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Definition of the Non-Central Chi-Square Distribution

The non-central chi-square distribution is a generalization of the chi-square distribution, arising as the
distribution of a weighted sum of squared independent normal variables. Specifically, if Z; ~ N(u;, 1)

are independent, then
k
Q=22
i=1

follows a non-central chi-square distribution with k& degrees of freedom and non-centrality parameter

Probability Density Function (PDF)
The probability density function (PDF) of the non-central chi-square distribution is:

fQ(x) = %e—(w-i-)\)/? (;)kﬂl_l/2 Ik/271 (\/ﬂ) ,

where Ij,/o_1(-) is the modified Bessel function of the first kind.

Relation to Quadratic Forms

The non-central chi-square distribution is closely linked to quadratic forms in normal random variables.
It describes the distribution of a positive semidefinite quadratic form

Q=XTAX,

where X ~ N(u,I) and A is symmetric.
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Uonce (o EAD. . Prpoc 0l (Dl test wnce locol

import numpy as np OQ{,@,‘Y)CX&‘\E) M o Q Qe
import matplotlib.pyplot as plt .
from scipy.stats import chi2 {%( LSOV Lpde.

# Parameters

n =100 # Sample size

beta_0 =0 # Intercept

sigma =1 # Standard deviation of noise

alpha = 0.05 # Significance level

deltas = np.linspace(0, 3, 50) # Sequence of local alternatives
num_simulations = 8000 # Number of simulations for each delta

# Power calculation
power = [|
X = np.random.randn(n, 1) # Predictor (fixed)

for delta in deltas:
rejection_count = 0

for _ in range(num_simulations):
# Generate data under local alternative
beta_1 = delta / np.sqrt(n)
Y = beta_0 + beta_1 * X.flatten() + sigma * np.random.randn(n)

# Estimate coefficients

X_aug = np.hstack((np.ones((n, 1)), X))

beta_hat = np.linalg.inv(X_aug.T @ X_aug) @ X_aug.T @Y
beta_1_hat = beta_hat[1]

# Wald test statistic
var_beta_1_hat = sigma**2 / (X.T @ X).item()
wald_stat = beta_1_hat**2 / var_beta_1_hat

# Compare with chi-square critical value
if wald_stat > chi2.ppf(1 - alpha, df=1):
rejection_count += 1

# Compute power
power.append(rejection_count / num_simulations)

# Plot power curve

plt.figure(figsize=(8, 6))

plt.plot(deltas, power, 'b-', linewidth=1.5)

plt.xlabel(r'$\delta$', fontsize=12)

plt.ylabel('Power', fontsize=12)

plt.title('Power of Wald Test under Local Alternatives', fontsize=14)
plt.grid(True)

plt.show()
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