

Addendum OE

Rate and directing distribution when θ_0 lies in the interior of Θ .

When θ_0 lies in the interior of Θ - e.g. this is trivially true when $\Theta = \mathbb{R}^k$, and θ_n is (weakly) consistent, as well as c_n is differentiable in an open neighborhood of θ_0 , for almost every sample value, then θ_n satisfies first order conditions with probability tending to one:

* Suppose that $\frac{\partial c_n(\theta)}{\partial \theta}$ exists $\forall \theta \in B_{\theta_0}$, with B_{θ_0} an open set containing θ_0 (exists since θ_0 is interior) for almost every sample

value. (In several cases $B_{D_0} = \mathbb{R}^k$)

* The B_{D_0} with probability converging to one, since $\hat{\theta}_n \xrightarrow{P} \theta_0$, and $\theta_0 \in B_{D_0}$.

* $\hat{\theta}_n \in \arg \min C_n(\theta)$ [suppose for simplicity that the optimization error is zero]

Then $\frac{\partial C_n(\hat{\theta}_n)}{\partial \theta} = \mathbf{0}_{q \times L}$ with probability converging to one (A)

* If furthermore C_n is also two-times continuously differentiable on B_{D_0} , for almost every sample value, and B_{D_0} is convex ($\Rightarrow \forall \theta \in B_{D_0}$, there is a line in B_{D_0} that connects θ with θ_0)

then due to the Mean Value Theorem,

$$\forall \theta \in B_{D_0}, \frac{\partial C_n}{\partial \theta}(\theta) = \frac{\partial C_n}{\partial \theta}(\theta_0) + \frac{\partial^2 C_n(\theta^*)}{\partial \theta^2}(\theta - \theta_0)$$

Can this be used
in order to obtain
an asymptotic
approximation of ∂_n ?

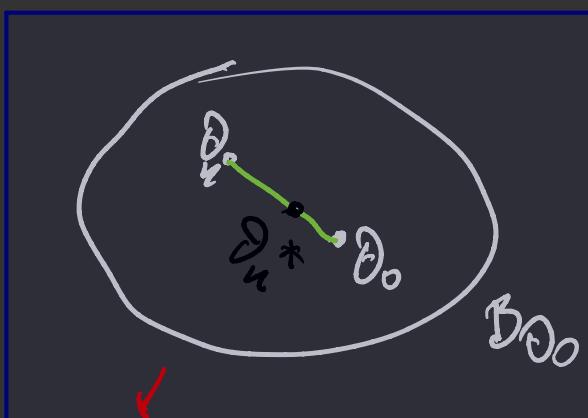
this is the function
of C_n evaluated
at θ^* that belongs
in the line that
connects θ with θ_0
inside B_{D_0} .

* Since $\theta_n \in B_{D_0}$ with probability converging to one, then the above Mean value expansion also holds with such line probability with θ_n in place of θ , i.e.

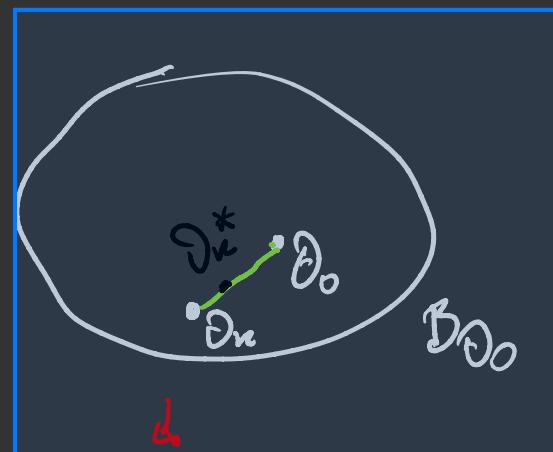
With probability converging to one:

$$\frac{\partial C_n}{\partial \theta}(\theta_n) = \frac{\partial C_n}{\partial \theta}(\theta_0) + \frac{\partial^2 C_n}{\partial \theta \partial \theta'}(\theta_n^*) (\theta_n - \theta_0) \quad (B)$$

where θ_n^* is stochastic, and lies in the line that connects θ_n with θ_0



for some sample value
with sufficiently high prob



for some other sample value.
with sufficiently high prob

* Notice that $0 \leq \|\theta_n^* - \theta_n\| \leq \|\theta_n - \theta_0\|$ by definition. Hence, since $\|\theta_n - \theta_0\| \xrightarrow{P} 0$, then

$\|\theta_n^* - \theta_0\| \xrightarrow{P} 0$, i.e. since $\theta_n \xrightarrow{P} \theta_0$ then
 by construction $\theta_n^* \xrightarrow{P} \theta_0$ (yet θ_n^* is generally
 latent)

