
1 Stochastic Processes

A brief treatment of stochastic processes is provided, focusing on time

series frameworks and stationary environments. A stochastic process is a

random element having a distribution describable via a collection of joint

distributions of random vectors. The formulation of a temporal dependence

framework between random variables is briefly investigated by exploring

the concepts of strict stationarity, ergodicity, and strong mixing.

It should be noted that this treatment is far from exhaustive; instead, it

serves as a very introductory paragraph for interested readers who wish to

explore the rich literature in this field. Some indicative references include

[3], and [5].

2 Definition

Stochastic processes are collections of random variables indexed by el-

ements of a parameter set, satisfying specific compatibility conditions.

Alternatively, they can be seen as random elements that take values in

spaces of functions.

Definition 1. Let (Ω,F ,P) be a probability space, Θ a non-empty set, and

(R,B) the Borel space of real numbers. A stochastic process with values in

R indexed by Θ is a collection of random variables {Xθ : Ω → R, θ ∈ Θ} such

that a unique probability measure is well-defined on the set of functions

RΘ = {f : Θ → R},

1



equipped with the smallest σ-algebra containing the elements of the product

B × B × · · ·︸ ︷︷ ︸
indexed by Θ

.

It is important to note that some authors adopt a broader approach

and do not require the process to be a random element. Instead, they

define it simply as a collection of random variables indexed uniquely by

the parameter θ (see, for instance, [8]). In this generalized perspective, X

can be thought of as a "bivariate" function X : Ω×Θ → R that satisfies the

requirement that X(·, θ) is measurable for each θ ∈ Θ. This alone, however,

is insufficient to ensure the second condition of the definition, namely, the

transfer of P via X onto RΘ.

The latter depends on how the collection of functions can be constructed

as a measurable space. A general method is through the topology of point-

wise convergence: fn → f if and only if fn(θ) → f(θ) for all θ ∈ Θ, where the

limits on the right-hand side are standard limits of real sequences. Using

this construction, one immediately defines closed sets1 and subsequently

open sets2 in the space. Consequently, the associated Borel σ-algebra is

derived, allowing the space to become measurable. It is shown that this

Borel σ-algebra coincides with the one referenced in the definition.

3 The Daniell-Kolmogorov Theorem

The definition of stochastic processes can be generalized so that the process

takes values in a more general metric space S. In the general case, a
1A ⊂ RΘ is closed under pointwise convergence if and only if for every fn ∈ A, fn → f

implies f ∈ A, i.e., the set contains all limits of converging sequences.
2A ⊂ RΘ is open under pointwise convergence if and only if its complement is closed.
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stochastic process is a random element with values in the set of functions

SΘ ≜ {f : Θ → S}, equipped with an appropriate σ-algebra. In certain cases,

it is useful to study processes taking values in a suitable "subspace" of SΘ,

such as the space of continuous functions from Θ to S when S and Θ have

suitable topological structures. Note that this generalization is relatively

straightforward when S = Rn, n ≥ 1, but the technical details become more

complex for general S.

The definition implies that for all ω ∈ Ω, X(ω) = fω : Θ → R. Such

functions fω are called "sample paths" of the process.

The definition highlights the mapping of P into a probability distribution

over RΘ, which is inherently a complex object. Part of stochastic process

theory involves representing such objects through more "familiar" notions.

In this context, the Daniell-Kolmogorov theorem-see, for instance, [1] and

[7]-implies that under specific weak consistency conditions regarding the

behavior of finite subsets of the process, the distribution over RΘ is fully

characterized by the collection of "finite-dimensional distributions (FiDis)"

of the process.

Definition 2. The collection of FiDis of X is:

{
PXθ1

,Xθ2
,...,Xθκ

, θ1, θ2, . . . , θκ ∈ Θ⋆, Θ⋆ ⊆ Θ, ♯Θ⋆ = κ, κ ∈ N⋆
}
,

where

PXθ1
,Xθ2

,...,Xθκ
≜ P(Xθ1 ∈ ·, Xθ2 ∈ ·, . . . , Xθκ ∈ ·)

is the joint distribution of the random vector (Xθ1 , Xθ2 , . . . , Xθκ).

