕ⋆.
(10)

Assume further that f is continuously differentiable everywhere, and
that ∂f(θ)

∂θ′
is of rank min{p, q} for every θ ∈ Θ. Within the framework of the

previous exercise, construct an asymptotic hypothesis test using as the
test statistic

r2n (f(θn)− ϕ⋆)′
(
∂f(θn)

∂θ′
Vn

∂f ′(θn)

∂θ

)−1

(f(θn)− ϕ⋆) ,

and prove that the test satisfies the properties of asymptotic exactness and
consistency, given that θ0 is an interior point.46 How would the results
change if θ0 were on the boundary of the parameter space?

Example 13. The following is the Python/Matlab code for the implementa-
tion of the Wald test in the framework of Example 11:

1 Python Code:
2

3 import numpy as np
4 from scipy.optimize import minimize
5 from scipy.stats import chi2

43Such estimators may arise from reparameterizations of the statistical model according
to f , or from covariance properties inherent to θn due to its definition, e.g., when f is
bijective, appropriately monotonic, etc.

44In this case, the Jacobian is constant and equal to (1, 0, . . . , 0)—why?
45Does this fall under the general hypothesis structure discussed in the previous chapter?
46For the linear model mentioned earlier, the test statistic becomes (θn,1−ϕ⋆)2

∑n
i=1 X

2
n,1,

which corresponds to the square of the usual t-statistic appropriately adapted to this
model.
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6 import matplotlib.pyplot as plt
7

8 # Generate synthetic data for NLLS
9 def generate_nlls_data(n, beta_true , sigma , seed =42):

10 np.random.seed(seed)
11 x = np.linspace(0, 10, n)
12 y = np.exp(beta_true [0]+ beta_true [1] * x) + sigma * np.random.

randn(n)
13 return x, y
14

15 # Define the NLLS model
16 def model(x, beta):
17 return np.exp(beta [0]+ beta [1] * x)
18

19 # Sum of squared residuals (SSR) function
20 def ssr(beta , x, y):
21 return np.sum((y - model(x, beta))**2)
22

23 # Wald test function
24 def wald_test(x, y, beta_null , alpha =0.05):
25 n = len(y)
26 k = len(beta_null) # Number of parameters
27 q = len(beta_null) # Number of restrictions
28

29 # Estimate the parameters under the alternative hypothesis
30 res = minimize(ssr , beta_null , args=(x, y), method=’BFGS’)
31 beta_hat = res.x
32 ssr_alt = res.fun
33

34 # Estimate the covariance matrix of beta_hat (inverse Hessian
approximation)

35 hessian_inv = res.hess_inv
36 cov_beta_hat = np.diag(hessian_inv) # Diagonal covariance

matrix approximation
37

38 # Compute the Wald statistic
39 diff = beta_hat - beta_null
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40 wald_stat = diff.T @ np.linalg.inv(np.diag(cov_beta_hat)) @ diff
41

42 # Critical value and p-value
43 critical_value = chi2.ppf(1 - alpha , df=q)
44 p_value = 1 - chi2.cdf(wald_stat , df=q)
45

46 return wald_stat , critical_value , p_value , beta_hat
47

48 # Main script
49 n = 100 # Sample size
50 beta_true = [2.0, 0.3] # True parameters
51 sigma = 0.5 # Noise standard deviation
52 alpha = 0.05 # Significance level
53

54 # Generate synthetic data
55 x, y = generate_nlls_data(n, beta_true , sigma)
56

57 # Hypothesis: Test beta_null = [1.5, 0.2]
58 beta_null = [1.5, 0.2]
59

60 # Perform Wald test
61 wald_stat , critical_value , p_value , beta_est = wald_test(x, y,

beta_null , alpha)
62

63 # Output results
64 print(f"Wald Statistic: {wald_stat :.4f}")
65 print(f"Critical Value (chi -squared): {critical_value :.4f}")
66 print(f"p-value: {p_value :.4f}")
67 print(f"Estimated Parameters under Alternative: {beta_est}")
68

69 # Visualization of fit
70 plt.figure(figsize =(8, 6))
71 plt.scatter(x, y, label=’Data’, color=’blue’, alpha =0.7)
72 plt.plot(x, model(x, beta_null), label=f’Null Hypothesis Model: beta

= {beta_null}’, color=’red’, linestyle=’--’)
73 plt.plot(x, model(x, beta_est), label=f’Estimated Model: beta = {

beta_est}’, color=’green’)
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74 plt.xlabel(’x’)
75 plt.ylabel(’y’)
76 plt.title(’NLLS Model Fit and Wald Test’)
77 plt.legend ()
78 plt.show()

1 Matlab Code:
2

3 % Generate synthetic data for NLLS
4 function [x, y] = generate_nlls_data(n, beta_true , sigma , seed)
5 rng(seed);
6 x = linspace(0, 10, n)’;
7 y = exp(beta_true (1)+beta_true (2) * x) + sigma * randn(n, 1);
8 end
9

10 % Define the NLLS model
11 function y_model = model(x, beta)
12 y_model = exp(beta (1)+beta (2) * x);
13 end
14

15 % Sum of squared residuals (SSR) function
16 function ssr_val = ssr(beta , x, y)
17 residuals = y - model(x, beta);
18 ssr_val = sum(residuals .^ 2);
19 end
20

21 % Wald test function
22 function [wald_stat , critical_value , p_value , beta_est] = wald_test(

x, y, beta_null , alpha)
23 q = length(beta_null); % Number of restrictions
24

25 % Estimate the parameters under the alternative hypothesis
26 options = optimset(’Display ’, ’off’, ’HessUpdate ’, ’bfgs’); %

BFGS approximation
27 beta_init = beta_null; % Use beta_null as the starting point
28 [beta_est , ssr_alt , exitflag , output , hessian_inv] = fminunc(@(b

) ssr(b, x, y), beta_init , options);
29
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30 % Covariance matrix approximation
31 cov_beta_hat = diag(hessian_inv);
32

33 % Compute the Wald statistic
34 diff = beta_est - beta_null ’;
35 wald_stat = diff ’ * inv(diag(cov_beta_hat)) * diff;
36

37 % Critical value and p-value
38 critical_value = chi2inv (1 - alpha , q);
39 p_value = 1 - chi2cdf(wald_stat , q);
40 end
41

42 % Main script
43 n = 100; % Sample size
44 beta_true = [2.0, 0.3]; % True parameters
45 sigma = 0.5; % Noise standard deviation
46 alpha = 0.05; % Significance level
47

48 % Generate synthetic data
49 [x, y] = generate_nlls_data(n, beta_true , sigma , 42);
50

51 % Hypothesis: Test beta_null = [1.5, 0.2]
52 beta_null = [1.5, 0.2];
53

54 % Perform Wald test
55 [wald_stat , critical_value , p_value , beta_est] = wald_test(x, y,

beta_null , alpha);
56

57 % Output results
58 fprintf(’Wald Statistic: %.4f\n’, wald_stat);
59 fprintf(’Critical Value (chi -squared): %.4f\n’, critical_value);
60 fprintf(’p-value: %.4f\n’, p_value);
61 fprintf(’Estimated Parameters under Alternative: [%.4f, %.4f]\n’,

beta_est);
62

63 % Visualization of fit
64 figure;
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65 scatter(x, y, ’b’, ’DisplayName ’, ’Data’);
66 hold on;
67 plot(x, model(x, beta_null), ’r--’, ’LineWidth ’, 1.5, ’DisplayName ’,

sprintf(’Null Hypothesis Model: beta = [%0.2f, %0.2f]’,
beta_null));

68 plot(x, model(x, beta_est), ’g’, ’LineWidth ’, 1.5, ’DisplayName ’,
sprintf(’Estimated Model: beta = [%0.2f, %0.2f]’, beta_est));

69 xlabel(’x’);
70 ylabel(’y’);
71 title(’NLLS Model Fit and Wald Test’);
72 legend(’Location ’, ’Best’);
73 grid on;
74 hold off;

6 Epilogue

The structure of statistical models can imply variational (i.e. optimization
based) properties for the approximation of the unknown parameter values.
These properties may be exploited for the design of statistical inference
procedures related to mathematical optimization. Objective functions may
incorporate "geometric" properties of the distributions that are members of
the statistical model or their empirical (i.e. sample-based) approximations.
More generally, it is possible to construct statistical inference procedures
using functions that represent notions of distance between probability dis-
tributions. The finer properties of these procedures will generally depend
on—potentially local—properties of these functions. Where these finer prop-
erties are optimized may depend on the "geometric" characteristics of the
underlying probability distributions. The computational implementation of
these statistical inference procedures may be non-trivial and could involve
advanced operations research methods.
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