* Combining (A) with (B) it is obtained
 that with probability converging to one

$$(F) \quad \frac{\partial \mathcal{L}_n}{\partial \theta}(\theta_0) + \frac{\partial \mathcal{L}_n}{\partial \theta \theta'}(\theta_n^*) (\theta_n - \theta_0) = \mathbf{0}_{k \times L}$$

\downarrow
 $k+L$

Beware of the dimensional-
 lities of those random
 elements

* In the previous we can identify
 the following compared to our general
 theory:

$$- q_n(\theta_0) := \frac{\partial \mathcal{L}_n}{\partial \theta}(\theta_0), \text{ and}$$

$$- q_n(\theta_n^*) = \frac{1}{2} \frac{\partial^2 \mathcal{L}_n(\theta_n^*)}{\partial \theta \partial \theta'}.$$

* If we utilize the relevant assumption
parts from the general theory, i.e.

①

$$r_n \frac{\partial \mathcal{L}_n}{\partial \theta}(\theta_0) \sim z_{\theta_0}$$

②

$$\frac{\partial^2 \mathcal{L}_n(\theta_n^*)}{\partial \theta \partial \theta'} \xrightarrow{P} \mathbf{J}_{\theta_0}$$

this is then
1/2 \mathbf{J}_{θ_0} in the
general theory

which is

supposed ③ to be a positive definite
matrix. Then:

Ⓐ ② and ③ imply that

$\frac{\partial^2 \mathcal{L}(\theta_n^*)}{\partial \theta \partial \theta'}$ is positive definite and

thereby invertible with probability

converging to one. Combining this
with ⑤ it is obtained that:

$$\theta_n - \theta_0 = - \left[\frac{\partial^2 \mathcal{L}(\theta_n^*)}{\partial \theta \partial \theta'} \right]^{-1} \frac{\partial \mathcal{L}(\theta_n^*)}{\partial \theta} (\theta_0)$$

with probability converging to one

⑥

⑥ is essentially a(n) (latent)

asymptotic approximation of the form of the estimator [it is also reminiscent of the iteration form of the approximation of optimizers by some numerical optimization algorithms, like the Newton-Raphson].

Multiplying by the rate in ① it is obtained that with probability converging to one:

$$*\quad r_n (\hat{\theta}_n - \theta_0) = - \left[\frac{\partial^2 \ln(\hat{\theta}_n^*)}{\partial \theta \partial \theta^*} \right]^{-1} r_n \frac{\partial \ln(\hat{\theta}_0)}{\partial \theta}$$

Using then ①, ②, ③, Slutsky's lemma and the CLT, it is obtained that:

$$r_n (\theta_n - \theta_0) \rightsquigarrow - \mathcal{I}_{\theta_0}^{-1} Z_{\theta_0} \quad \text{④}$$

* ④ derives simultaneously the rate r_n , and the limit in distribution

$$- \mathcal{I}_{\theta_0}^{-1} Z_{\theta_0} \text{ of } r_n (\theta_n - \theta_0).$$

* In several cases $r_n = \sqrt{n}$ and $Z_{\theta_0} \sim N(\theta_{n,\text{NL}}, V_{\theta_0})$, for some - generally

latent - Covariance $k \times k$ Matrix $\sqrt{\theta_0}$.

Then $-\bar{J}_{\theta_0}^{-1} \bar{z}_{\theta_0} \sim N\left(-\bar{J}_{\theta_0}^{-1} \mathbf{0}_{k \times 1}, \left(-\bar{J}_{\theta_0}^{-1}\right)' \sqrt{\theta_0} \left(-\bar{J}_{\theta_0}^{-1}\right)\right)$
 $= N\left(\mathbf{0}_{k \times 1}, \bar{J}_{\theta_0}^{-1} \sqrt{\theta_0} \bar{J}_{\theta_0}^{-1}\right)$ (due to CLT,

\bar{J}_{θ_0} , and thereby $\bar{J}_{\theta_0}^{-1}$, must be symmetric,
as a limit of a sequence of Hessian
matrices (those are symmetric due to the
continuity of the second order partial deri-
vatives). Hence

$$\sqrt{n}(\hat{\theta}_n - \theta_0) \sim N\left(\mathbf{0}_{k \times 1}, \bar{J}_{\theta_0}^{-1} \sqrt{\theta_0} \bar{J}_{\theta_0}^{-1}\right)$$

* there are cases where r_n is not \sqrt{n}
and for \bar{z}_{θ_0} is not Gaussian.

* this is a special case of our general theory; it can be proven that since θ_0 is interior, $H = \mathbb{R}^k$.

Given (E), the asymptotic variance of the estimator $\hat{\theta}_0 \sim \sqrt{\hat{J}_{\theta_0}^{-1}}$ is latent, partially due to its dependence on θ_0 :

If 2* for all $\theta \rightarrow \theta_0$, $\frac{\partial^2 c_n}{\partial \theta \partial \theta'}(\theta) \xrightarrow{P} J_{\theta_0}$,

then since $\theta_n \xrightarrow{P} \theta_0$, $\frac{\partial^2 c_n}{\partial \theta \partial \theta'}(\theta_n) \xrightarrow{P} J_{\theta_0}$,

and due to the CLT,

$$\left(\frac{\partial^2 C_n}{\partial \theta \partial \theta'} (\theta_n) \right)^{-1} \xrightarrow{P} J_{\theta_0}^{-1}$$

If $\textcircled{1}$ furthermore, $\sqrt{n} \xrightarrow{P} f_{\theta_0}$,

i.e. the sample dependent \sqrt{n} is a consistent estimator of $\sqrt{\theta_0}$ (for lower level details, look at the examples for brevity), then due to the CLT:

$$\boxed{U_n := \left(\frac{\partial^2 C_n(\theta_n)}{\partial \theta \partial \theta'} \right)^{-1} \sqrt{n} \left(\frac{\partial^2 C_n(\theta_n)}{\partial \theta \partial \theta'} \right)^{-1} \xrightarrow{P} J_{\theta_0}^{-1} \sqrt{\theta_0} J_{\theta_0}^{-1}}$$

i.e. $\hat{\theta}_n$ is a consistent estimator of the asymptotic variance.

* The latter could be useful for the construction of Wald tests for the Hypotheses Structure:

$$H_0 : \theta_0 = \theta^*$$

$$H_c : \theta_0 \neq \theta^*$$

since under H_0 the Wald statistic

$$n(\hat{\theta}_n - \theta^*)' \hat{\Omega}_n^{-1} (\hat{\theta}_n - \theta^*) \sim \chi_k^2$$

(given this, the testing procedure and its properties are explained in the main text).

Are there cases where \sqrt{n} is not "classical", (i.e. \sqrt{n}) and or the limiting distribution not Gaussian

Tracing the proofs of the determination of the rate and the limiting distribution of the μ -estimators shows that - given consistency - the rate and the limiting distribution of the estimator depend:

- a. Smoothness of μ (assumed as twice continuous differentiability), b. the rate and the limiting distribution of $\frac{\partial \mu}{\partial \theta}(\theta)$, c. continuous convergence

(at θ_0) of the Hessian of \mathcal{L}_n to a limiting deterministic matrix, and d . the invertibility of the latter matrix.

Any deviation in α - d . could imply deviation from classical rates and/or asymptotic Gaussianity.

For example, if $\sqrt{n} \frac{\partial \mathcal{L}_n(\theta_0)}{\partial \theta} \sim N(0, V_{\theta_0})$ with $\sqrt{n} \neq n^{1/2}$ (see for example the CLT in the Stochastic Convergence Notes where $\sqrt{n} = \frac{n^{1/2}}{b_n(n)}$), yet the other conditions

hold, then $\sqrt{n}(\hat{\theta}_n - \theta_0)$ would be asymptotically Gaussian, albeit with a non-

classical rate. Different rates than $n^{1/2}$ are also compatible with non-Gaussianity in similar contexts, involving frameworks of stationarity and ergodicity, when

for example $\frac{\partial C_n}{\partial \theta}(D_0) = \frac{1}{n} \sum_{i=1}^n q(D_0, x_i),$

for some appropriate function q , but $E(|q(D_0, x_i)|^p) = +\infty$, for some $p \leq 2$.

Different rates for $\frac{\partial C_n}{\partial \theta}(D_0)$, can also appear in contexts of non-stationarity. If time permits we will examine such line behaviours for the LS case in non-stationary versions of the AR(1) model.

Furthermore, and if for example c. fails due to that the Hessian converges in distribution to a stochastic (yet non-singular) limit, this can affect both the rate and the limiting distribution of the estimator; this can happen in both linear and non linear models due to issues regarding absence of stationarity, and/or the non-existence of needed moments for the random element involved.

Finally, if d. fails, and the Hessian has an asymptotically degenerate limit,

Asymptotic representations like $\textcircled{*}$ for the estimator would cease to be valid, the estimator could essentially be represented as a solution of more complicated asymptotically polynomial equations, thereby affecting the form of the rate and the limiting distribution.

The above could also affect the form of the testing procedures based on Dr and/or the criterion, as well as their limiting distributions under the associated null-hypotheses. This makes important

the identification of such-like deviations and the analogous modifications of the procedures, and/or the design of procedures that remain robust to (some of) such deviations from the classical theory.