Given the above definition, the theorem states:
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Theorem 1 (Daniell-Kolmogorov). If the collection of FiDis of X satisfies the

following two consistency conditions:

For every κ ∈ N⋆, every Θ⋆ ⊆ Θ with ♯Θ⋆ = κ, and any Borel sets

A1, A2, . . . , Aκ ⊆ R,

1. For every permutation π of the elements of Θ⋆:

PXπ(θ1)
,Xπ(θ2)

,...,Xπ(θκ)
(Aπ(1) × · · · × Aπ(κ)) = PXθ1

,Xθ2
,...,Xθκ

(A1 × · · · × Aκ), (1)

2. For every 0 < m ≤ κ:

PXθ1
,...,Xθm

(A1 × · · · × Am) =PXθ1
,...,Xθκ

(A1 × · · · × Am × R× · · · × R︸ ︷︷ ︸
κ−m times

), (2)

then there exists a unique Borel distribution on RΘ consistent with the given

FiDis.

The first consistency condition requires that rearranging the compo-

nents of any random vector from the process correspondingly changes the

joint distribution. The second condition requires that joint distributions

of lower-dimensional vectors can be obtained by integrating out surplus

components from higher-dimensional ones. The theorem indicates that

these consistency conditions (1)-(2) are sufficient to define a valid distribu-

tion over the complex object X in RΘ and that the collection of FiDis fully

characterizes the distribution of such processes over RΘ. Consequently, the

theorem allows for describing probability distributions in function spaces

using the joint distributions of finite-dimensional random vectors. The

proof is beyond the scope of this book, and the interested reader is referred

4



to [7]. The theorem’s validity extends to processes taking values in metric

spaces.

Later we will see that under weak conditions, objective functions in the

theory of M-estimation for (semi-)parametric statistical models—e.g., sum

of squares criteria, likelihood functions, quadratic criteria of the GMM type,

etc.—are instances of stochastic processes defined over the corresponding

parameter spaces.

Example 1. When Θ = {1}, we recover the notion of a random variable,

while when Θ = {1, 2, . . . , n} (as an ordered set), we recover the concept of

an n-dimensional random vector. (Exercise: Describe the set of FiDis!)

A "direct" application of the theorem essentially extends the definition

of the normal distribution to function spaces:

Definition 3. A "Gaussian process" on Θ with values in the real numbers

is a stochastic process such that every FiDi follows a normal distribution.

It can be shown that every well-defined Gaussian process X is fully

characterized, in terms of its distribution, by the following pair of functions:

1. The "mean function" µ : Θ → R, where µ(θ) := E(Xθ), and,

2. the "covariance kernel" Γ : Θ×Θ → R, where

Γ(θ, θ⋆) := E(XθXθ⋆)− µ(θ)µ(θ⋆) = Cov(Xθ, Xθ⋆).

Example 2. When Θ = R, z ∼ N(0, 1), and xθ = θz, the process is Gaussian

with µ(θ) = E(Xθ) = θE(z) = 0 for all θ ∈ R, and

Γ(θ, θ⋆) = E(xθxθ⋆) = θθ⋆E(z2) = θθ⋆.
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4 Time Series

In the following, we will briefly discuss a category of processes where

the elements of Θ represent points in time. These are called time series’

processes (time series) and are widely used in fields such as economics as

models for phenomena evolving over time under uncertainty:

Definition 4. A time series with values in R is defined as any process for

which Θ is a totally ordered set, thus representing time.

Usually, Θ is a subset of R with the usual ordering, and we will denote

its typical element by t. When Θ is an interval, the time series evolves in

continuous time (Continuous-Time Process). A characteristic example of a

Gaussian process in continuous time is the following:

Definition 5. Let Θ = [0, 1], and consider the process W , defined by the

following properties:

• W0 = 0 almost surely,

• For every t, u ∈ [0, 1] such that t+ u ≤ 1, the random variable Wt+u −Wt

is independent of the σ-algebra σ(Ws, 0 ≤ s ≤ t).

• For every t, u ∈ [0, 1] such that t+ u ≤ 1, the random variable Wt+u −Wt

follows the distribution N(0, u).

• The sample paths of the process are almost surely continuous func-

tions [0, 1] → R,

is called the (one-dimensional) Wiener process on [0, 1].
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It can be shown that the process is well-defined via the Daniell-Kolmogorov

theorem. Apart from the above definition, the Wiener process has other

equivalent representations, e.g., through suitable series of iid random

variables following the standard normal distribution. This illustrates how

processes can be constructed via transformations of existing processes.

Finally, the Wiener process serves as a prototypical example of a weak limit

of sequences of discrete-time processes.

When Θ = N or Z (or more generally, Θ is countably infinite), X is

called a discrete-time time series (Discrete-Time Process) or a stochastic

sequence (double stochastic sequence when Θ has no initial element). In the

following, we will mainly assume Θ = Z-the concepts we discuss will also

hold for N with appropriate modifications. In this context, X = (Xt)t∈Z ≜

(. . . , X−1, X0, X1, . . .), where Xt is a random variable for each t ∈ Z.

Example 3. The process X is iid, i.e., it consists of jointly independent

random variables (see the related definitions in the previous chapter).

Example 4. The process X consists of jointly independent random variables

with Xt ∼ N (t, t2) , t ∈ Z.

4.1 Strong Stationarity

A particularly appealing property that a time series can have is the invari-

ance of its FiDis with respect to time shifts. This is expected to hold for

processes representing dynamic phenomena in some form of stochastic

dynamic stability. We describe this with the property of strong stationarity.

Specifically, given a process X = (xt)t∈Z, consider the finite and ordered

subset of Z, {t1, t2, . . . , tκ}, where κ ∈ N. This defines the FiDi Pxt1 ,xt2 ,...,xtκ
.
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Since Θ = Z, we can shift the time points in the previous set by adding

the same integer constant to each element, thus obtaining a new subset of

Θ. Let m ∈ Z and consider the set {t1 +m, t2 +m, . . . , tκ +m}, referred to as

the m-shift of {t1, t2, . . . , tκ}, and the corresponding FiDi is Pxt1+m,xt2+m,...,xtκ+m.

For a general process, the two FiDis are not identical:

Definition 6. If for every m ∈ Z, PXt1 ,Xt2 ,...,Xtκ
= PXt1+m,Xt2+m,...,Xtκ+m then we

say that the specific FiDi remains invariant under time shifts. The process

X is called strongly stationary if and only if every FiDi remains invariant

under time shifts.

Thus, strong stationarity imposes a collection of strong restrictions

on the behavior of the process. Automatically, we obtain the following

necessary condition for strong stationarity.

Lemma 1. If x is strongly stationary, then Pxt = Pxt⋆
for t, t⋆ ∈ Z, i.e., all

marginal distributions in the process are identical.

Proof. Consider {t} as a singleton subset of Z and apply the definition.

The process in Example 3 is stationary because

PXt1 ,Xt2 ,...,Xtκ

ind.
= PXt1

· . . . · PXtκ

homogeneity.
= PXt1+m · . . . · PXtκ+m

ind.
= PXt1+m,Xt2+m,...,xtκ+m ,

for arbitrary κ,m.

Example 5. The process in Example 4 is not stationary because it violates

Lemma 1 (explain!).
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Example 6. The Wiener process in Example 4 is not stationary because it

also violates Lemma 1 (explain!).

4.1.1 Transformations and Stationarity

The above background suffices to study the issue of stationarity preserva-

tion under transformations. This will be useful, among other things, to

determine whether such properties are inherited by processes that form

solutions to systems of stochastic recurrence equations involving stationary

processes. We first need a minor extension of the definition of stationarity:

Definition 7. The processes X1 = (X1t)t∈Z, X2 = (X2t)t∈Z, . . ., Xρ = (xρt)t∈Z

are called jointly strongly stationary if and only if the joint distribution of

every finite collection of random variables from the processes X1, X2, . . . , Xρ

is invariant under time shifts.

Thus, stationarity is a special case of joint stationarity for ρ = 1. The

two concepts are not generally equivalent.

Lemma 2. Let X1 = (X1t)t∈Z, X2 = (X2t)t∈Z, . . ., Xρ = (Xρt)t∈Z be jointly

strongly stationary. Let f : Rρ → R be a suitably measurable function. Then

Y = (f (X1t , . . . , Xρt))t∈Z is strongly stationary.

Proof. Exercise!

Example 7. Let ρ = 1, f (z) = z4. The process y = (X4
t )t∈Z is strongly

stationary when X is strongly stationary.

Example 8. Let ρ = 2, f (z1, z2) := z1 + z2 + z1z2. Then the process Y =(
X4

1t +X2t +X1tX
4
2t

)
t∈Z is strongly stationary when X1, X2 are jointly station-

ary.
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The lag operator L is defined by L((zt)t∈Z) := (zt−1)t∈Z, which shifts each

component of any doubly indexed sequence to the previous position. It is

easily shown to be linear and suitably measurable. It is also easy to prove

that it preserves stationarity:

Lemma 3. If X is strongly stationary, then LmX := L ◦ L ◦ · · · ◦ L︸ ︷︷ ︸
m times

X is strongly

stationary.

