
Analysis of the NLLS example
in the scope of the OE theory.

In the context of the NLLS example

remember that the statistical Model is

specified by2 /(*) = g(0,),

00
,
Var (In/6(n)) + En3

,
where

g(u,) : 0xIR
***

-> 123
,
e. g. ()

g(8,n) = (exp(8)) i= 1
, ...,
n /X is

the ith row of )
, e .g . 181 g (0,)= O

(the usual LS case is recovered)



[as in the LS case
,
the simplifying

Var (In16(1) = In assumption is

made for breuity]

Consider An

(0) : Elim,n))'(x-g(0,an))]
and notice that since In= g(00,Xu) + En
whereI(En/6()) = On and Var(an(6)
: In
,

I

An = ((g(to,)= g(0,u))+En) X

((g(t,) = g(0,n)) +En) =



((g(0,) = g(0,n))"+ En) X

((g(00,n) = g(0,n)) + En) =

sudly'
Candl: MusuMr'Mu + Endu + Mr S + En'En=

Mu'dn + 2 Musu + En'Sm (A)

where Mr := g(0) = g(0,)

Hence
, facing expectations conditionally

on 6(*)
, and using (A),

(n+ (0)=+ (g(00,) = g(0,
Xt))(g(0) -

y(0,)) + 1,



by noticing that I (Un'Mu/(m) =

Mudln
, E(Mien/s()) = MulE(ulokul

= MnOnx = Oux,(e
= E(v(33)((*) = trEn()]
= tr Var(er/6(u)) = trEn = n

(sinceIn'sutr(en) = tr(ans)
,
while

tr andE commute due to linearity).

Then
,

if g (0,n) = g(00, n)El 0= to

for almost every (Ident) holds



argain[(g(0.,n) -g(0,n)'x
GEO

(g(00,) - g(0,n))" + 1]

= arguin Mullen = 300 : g(0, =
OEO

= g(%o,n)3 = to
,
i

.e
.

So is recoverable

us the unique minimizer ofa* due to
Ident) and the specification properties.
Note : in e

.g. (a) Ident) holds if
exp( *(0) = exp(#,:) 0o) for some it

...n

then 8=
%0
, equivalent to No = All to



for some i = 1
...n then 8 = 00

,since et is 1
,

equivalent to ran (u) = k. The sauce

condition holds for eg.

(b) as we already
know.

Int is latent
,
since it directly depends on

g(00,n)
↳ later

! yet it seems approximable

via its empirical version

(n(t) = = +(ln-g(t,n)) "(Yn-g(0 ,Xu))
= Yn'Yn-2ng(f,)+ /g(0)'g(0)
= Mulle-E Mu'En + En'En Treat forx's. theory



Hence the resulting OE ,
terred in

this case Non Linear Least Squares Estima-
for (NLLS) is defined as :

In (On) < infu(0) + En
DEQ

len being the usual optimization error)
Or if En = 0

,

OnE arguin C(0)
&E (i)



Note : Since In does not depend on

O
, I depends on 00)

,
On can be defined

as the Minimizer of

(0) = = ( [g(0,u]g(0,) - 2Yng(0,)]
#

Note : If OIR* and
y/,T is two times

differentiable then On satisfies :

= Ouxe
,with

-In)=
(c)



andor pd with

S.0 .
C

occu
w 500b

nX5
#xn

-E([g(0,) -My
it,
-

*XL

In eg .(d)" and

subsequently,



while in e
.g. () ,

=(
= (exp)i0) is) in, ...,

n

& is

Li
,
n

zi -us

= ep(02) ... expets)( A~I I:.. :
Lan

exp(02)* -exp
and (A) =...
( (



which directly implies that the analytical
form of the NLLS in eg .

(a) is

difficult to derive
,
and numerical

Methods are needed. (even when -R
Note : Regarding the issue of existence
for the NLLS

,
our general theory says

that for example , if O is compact

and g(0,) is continuous in 0 then

o exists (this is true in both eg. .() -(b)
for compact 8) , or ⑫ if O is convex



(eq0 = 12) and g(0,n) is strictly
convex

,
thenOn exists (as adatter

of face argain Cu(d) is then unique).
OE

For convex O
,
strict convexity holds

it rank(n) = k
,
in both eg . ()-(b)

Limit Theory : hets try to obtain the limit
theory of On via theEtherry.

* Consistency
Notice that Casing the derivations for
(n
*

) (n(0) = InMnMn-EMuEntyEn'En



Similarly to the relevant analysis for the
Is example , using the lotent form of
the criterion :

Cu(0) : In Mulu-Etienne'en
Cremember Mu := g(00,) = g(0,n))
and noting that the term ↓ Bus

does not depend on O
,
hence it does

not affect optimization,
it is obtained

those (ignoring for simplicity issues regarding
optimization errors) the NLLSE satisfies

On zarguin InMun-M



hets consider first the asguptotic
behaviour of the terrs in Mn'su ;
we have thast :

Mm = g(00,n) + g(0 , n).

Assume for simplicity that
6 (G

, Nus]g(0,) = I6(0 (G(F, (h)
where 6 : OXIRF-IR

Uneg .() G(0,) := exp(*(10) and in e.g.
(6)

6(0) :=20) and Notice that



this implies that :

↓Men= GEs

Lec is similarly the ith know, of

En
,
i. e
,
its it component)

We have that[G(0, 11)3)]

↳E TELEG(0,2)E/0(7] =
= El6(0,) E(ai/6(7)]
= E(6(0,)0] = 0

.



Thereby if some LLN is applic
cable to b0,(i)Si

,
the

this would converge to zero (in time

series contexts this should occur as

long as ,
e.g. (Yn,u] is a station

navy ergodic process [e .g . 1id])
·

Hence lets assume :

↓. I (0, O Fo

-> ()Inexp(: 10)Si -0 Foto ,

e.D.(In Musi=00Find o



Furthermore
,
lets try to discern

the asyuptotic behavior of I

In Mu'Mn = 1 (6X) - (NeIXG(0, (n)

1>X) -(s() I
G(0, (n)

(610-6(0,i)
if [6(00,) = G(0

,*)]o fo
and an LLN is valid

,
then it could be

plausible that : In16100,il - 6 (0,) Is



E[((%,) - 6(0 ,
*)"] Vo

[again in time series settings such an
LN could be volid when (Vn,) is

stationary ergodic , e .g . id]

Hence we Assume :

-

b) InMrNu It[6(8
,Xu)-6(0 ,NIT
-.] InMiMu=xp(icFo) -exp(0))3
IDE [exp(* in 00) -exp(*(0)]

3

eg.

(b) YuMuln= Y200-*03

=0-0MAn(00_0) (to-d'Ex
Go-d)

for which it suffices that*****,)



Under (a)
,
(b) and due to the

CUT we obtain that :

↓Mu'Mu-MusuE[6(8,) -6(t,)]
FOGO

,

Notice also that if

(c) for every GeO , and*** in

some neighborhood of O
, say Bo ,Felt,

JKO :

168** 1- 6(* 11 :Kol**
with Acis) = Op(1) and



InSi = Op(),

then using

arguments analogous to the CS case

the previous can be strengthened to

I NuMu-EMusu EsTETocto,) -610
.An]]

A

e.g . ()

Tending**M



it furthermore :

(b)(E[(6(8, (1) - G(0,])2] =0

iff 0 =00 (this is the asymptotic identification

Condition)
Then we have thort

,
since

To
exp(100) -exp(0)20 with equality
if 0=00

,
due to that x-eX is 11.



Hence [exp(*cD(0)) -exp(*00))2)=0

iff F = 00.

eg .
(6) IE((80,(n) - G(0,))" =

& 10-00TE(n) 10- 00) and

as long as I(in) has van o
the function is zero iff 0 = 00. Notice

that if Vani(n) = - they it can be

Proven using the theory of quadratic forces

thatE) has also roww ,



THEOREML :

Thereby , using our general theory

we have proven that under c ,
b

, ad,

An E Go
,

i
.t
.,
the NLLSE is wearly consistent.