Proof. Exercise!

Example 9. If X is strongly stationary, then Y =
(
X3

t X
2
t−m

)
is strongly

stationary. This follows directly from combining Lemmas 2-3.

Finally, it can be proven that suitable limits of stationary transforma-

tions are also stationary. The following result is given without proof. The

interested reader is referred to Chapter 2 of [6] for the proof.

Lemma 4. If X is strongly stationary and for every m, fm:RN → R is suit-

ably measurable and fm (y1, y2, . . .) → f (y1, y2, . . .) as m → ∞, then Y =

(f (Xt, Xt−1, . . .))t∈Z exists as a stochastic process and is strongly stationary.

Example 10. Let fm (y1, y2, . . .) = f (y1, y2, . . .) = max0≤i≤m yi. Then, if X is

stationary and consists of random variables taking values in a compact

subset of R, the process Y = (maxi∈N Xt−i)t∈Z is also stationary, due to

Lemma 4.

4.1.2 Stationarity and the Law of Large Numbers

It can be shown that strong stationarity alone is insufficient to guarantee

a Law of Large Numbers, in which the almost sure limit is degenerate. One
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way to achieve such a result is through the concept of ergodicity. This

requires additional restrictions on the dependence structure among the

random variables comprising the process, as encoded in their FiDis.

To proceed, we briefly examine the asymptotic behavior of arithmetic

means of a strongly stationary process and outline a general version of

Birkhoff’s Law of Large Numbers. Let X = (Xt)t∈Z be a stationary process.

The following definition concerns a sub-σ-algebra that captures information

about the effect of the lag operator L on the sample paths of the process.

Definition 8. The invariant σ-algebra JX of X is the σ-algebra generated

by all measurable subsets of RZ consisting of values of X that remain

unchanged under the transformation induced by L. In other words, it is

generated by any such set A for which L (A) = A.

The JX is trivial if and only if every invariant event has either zero or

unit probability (with respect to P). From the definition of conditional expec-

tation, if E (|X0|) < +∞, then E (X0/JX) is a well-defined random variable,

with expectation equal to E (X0) due to the Law of Iterated Expectations

(LIE). Moreover, E (X0/JX) is a constant if and only if JX is trivial. The

following LLN describes convergence to a limit that may not follow a degen-

erate distribution, i.e., it may converge to a non-constant limit. For the

concept of almost sure convergence, see the part of the notes discussing

stochastic convergence.

Lemma 5 (General Version of Birkhoff’s LLN). If X = (Xt)t∈Z is strongly

stationary and E (|X0|) < +∞, then

1

T

T∑
t=1

Xt → E (X0/JX) , P a.s..
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Proof. Out of the scope of this text. Interested readers may refer to [9].

Thus, the arithmetic mean may converge to a non-degenerate random

variable, and this occurs precisely when JX is not trivial.

4.2 Ergodicity

Given the heuristic description of JX, a deeper understanding of the concept

of ergodicity requires ideas from the theories of dynamical systems and

measure theory, which go beyond the scope of this text. Nevertheless, the

following definition is precise:

Definition 9. A stationary process X = (Xt)t∈Z is called ergodic (with respect

to L) if and only if JX is trivial.

Example 11. It can be shown that if X is iid, then it is ergodic. The proof

uses the Borel-Cantelli Lemma; see, for instance, [4] to show that the

corresponding σ-algebra is trivial.

Example 12. If independence holds but there is heterogeneity, the process

cannot be ergodic since it is not stationary.

Example 13. There are stationary processes that are not ergodic. For

example, let ε = (εt)t∈Z be iid with ε0 ∼ Unif[−1,1]. Let z ∼ N(0, 1), independent

of εt for every t ∈ Z. Construct the process X = (Xt)t∈Z with Xt = εt+ z. This

process is stationary because for every κ ∈ N and every m ∈ Z, using the

Law of Iterated Expectations (LIE-see the Addendum below),

P (Xt1 ∈ ·, Xt2 ∈ ·, . . . , Xt1κ ∈ ·) LIE
= E (P (Xt1 ∈ ·, Xt2 ∈ ·, . . . , Xt1κ ∈ ·) /σ (z))
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indep.
= E

(
κ∏

i=1

P (Xti ∈ ·) /σ (z)

)
homog.
= E

(
κ∏

i=1

P (xti+m ∈ ·) /σ (z)

)
indep.
= E (P (Xt1+m ∈ ·, Xt2+m ∈ ·, . . . , Xt1κ+m ∈ ·) /σ (z))

LIE
= P (Xt1+m ∈ ·, Xt2+m ∈ ·, . . . , Xt1κ+m ∈ ·) .

For ergodicity, consider A := {xt ≤ −1, t ∈ Z}. We have

L⋆ (A) = {LXt ≤ −1, t ∈ Z} = {Xt−1 ≤ −1, t ∈ Z} = A,

so this is invariant. However,

P (A) = P ({εt + z ≤ −1, t ∈ Z}) = P
(
max
t∈Z

[εt + z] ≤ −1

)

≥ P (z ≤ −2) = Φ (−2) > 0,

where Φ is the cumulative distribution function of the standard normal

distribution. Also,

P (A) = P ({εt + z ≤ −1, t ∈ Z}) ≤ P
(
min
t∈Z

[εt + z] ≤ −1

)

≤ P (z ≤ 0) = Φ (0) =
1

2
,

so for the invariant A, we have

0 < P (A) ≤ 1

2
.

Hence, X cannot be ergodic.

It can be shown that ergodicity necessarily implies the property of weak
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mixing, which describes the asymptotic independence (on average) between

elements of the process. Specifically, it holds that

lim
k→∞

1

k

k∑
j=1

Cov (f (x0) , g (x−j)) = 0,

for any measurable f, g for which the covariance exists. It is shown that

ergodicity is equivalent to the above property, but it does not necessarily

imply the stronger property of strong mixing, limj→∞ Cov (f (x0) , g (x−j)) = 0.

For the concept of mixing and its relationship with ergodicity, see, e.g., [2].

4.2.1 Ergodicity and Transformations

As with stationarity, we examine the issue of whether ergodicity is preserved

under transformations. It can be shown that the following holds:

Lemma 6. Lemmas 2-3-4 also hold for ergodicity.

The following concerns the existence and "uniqueness" of stationary and

ergodic solutions in systems of stochastic recurrence equations (SREs) that

depend on past processes. The solutions of these are stochastic processes

constructed as potentially complex transformations of the preceding pro-

cesses, with the forms of these transformations depending on the structure

of the recurrence relations. The result is presented without proof and can

be easily generalized to cover a significant class of such systems. Note that

the omitted proof is an application of Banach’s Fixed Point Theorem (see,

e.g., [6]).
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Lemma 7. Let ε = (εt)t∈Z be stationary and ergodic. Let f : R2 → R be

suitably measurable and assume that for every z ∈ R, f (·, z) is continuously

differentiable with respect to its first argument. Suppose that:

1. There exists y ∈ R such that E
(
ln+ (|f (y, ε0)− y|)

)
< +∞, where ln+

denotes the positive part of the natural logarithm.

2. E
(
ln+
(
supx∈R

∣∣∂f
∂x

(x, ε0)
∣∣)) < +∞.

3. E
(
ln
(
supx∈R

∣∣∂f
∂x

(x, ε0)
∣∣)) < 0 (or equals −∞).

Then there exists a "unique" stationary and ergodic process X = (Xt)t∈Z that

satisfies

Xt = f (Xt−1, εt) , t ∈ Z,

and is defined by

Xt = lim
m→∞

f ◦ f ◦ f ◦ . . . ◦ f︸ ︷︷ ︸
m

(y, εt, . . . , εt−m) , P a.s.,

for any y ∈ R satisfying condition a).

The following constitutes the standard example of a recursion commonly

referred to as an autoregressive scheme of first order (AR(1)):

Example 14. Let ε = (εt)t∈Z be as in Lemma 7, with E
(
ln+ (|ε0|)

)
< +∞ and

f (x1, x2) = b0x1+x2. Consider the recursion Xt = f (Xt−1, εt) = b0Xt−1+εt , t ∈

Z. Clearly, f (·, z) is continuously differentiable with respect to · for every z.

Also, ∂f(x,z)
∂x

= b0 and ln
(
supx∈R

∣∣∣∂f(x,ε0)∂x

∣∣∣) = ln |b0| = E
(
ln
(
supx∈R

∣∣∣∂f(x,ε0)∂x

∣∣∣)) < 0

(or −∞) if and only if |b0| < 1. Thus, this recursion has a "unique" stationary

15



and ergodic solution X = (xt)t∈Z given by the limit

Xt = lim
m→∞

f ◦ f ◦ f ◦ . . . ◦ f︸ ︷︷ ︸
m

(y, εt, . . . , εt−m) = lim
m→∞

bm0 y+ lim
m→∞

m∑
i=0

bi0εt−i =
∞∑
i=0

bi0εt−i,

almost surely, for any y ∈ R. Consequently, when |β| < 1, the linear process

(
∞∑
i=0

bi0εt−i

)
t∈Z

,

is the corresponding stationary and ergodic process of type AR(1).

The following example concerns a nonlinear process widely used in

Financial Econometrics to model, among other things, various empirical

characteristics of financial return time series.

Example 15. Let Z = (zt)t∈Z be iid with E(z0) = 0, E(z20) = 1, and let the

function f (x1, x2) = ω0+(a0x
2
1+b0)x2, with parameters ω0, a0, b0 > 0. Consider

the recursion ht = f (zt−1, ht−1) , t ∈ Z. Clearly, f (z, ·) is continuously

differentiable with respect to · for every z. Also, ∂f(x,z)
∂x

= a0x
2 + b0 and since

E(ln
(
supx∈R

∣∣∣∂f(x,ε0)∂x

∣∣∣)) = E(ln(a0x2 + b0)) < 0 (or −∞), this recursion has a

"unique" stationary and ergodic solution H = (ht)t∈Z which, due to Lemma

5, is given by

ht = lim
m→∞

f ◦ f ◦ f ◦ . . . ◦ f︸ ︷︷ ︸
m

(y, zt, . . . , zt−m) = ... = ω0[1 +
∞∑
i=1

i∏
j=1

(a0z
2
t−j + b0)], (3)
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almost surely. Due to Lemma 6, the process

Z · (
√
H) := (zt

√√√√ω0[1 +
∞∑
i=1

i∏
j=1

(a0z2t−j + b0)])t∈Z,

is stationary and ergodic and is called a GARCH(1,1) process. In the above

framework, the square root on the left-hand side is considered to hold

pointwise, while the omission of details in deriving the limit involves, among

other things, the asymptotic behavior as m → ∞ of the term
∏m

j=1(a0z
2
t−j+b0)].

Exersice: Show that for the above example,
∏m

j=1(a0z
2
t−j + b0)]

a.s.→ 0 using

the Birkhoff Ergodic Theorem. Consequently, derive (3).

Addendum

The Law of Iterated Expectations

The Law of Iterated Expectations, also known as the Tower Property, is

a fundamental theorem in probability theory. It states that for any two

information sets (algebras) F1 ⊆ F∈ and a random variables X:

E(X | F1) = E (E(X | F2) | F1) .

This means that projections on poorer information can be recursively con-

structed via projections on richer information. When F1 is non-informative,

the outer expectation is the unconditional one.
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Applications

- Sequential Decision Making: In finance and economics, the law is used to

evaluate decisions that unfold over time.

-Stochastic Processes: It helps in analyzing processes where future states

depend on current states.

-Simplifying Complex Expectations: By breaking down expectations into

conditional components, complex problems become more manageable.

Stochastic Recurrence Equations

A Stochastic Recurrence Equation (SRE) is a recursive equation that

models the evolution of a stochastic process over time. It is typically

expressed as:

Xt = f(Xt−1, εt)

where:

• Xt is the state of the process at time t.

• f is a function describing the dynamics of the system.

• {εn} is a sequence of random variables representing random shocks

or noise.

A common linear form of an SRE is:

Xt = AtXt−1 +Bn

with:
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• {At} and {Bt} being sequences of random variables.

• X0 as the initial state-when the underlying process is defined on N.

Example

Stochastic Logistic Map

A nonlinear SRE example:

Xt = rXt−1(1−Xt−1) + εn

where:

• r is a growth rate parameter.

• εn introduces randomness into the system.

Solution Techniques

• Analytical Methods: For linear SREs, solutions can sometimes be

derived explicitly. For some non-linear ones they can be approximated

as limits oof backward substitutions.

• Numerical Simulation: Monte Carlo methods are used when analyti-

cal solutions are intractable.
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