* Race and Limiting Distribution
We assume for simplicity that to lies
in the interior of 0 Ce.g . trivial when

O = IRK]

e) to lies in the interiorof



Assume also for simplicity that

G(0,) is sufficiently smooth :

1) forallRE
,

610, is twice

continuously differentiable w .r. t .
O

,
for

all o in a neighborhood of Boo.

Notice that this implies that for any
sach,
-100 -Go

=10-G,



·Me,
-Sol (x*)

-(610-6
Envi zii C
and Mei



In the context of e.g . (2) :

() = -z(exp(*1000) - exp(*(0))exp(*(5)

(*)=exp

- (exp (*1000) - exp(*([exp(()()Xi)

(*A) = -exp(,)
(A) = -exp(*)



In the context of e.g. (b)

() = -21-0

=
(*) =- id Ei

(AAA)= Ox
,

Notice also that in the general case :

1000 =On



Given the previous ,
and following our

general theory ,
we assume :

1)iNO V

forNo. a p.

d
.

Matrix.

Note: This tawes care of the limiting
behavior of m (00) in our general

Do

theory . In is now the classical rate in.

() can be validated in the context of

time series
,
when the CLT in the relevant

Part of the notes is applicable. For
example,

when (n, n) are d ,
then



() holds as long as
El =, sll] <to

II

But E[R]
=[I]

E

TELt[(o]]
=[ ]
= Ellc) 112]

.

Hence
,
the

it suffices that(c) t ,y



For example
,
in e.g.(),

= exp(*00)It
,
and thereby it suffices

that IE [exp(2 *(i) *2,8]<+o fast...,A.
In eg . (b), ,

and therely
o

it soffices that t<00 Esth
, ..., to

EFinally we have to take care the local
(near fo) behaviour of the fession of an :

it can be proven that under the following
technical conditions :

9) Foto
,t



where Noo :=E[ ]
↓ sup 11 O=DC
i geBo

ISup=

thatM, Ho foo
Note: The above can be shown to be

valid in contexts of stationarity and

ergodicity (e. g . 11d)
, given the smoothness

assumption in (A) , as long as particular
Moments related to the regressors exist.



We will not delve More into such

considerations. As far as the consequential

convergence is concerned
,
this toces care

of the asymptotic behaviour of the Messian

·, fotoo [for the Modified latenta

(8) = Muln-EMusu]
.

In the context

of
eg. (a)

,
Mo =LE [exp(2*,00)]

while in e .g. (B) , Mo = 2 EIu]
The finalAssumption taves care of

the issue of invertibility of the limiting
Hession :



(h) No is p .
d.

Note: Given that exp(20)>0

for any valueof , in both eg .

(),

3) this would follow as long as rann
= k .

E

Hence using at last our general theory,
it is obtained :
THEOREM 2

Under ()-(h)

(On-to) -Mozoo ~N/BxMoVolo)



Note IfSupTl
for someso, then the concept of uniform

integrability can be invowed and be further

Proven that Voo = loo and thereby,

~ (On-80) > N(Owxn
, Mos)

.

Then
,
and sinceMoo is latent (both

as a function of to
,
as well as due to its

dependence ofGo), and the to()
,
the

CMT implies that :

of

Un:=



And thereby Un is a consistent

estimator of the latent asymptotic
variance of NLLSE.

In eg . () Mexplexion
and in eg . (b) Un = [In*]"
Due to (h)

,
Mi is

,
at least asymptoti-

cally well defined. E
Note The previous can be used for

the construction of a World-test
Ho : Fo =&*

for the hypotheses structure H: Go **



Using the statistic
n(On-Go)Un (On-to)

=ricon-O') T
The limiting properties of the procedure
fall into our general theory under
the totality of the previous Assumptions:


