
1 The Theory of Stochastic Convergence

This section serves as an introduction to topics in stochastic convergence.

We examine forms of asymptotic behavior of sequences of random elements

to develop notions useful for understanding (approximate) properties of

statistical inference methods in the following sections. Readers interested

in a deeper understanding can refer to a wealth of relevant literature.

Indicative references include [1], [3], [4], [5], [7], [13], [14].

Let Xn, X be random elements with values in the same codomain, the

metric space S-equipped with the Borel algebra induced by its metric d,

∀n ∈ N. The Xn form the sequence (Xn)n∈N, while X represents a limit

under one of the convergence concepts discussed below, as n → ∞. In

the subsequent sections, the involved random elements are assumed to

share the same domain, specifically the sample space Ω of the probability

space (Ω,F ,P). This restriction is not necessary when discussing weak

convergence, which refers to the convergence of the distributions induced

by the random elements on their common codomain.

In what follows the term iff abbreviates the expression ’if and only if’;

also the dependence of the random elements involved on (the typically)

latent ω, is suppressed when convenient.

2 Almost Sure and Convergence in Probability

Conceptually, the simplest (but extremely demanding in the conditions

required) notion is pointwise convergence across the entire domain. Thus,

we say that Xn converges surely (or more appropriately, pointwisely w.r.t.
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ω) to X, denoted Xn → X, if Xn (ω) → X (ω) for all ω ∈ Ω, that is, when for

the set for which convergence holds, i.e.,

V = {ω ∈ Ω : ∀ε > 0,∃N (ε, ω) , ∀n ≥ N, d (Xn (ω) , X (ω)) < ε, } ,

we have that this coincides with the whole domain of the random elements

involved, i.e., V = Ω.

Relaxing the above, we may only require that the set V where con-

vergence occurs has full P-measure. The issue of V ’s measurability is

addressed through the measurability of the involved random elements, the

corresponding measurability of the metric d as a continuous function, and

the properties of the associated collections of sets at which probabilities

can be attributed to. This leads to the concept of almost sure convergence:

Definition 1. We say that Xn converges to X with (P-) probability one, or

(P-) almost surely, denoted Xn
a.s.→ X, iff P(V ) = 1, where V is as defined

above.

Schematically, we have Xn
a.s.→ X, if and only if the event that Xn converges

pointwise to X is of full probability, i.e.

P
({

ω ∈ Ω : lim
n→∞

d(Xn(ω), X(ω)) = 0
})

= 1.

The following result equivalently represents this form of convergence

as asymptotic uniform convergence (with respect to n) of a sequence of

probabilities, facilitating the construction of a weaker mode of convergence.
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Theorem 1. We have Xn
a.s.→ X if and only if

lim
m→∞

P
[{

ω ∈ Ω : sup
n≥m

d (Xn (ω) , X (ω)) ≤ ε

}]
= 1,∀ε > 0.

Proof. First, note that

lim
m→∞

P
[{

ω ∈ Ω : sup
n≥m

d (Xn (ω) , X (ω)) ≤ ε

}]
= 1,∀ε > 0

is equivalent by definition to

P(A(ε)) = 1, ∀ε > 0,

where for arbitrary ε > 0:

A(ε) := ∪∞
m=1Am(ε),

and

Am(ε) := ∩n≥m

{
ω ∈ Ω : sup

n
d (xn (ω) , x (ω)) ≤ ε

}
,

due to the continuity of P. Assume that P(V ) = 1 hence almost sure

convergence holds. It then suffices to prove V ⊆ A(ε),∀ε > 0 due to the

monotonicity of P. Indeed, for ε > 0, if ω ∈ V , then ω ∈ AN(ε,ω)(ε) ⇒ ω ∈ A(ε),

so V ⊆ A(ε), and thereby P(A(ε)) = 1 for any ε > 0.

Conversely, assume P(A(ε)) = 1,∀ε > 0. Then for ε = 1
k
, k = 1, 2, · · · , define

A⋆ := ∩∞
k=1A

(
1

k

)
.

We have P(A⋆) = 1 due to the De Morgan laws and countable additivity. To
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show A⋆ ⊆ V , observe that if ω ∈ A⋆, then ω ∈ V due to the density of the

rationals in the set of real numbers. The result follows.

The theorem informs us that almost sure convergence is a form of

uniform convergence over the "tail" of the sequence of random elements.1

Relaxing the uniformity, which also implies strong requirements, leads to

the next (and weaker) form of stochastic convergence, namely convergence

in probability:

Definition 2. We say that Xn converges to X in (P-) probability (in prob-

ability), denoted Xn
p→ X (or equivalently p limn→∞Xn = X), if and only

if

∀ε > 0, lim
n→∞

P ({ω ∈ Ω : d (Xn (ω) , X (ω)) ≤ ε}) = 1.

Dually, and due to the law of complementary probability, this is also

representable as ∀ε > 0, limn→∞ P ({ω ∈ Ω : d (Xn (ω) , X (ω)) > ε}) = 0. The

definition fails, and thus Xn
p↛ X, iff there exists some positive ε, δ, such that

P ({ω ∈ Ω : d (Xn (ω) , X (ω)) > ε}) ≥ δ for an infinite set of n’s. The following

lemma is directly derived from the definition and Theorem 1.

Lemma 1. Xn
a.s.→ X ⇒ Xn

p→ X.

The converse does not generally hold, as it is possible for there to exist

ε > 0 and a non-P-negligible subset of Ω supporting subsequences of

(d(Xn, X))n∈N that prevent the tail uniformity of Theorem 1, but still converge

"individually".

The examples in the remaining paragraph present cases that utilize se-

quences of random variables. The last of them uses the notion of ergodicity
1Another characterization of almost sure convergence, represents it as uniform over

subsets of Ω; the related result is termed Egoroff’s Theorem.
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to formulate what is known as Birkhoff’s Law of Large Numbers (Birkhoff’s

LLN), as well as Example 5.3 later.

Example 1. Let (Ω,F ,P) = ([0, 1] ,B, λ), where λ is the standard uniform

probability distribution. Letting S = N equipped with the usual metric,

define:

Xn (ω) =

n, ω ∈
[
0, 1

n

)
,

0, ω /∈
[
0, 1

n

)
.

Clearly, V ′ = {ω ∈ [0, 1] : limn→∞ xn (ω) ̸= 0} = {0}, and λ ({0}) = 0. There-

fore, Xn
a.s.→ 0, and hence Xn

p→ 0.

Exersice: If in the previous example the sequence was defined as

Xn (ω) =

n, ω ∈
[
0, 1− 1

n+1

)
,

0, ω /∈
[
0, 1− 1

n+1

)
,

what would happen regarding either modes of convergence?

Example 2. Let S = R with the usual metric, and random variables Xn ∼

Ber(1/nκ), for some κ ≥ 1. Notice that for arbitrary ε > 0

lim
n→∞

P(|Xn − 1| > ε) = lim
n→∞

P(Xn = 0) = lim
n→∞

1/nκ = 0,

so Xn
p→ 1. Furthermore:

lim
m→∞

P(sup
n≥m

|Xn − 1| > ε) = lim
m→∞

P(∃n ≥ m,Xn = 0) = lim
m→∞

P(∪n≥m{Xn = 0})

≤ lim
m→∞

∑
n≥m

P(Xn = 0) = lim
m→∞

∑
n≥m

1/nκ.
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The inequality in the display above, arises from countable sub-additivity.

When κ > 1, limm→∞
∑

n≥m
1/nκ = 0, due to the convergence of the super-

harmonic series
∑∞

n=0
1/nκ to ζ(κ) the value of the Riemann zeta function at

κ. Hence, due to complementarity, limm→∞ P(supn≥m |Xn − 1| ≤ ε) ≥ 1, and

thereby the limit equals to one; hence Xn
a.s.→ 1.

When κ ≤ 1 the upper bound in the above display is non informative.

Suppose for simplicity that the random variables involved are independent.

In this case notice that for any ε < 1:

lim
m→∞

P(sup
n≥m

|Xn − 1| ≤ ε) = lim
m→∞

P(∀n ≥ m,Xn = 1) = lim
m→∞

P(∩n≥m{Xn = 1})

= lim
m→∞

∏
n≥m

P({Xn = 1}) = lim
m→∞

∏
n≥m

(1− 1

nκ
) = exp( lim

m→∞

∑
n≥m

ln(1− 1

nκ
)).

The third equality in the display above arises from independence. Using

the approximation −x ≈ ln(1− x) which holds for small x, we have that for

large enough m,
∑

n≥m ln(1 − 1
nκ ) = −

∑
n≥m

1
nκ , which as m → ∞ diverges

to −∞, due to that the sub-harmonic
∑∞

n=1
1
nκ and the harmonic

∑∞
n=1

1
n

series diverge. Hence, the sequence (Xn) does not converge almost surely

to 1, nor does it have an almost sure limit in general (why?). This occurs

because the probability of having a subsequence consisting entirely of ones

for almost every ω is zero.

Example 3. Let (Xt)t∈Z be a stationary time series with E(|X0|) < +∞, and

consider the sequence of arithmetic means
(
1
n

∑n
t=1Xt

)
. The general version
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of Birkhoff’s Law of Large Numbers implies that

1

n

n∑
t=1

Xt
a.s.→ E(X0/Jx),

where the conditional expectation exists (why?). Hence, if the process is

ergodic, the limit is E(X0).2 In this case, under stationarity and ergodicity,

the limit is degenerate (why?). For the stationary AR(1) process discussed

in the penultimate example of the notes regarding stochastic processes,

assuming E(|ε0|) < +∞, it is easily shown that E(X0) =
E(ε0)
1−β

, so

1

n

n∑
t=1

Xt
a.s.→ E(ε0)

1− β
.

Similarly, for the GARCH(1,1) process discussed in the last example of the

previous chapter, we have almost sure convergence to zero by construction.

Exersice: Provide the details!

2.1 Continuous Mapping Theorem

Given that the above pertains to the convergence of sequences of functions,

we expect that any continuous transformation of these sequences will

transfer the limit. We can prove something even stronger, as we can allow

the transformation to not be continuous everywhere:

2Such results, where the sequence of arithmetic means almost surely converges to the
corresponding expectation, are called Strong Laws of Large Numbers (SLLN). When the
convergence is in probability, the law is called Weak (WLLN).
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Theorem 2. Let g : S → S ′ be Borel measurable. If Cg is the set of continuity

points of g and P(X−1(Cg)) = 1 for a random element X taking values in S,

then:

• If Xn
a.s.→ X, then g(Xn)

a.s.→ g(X).

• If Xn
p→ X, then g(Xn)

p→ g(X).

Proof. Consider the set V ∩X−1(Cg). Since g is continuous on Cg, we have

that ∀ω ∈ V ∩X−1(Cg), g(Xn) → g(X). Furthermore,

P(V ∩X−1(Cg)) = 1− P(V ′ ∩ [X−1(Cg)]′) ≥ 1− P(V ′) + P([X−1(Cg)]′) = 1.

Thus, P(V ∩X−1(Cg)) = 1, which proves almost sure convergence.

Now, due to continuity, ∀δ > 0,∃ε > 0 such that:

X−1(Cg) ∩ {ω ∈ Ω : d(Xn(ω), X(ω)) < ε} ⊆

{ω ∈ Ω : d′(g ◦Xn(ω), g ◦X(ω)) < δ}.

In general, if A,B ∈ F with P(B) = 1, then P(A ∩ B) = 1 − P(A′ ∪ B′) ≥

1 − P(A′) + P(B′) = P(A). Setting A = {ω ∈ Ω : d(Xn(ω), X(ω)) < ε} and

B = X−1(Cg), we have:

P({ω ∈ Ω : d(Xn(ω), X(ω)) < ε}) ≤

P(X−1(Cg) ∩ {ω ∈ Ω : d(Xn(ω), X(ω)) < ε}) ≤

P({ω ∈ Ω : d′(g ◦Xn(ω), g ◦X(ω)) < δ}).
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Taking limits yields:

lim
n→∞

P({ω ∈ Ω : d′(g ◦Xn(ω), g ◦X(ω)) < δ}) ≥

lim
n→∞

P({ω ∈ Ω : d(Xn(ω), X(ω)) < ε}) = 1,

which proves convergence in probability as δ is arbitrary.

The continuous mapping result implies many general convergence re-

sults. For example, if S, S ′ have vector space structures with operations

continuous under the involved metrics, then, e.g., the respective limits

of sums exist and are equal to the sums of the limits. Constructing new

random elements via finite Cartesian products of the underlying spaces

implies the convergence of vectors formed by these elements, etc.

A simple example involves the Riemann integral:

Example 4. If Ω = S = C[0,1]-i.e. the space of continuous real functions on

[0, 1], then since the Riemann integration operator C[0,1] ∋ f 7→
∫ 1

0
f(z)dz ∈ R is

linear and bounded, hence continuous, we have for the following stochastic

Riemann integrals:

• If Xn
a.s.→ X, then

∫ 1

0
Xn(ω, z)dz

a.s.→
∫ 1

0
X(ω, z)dz.

• If Xn
p→ X, then

∫ 1

0
Xn(ω, z)dz

p→
∫ 1

0
X(ω, z)dz.

A more useful (for the course) example relates the Continuous Mapping

Theorem, to usual algebraic transformations between finite collections of

(sequences of) random variables:
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Example 5. (Properties of Sums, Products, and Reciprocals of Random

Variables Using the Continuous Mapping Theorem] Let (Xn)n≥1 and (Yn)n≥1

be sequences of random variables. Assume that:

Xn
a.s.→ X and Yn

a.s.→ Y (respectively in probability).

We examine the behavior of sums, products, and reciprocals of these

sequences, leveraging the Continuous Mapping Theorem (CMT). Transporting

the analysis in R2, choosing appropriately a metric, and appropriately

handling the topological issues and issues of measure, it is not difficult

to show that the above convergence premises are equivalent to analogous

convergences about random vectors, i.e.

(Xn, Yn)
a.s.→ (X, Y )(respectively in probability).

The CMT then allows analysis for the behavior of sums, products, and

reciprocals of random variables by treating these operations as continuous

functions. The sum of two sequences of random variables Xn and Yn

converges to the sum of their respective limits:

Xn + Yn
a.s.→ X + Y (respectively in probability).

This follows because the function g : R2 → R, g(x, y) := x+ y is continuous.

The product of two sequences of random variables Xn and Yn converges

to the product of their respective limits:

XnYn
a.s.→ XY (respectively in probability).
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This holds because g : R2 → R, g(x, y) = xy is a continuous function on R2.

If P(Y ̸= 0) = 1, then the reciprocals 1/Yn converge to 1/Y :

1

Yn

a.s.→ 1

Y
(respectively in probability).

This is valid because g(y) = 1/y is continuous on R \ {0}, and the condition

Y ̸= 0 ensures the continuity of g at Y .

For combinations of sums, products, and reciprocals, the CMT applies

iteratively-the composition of continuous functions is continuous. For

example:
XnYn

Xn + Yn

a.s.→ XY

X + Y
(respectively in probability),

provided X + Y ̸= 0, since the mapping g(x, y) = xy
x+y

is continuous on its

domain.

2.2 Convergence in Lp Mode

The third form of convergence can be seen as a generalization of convergence

in probability and is based on the Lp norms and the associated metrics.

The definition of interest is as follows. Recall that p is a real number greater

than or equal to one:

Definition 3. We say that Xn converges in Lp metric or in p-th mean (in Lp,

in pth mean) to X, and we denote it as Xn
Lp

→ X, if and only if

lim
n→∞

E ([d(Xn, X)]p) = 0.

When p = 2, this is also called convergence in quadratic mean.
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This convergence implies that the sequence of random variables (d(Xn, X))

is uniformly bounded in the Lp metric, i.e., supn E(d(Xn, X)p) < +∞. Fur-

thermore, the behavior of this form of convergence for different values of p

is not hard to derive using Jensen’s inequality.

Lemma 2. If 1 ≤ p⋆ < p and Xn
Lp→ X, then Xn

Lp⋆→ X.

Proof. Since 1 ≤ p⋆ < p, we have

E ([d(Xn, X)]p) ≥ E
(
[d(Xn, X)]p

⋆
) p

p⋆

by Jensen’s inequality. The result follows by taking limits on both sides of

the above inequality.

Clearly, the above implies that non-convergence for smaller p also implies

non-convergence for larger p. Thus, the strength of the corresponding con-

vergence increases with p. The relative strength of these convergences can

be further understood by noting that convergence in Lp implies convergence

in probability. Therefore, the latter can also be interpreted as the minimal

form of convergence in comparison to p-mean convergences.3

To relate the above to convergence in probability, we use Markov’s in-

equality, leading to the following result:

Lemma 3. If Xn
Lp

→ X, then Xn
p→ X.

Proof. Using Markov’s inequality, for any ε > 0, we have

P (d(Xn, X) ≥ ε) ≤ E ([d(Xn, X)]p)

εp
.

3We can symbolically consider convergence in probability as L0 convergence.
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Taking limits on both sides of the inequality yields the desired result.

Similarly, the above is equivalent to stating that non-convergence in

probability implies non-convergence in Lp metric. The converse is not

generally true. To better understand why the direction cannot be reversed,

we need the following definition.

Definition 4. A sequence of random variables (yn) is said to be uniformly

Lp-integrable if and only if

lim
K→∞

sup
n

E(|yn|p1|yn|≥K) = 0.

The definition imposes, in addition to uniform boundedness, restric-

tions on how "slowly" the tails of the distributions are allowed to decay.

Uniform boundedness of the corresponding sequence of moments alone is

not sufficient, as the following example illustrates:

Example 6. Referring to Example 1, and for p = 1, we observe that

sup
n

E(|Xn|1|Xn|≥K) =

1, K ≤ n,

0, K > n.

Thus, while the sequence (d(Xn, 0)) is L1-bounded, it is not L1-uniformly

integrable. For p > 1, it is not even uniformly bounded. Note that in this

example, although we have convergence to zero in probability, there is no

corresponding Lp convergence for any p ≥ 1 because E(d(Xn, 0)) = 1, ∀n ≥ 1.

This observation also informs that almost sure convergence as well as

convergence in probability do not necessarily imply Lp convergence-why?
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The above example raises the question of whether convergence in proba-

bility supplemented with uniform integrability, leads to convergence in Lp.

The following results confirm this:

Lemma 4. Let (yn) be a sequence of random variables such that:

• yn
p→ 0, and,

• the sequence is uniformly Lp-integrable.

Then

lim
n→∞

E
(
|yn|p1|yn|≥ε

)
= 0, ∀ε > 0.

Proof. Let ε > 0 and K > ε. Notice that E
(
|yn|p1|yn|≥ε

)
= E

(
|yn|p1ε≤|yn|<K

)
+

E
(
|yn|p1|yn|≥K

)
. Furthermore, E

(
|yn|p1ε≤|yn|<K

)
≤ KpP(|yn| ≥ ε), due to mono-

tonicity (essentially, P(|yn| > ε) ≥ P(ε ≤ |yn| < K)), and 0 ≤ E
(
|yn|p1|yn|≥K

)
≤

supn E
(
|yn|p1|yn|≥K

)
. Thus, it is obtained that 0 ≤ E

(
|yn|p1|yn|≥ε

)
≤ KpP(|yn| ≥

ε) + supn E
(
|yn|p1|yn|≥K

)
. Now, for any δ > 0, and due to uniform inte-

grability, there exists some Kδ > ε such that supn E
(
|yn|p1|yn|≥Kδ

)
≤ δ

2
;

also due to convergence in probability there exists some n⋆(δ), such that

P(|yn| ≥ ε) ≤ δ
2Kp

δ
, ∀n ≥ n⋆(δ). Hence, E

(
|yn|p1|yn|≥ε

)
≤ Kp

δ
δ

2Kp
δ
+ δ

2
= δ. Since δ is

arbitrary this establishes that limn→∞ E
(
|yn|p1|yn|≥ε

)
= 0. The result follows

since ε is arbitrary.

Lemma 5. If Xn
p→ X and (d(Xn, X)) is Lp-uniformly integrable, then Xn

Lp

→ X.

Proof. Starting with ε > 0:

lim
n→∞

E ([d(Xn, X)]p) =

lim
n→∞

E
(
[d(Xn, X)]p 1d(Xn,X)<ε

)
+ lim

n→∞
E
(
[d(Xn, X)]p 1d(Xn,X)≥ε

)
.
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Clearly, limn→∞ E
(
[d(Xn, X)]p 1d(Xn,X)<ε

)
< εp, and from the previous lemma,

limn→∞ E
(
[d(Xn, X)]p 1d(Xn,X)≥ε

)
= 0. Hence, we conclude that:

lim
n→∞

E ([d(Xn, X)]p) < εp.

Since ε is arbitrary, limn→∞ E ([d(Xn, X)]p) = 0, which is the desired result.

Remark 1. Hence, almost sure convergence complemented with uniform

Lp-integrability also implies Lp convergence-why?

Finally, note that Lp convergence does not imply almost sure convergence,

as shown by the following example:

Example 7. Consider a sequence of random variables with X1 = 1, (X2, X3) =

(1, 0) or (0, 1) with probability 1
2
. More generally, for k = 1, 2, . . ., the sequence

section (X 1
2
k(k−1)+1, . . . , X 1

2
k(k+1)) equals (1, 0, . . . , 0), or (0, 1, . . . , 0), or ..., or

(0, 0, . . . , 1) with probability 1
k
. Thus, for Xn ∈ (X 1

2
k(k−1)+1, . . . , X 1

2
k(k+1)), we

have P(Xn = 1) = E(Xp
n) =

1
k
,∀p ≥ 1.

It is clear that as n → ∞ (and therefore k → ∞), Xn
Lp

→ 0, ∀p ≥ 1, and

consequently, Xn
p→ 0. However, we also observe that:

lim
m→∞

P
(
sup
n≥m

Xn = 0

)
= 0,

since beyond the m-th component of the sequence, there will almost surely

be infinitely many members of the sequence equal to one. Thus, Xn ↛a.s.

0, meaning that convergence in Lp metric does not ensure almost sure

convergence.
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Exersice: Provide an example in which Lp convergence guarantees

almost sure convergence.

2.3 Transfer Principle for Lipschitz Transformations

If (S, dS) and (S ′, dS′) are metric spaces, and g : S → S ′ is a function between

them, then g is called Lipschitz continuous if and only if there exists a

constant lg > 0 such that for every s1, s2 ∈ S,

dS′(g(s1), g(s2)) ≤ lgdS(s1, s2).

The constant lg, which is independent of S, is not unique but is the smallest

upper bound of all such constants and is called the Lipschitz constant of

the function. It is proved that every Lipschitz continuous function is also

continuous in the usual sense, but the converse is not true. When the

spaces involved are Euclidean, it can be shown that Lipschitz continuity

is equivalent to being almost everywhere differentiable (in the sense of

Lebesgue measure;) with bounded derivatives. For instance, the exponen-

tial function is not Lipschitz continuous, though it is continuous. However,

it becomes Lipschitz continuous when its domain is restricted to any arbi-

trary bounded subset of the real numbers. Extending this reasoning, one

could develop a localized version of this concept. In any case, this form

of continuity is highly useful in convergence analysis, as it can provide

insights, for instance, about the rates of convergence when such rates are

well-defined.

Regarding the transfer of limits under continuous transformations, we
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note that general results, such as Theorem 2, are generally not applicable

for convergence in the Lp metric. The transformation may not even be a

suitably integrable function. Nevertheless, if we strengthen the continuity

condition to Lipschitz continuity, the desired transfer of limits can be

achieved. Our framework here is similar to that of Paragraph 2.1.

Theorem 3. Let g : S → S ′ be Lipschitz continuous with respect to the involved

metrics. Then, if Xn
Lp

→ X, we also have g(Xn)
Lp

→ g(X).

Proof. Observe that due to the Lipschitz continuity of g and the monotonicity

of the integral,

E((d′(g(Xn), g(X)))p) ≤ lpgE((d(Xn, X))p),

where lg is the Lipschitz constant. The result follows by taking limits on both

sides of the inequality, given the non-negativity of the left-hand side.

Exersice: Let S = S ′ = Rp, and let A be a p× p matrix. If Xn
Lp

→ X, does

it hold that AXn
Lp

→ AX?

Example 8. Let Xn = 1
n
Z +W , where Z and W are random variables with

E[Z2] < ∞. Then Xn
L2

−→ W , since E(|Xn −W |2) = 1
n2E(Z2) → 0.

Let g(x) = sin(x), which is Lipschitz continuous with Lipschitz constant

lg = 1. By the Lipschitz Transfer Principle:

sin(Xn)
L2

−→ sin(W ).
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3 Weak Convergence

We now focus on the weakest-compared to the previous-form of stochastic

convergence. Our framework now considers a sequence of probability

measures (Pn)n∈N on (S,B). Compared to the previous sections, Xn ∼ Pn,

but it is not necessary that Pn = P(X−1
n ∈ ·), as we allow the involved random

elements to be defined on different probability spaces.

The set of all bounded functions S → R is denoted by B(S,R), while the

subset containing functions that are both bounded and continuous, is

denoted by Bc(S,R).

Exersice: Show that B(S,R) and Bc(S,R) are non-empty.

We are interested in a concept of convergence of probability distributions,

and an intuitively natural way to define such a notion is by requiring the

probability assigned by Pn to any measurable subset of S, to converge (as a

real number) as n → ∞, to the probability assigned to the same set by P.

This is essentially some sort of functional convergence for the probability

distributions involved, and it is termed as convergence in total variation.

This form of convergence relies on the total variation metric between two

distributions. Specifically, for arbitrary distributions Q,Q⋆ on S, the total

variation distance is defined as the supremum over the absolute differences

in probabilities assigned to elements of B:

TV(Q,Q⋆) := sup
A∈B

|Q(A)−Q⋆(A)|.
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It can be shown that the total variation metric is equivalently represented

as the uniform distance over bounded measurable functions S → R between

their integrals with respect to the involved distributions:

TV(Q,Q⋆) = sup
f∈B(S,R)

∣∣∣∣∫
S

f(s) dQ−
∫
S

f(s) dQ⋆

∣∣∣∣ .
Hence Pn converges in total variation to P iff supA∈B |Pn(A)− P⋆(A)| → 0,

or equivalently, supf∈B(S,R)
∣∣∫

S
f(s) dPn −

∫
S
f(s) dP⋆

∣∣→ 0. Yet, this-intuitively

natural mode of convergence is quite strong for our needs; it requires a lot

of conditions that can easily fail in circumnstances of interest.

We can obtain weaker forms of convergence by selecting smaller collec-

tions of functions to construct the distances between the integrals.

Using Bc(S,R) ⊂ B(S,R), we derive a metric that defines weak conver-

gence.

Definition 5. Let (Pn)n∈N be a sequence of Borel probability measures on

S, and let Q be a Borel probability measure. The sequence (Pn)n∈N is said

to converge weakly to Q, denoted by Pn ⇝ Q, if

sup
f∈BL1(S,R)

∣∣∣∣∫
S

f(s) dPn −
∫
S

f(s) dQ
∣∣∣∣→ 0.

Furthermore, if Xn ∼ Pn and X ∼ Q, then the random elements Xn are said

to converge in distribution to X, denoted as Xn ⇝ X.

The above implies that convergence in total variation implies weak con-

vergence, or equivalently, that divergence (weak) implies divergence in total

variation. The systematic study of weak convergence is complicated, even

in the case S = R, and exceeds the scope of the present notes. Readers
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interested in the compactness of the converging sequence, characteriza-

tions using alternative sets of functions, properties inherited by S on the

collection of probability measures when equipped with the metric in the

above definition, etc., can refer to the literature (e.g., see [14]).

3.1 The Portmanteau Theorem

We have defined the notion of weak convergence, via integrals over a class

of functions. But what does this mean for the probabilities of particular

subsets of the underlying space? We state-without proof-(a part of) the

so-called Portmanteau Theorem (see also [14]), which provides equivalent

conditions for weak convergence of measures in metric spaces, thus for-

malizing the concept.4 To proceed, recall that if A ⊆ S, then Ā denotes the

smallest closed superset of A (the intersection of all closed subsets in the

topology containing A, the closure of A), and Ao denotes the largest open

subset of A (the union of all open subsets in the topology contained in A,

the interior of A). Clearly, Ā ⊇ Ao, and ∂A := Ā − Ao (the boundary of A).

Moreover, if A ∈ BS, then Ā, Ao ∈ BS because the Borel σ-algebra includes

the topology of S induced by its metric. We then have the following:

Theorem 4. [Portmanteau Theorem] The following are equivalent:

1. Pn ⇝ P.

2.
∫
S
f(z)dPn →

∫
S
f(z)dP, ∀f ∈ Bc(S,R).

3. limn→∞ Pn(A) = P(A),∀A ∈ B such that P(Ā) = P(Ao).
4We present only part of the theorem, omitting, for instance, descriptions involving

lim infn→∞ Pn(A) ≥ P(A) for open sets A, or lim supn→∞ Pn(A)≤ P(A) for closed sets A.
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4. If S = Rn, whence the corresponding cumulative distribution functions

are well-defined, then limn→∞ Fn(x) = F (x), for all x ∈ Rn at which F is

continuous.

Note that since Ā = ∂A ∪ Ao and ∂A ∩ Ao = ∅, the third statement holds

for all A ∈ B such that P(∂A) = 0.5 Furthermore, the fourth statement is

simply a specialization of the third for cases where cumulative distribution

functions are well-defined.

Example 9. Let S = R and Pn = Deg1/n. Since for each n, 1 = TV(Pn,Deg0) =

|Pn({0})− Deg0({0})|, the sequence does not converge in total variation to

the degenerate distribution at zero. However, it does converge weakly, as

discrete sets containing zero are not continuity sets for the aforementioned

distribution. For any continuity set containing 0, 1/n will lie within it for

sufficiently large n, guaranteeing via the third condition of the Portmanteau

Theorem that Pn ⇝ Deg0.

This example, while simple, is strong enough to illustrate that weak

convergence may be sufficiently weak to allow limits in cases where stronger

forms of convergence do not. The Central Limit Theorems, which will be

stated later in this chapter and used subsequently, will demonstrate that

weak convergence is also highly useful.

3.2 Relations between Modes of Convergence

In this subsection, to examine the relationship between convergence in

distribution and other forms of convergence (in probability, Lp, and almost
5Borel sets for which this holds are called continuity sets of P.
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sure), we assume Pn = P(Xn ∈ ·), i.e., the involved random elements are

defined on the same probability space. We state the following:

Lemma 6. If Xn
p→ X, then Xn ⇝ X. Thus, both almost sure convergence

and convergence in Lp also imply convergence in distribution.

Proof. Let A ∈ B be an arbitrary continuity set for P := P(X ∈ ·). It can be

shown (see, e.g., [6]) that due to convergence in probability, limn→∞ P(d(Xn, X) ≥

ε) = 0,∀ε > 0, there exists a sequence of positive numbers (ϵn) such that

ϵn → 0 and limn→∞ P(d(Xn, X) ≥ ϵn) = 0. Clearly,

{Xn ∈ A} = ({Xn ∈ A} ∩ {d(Xn, X) ≤ ϵn}) ∪ ({Xn ∈ A} ∩ {d(Xn, X) ≥ ϵn}),

and the sets in the union are disjoint. By additivity, and using a slight

abuse of notation,

Pn(A) = P(Xn ∈ A ∩ d(Xn, X) ≤ ϵn) + P(Xn ∈ A ∩ d(Xn, X) ≥ ϵn),

for all n. By monotonicity,

P(Xn ∈ A ∩ d(Xn, X) ≥ ϵn) ≤ P(d(Xn, X) ≥ ϵn),

and the probability on the right-hand side converges to zero due to conver-

gence in probability. By positivity, the same holds for the probability on

the left-hand side.

Regarding P(Xn ∈ A ∩ d(Xn, X) ≤ ϵn), it is upper-bounded by P(X ∈ Aϵn),

where Aϵ := {s ∈ S : d(s, y) ≤ ϵ,∃y ∈ A}, since if the intersection event occurs,

then X must lie within this ϵn-"enlargement" of A. Consequently, due to
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the continuity of P and the fact that Aϵn shrinks under set inclusion as ϵn

decreases, we have limn→∞ P(Xn ∈ A ∩ d(Xn, X) ≤ ϵn) ≤ P(X ∈ Ā) = P(X ∈ A),

where the last equality follows from A being a continuity set.

Additionally, the intersection of X ∈ A with d(Xn, X) ≤ ϵn,∀n, coincides

with Xn ∈ A ∩ d(Xn, X) ≤ ϵn,∀n, due to symmetry. Hence, X ∈ A ⊇ Xn ∈

A ∩ d(Xn, X) ≤ ϵn,∀n, and, due to monotonicity and the continuity of P,

P(X ∈ A) ≥ limn→∞ P(Xn ∈ A ∩ d(Xn, X) ≤ ϵn). Combining this with the

above, we finally obtain P(X ∈ A) = limn→∞ P(Xn ∈ A ∩ d(Xn, X) ≤ ϵn), and

the first result follows from condition (3) of the Portmanteau Theorem and

the fact that A is arbitrary. The remaining results follow from Lemmas 1

and 3.

The converse does not hold. Convergence in distribution does not im-

ply convergence in probability and, consequently, the other two forms of

convergence, as shown by the following example:

Example 10. Let S = R, and X ∼ Unif[−1,1]. For n ≥ 1, let Xn = −X + 1
n
.

Then P(|Xn −X| ≤ 1/2) = P(−1/4 + 1/2n ≤ X ≤ 1/4 − 1/2n) → 1/2—why? Therefore,

Xn
p↛ X. Moreover, we have that Fn(x) = P(−X ≤ x− 1/n) = P(X ≥ −x+ 1/n) =

1 − P(X ≤ −x + 1/n) =


1, x ≥ 1− 1/n,

1+x
2
, −1− 1/n ≤ x < 1− 1/n,

0, x ≤ −1− 1/n

→


1, x ≥ 1,

1+x
2
, −1 ≤ x < 1,

0, x ≤ −1

,

for every x ∈ R, and therefore, from the last case of the previous theorem,

it follows that Xn ⇝ X.

Thus, convergence in distribution is the weakest among the forms we

have discussed. However, there exists a case where convergence in distri-
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bution is equivalent to convergence in probability; this occurs when the

limit is degenerate:

Lemma 7. If Xn ⇝ s ∈ S, then Xn
p→ s.

Proof. Let ε > 0 be arbitrary, and notice that P(d(Xn, s) ≤ ε) = P(Xn ∈ B̄s(ε)),

with B̄s(ε)) denoting the d-closed ball centered at s and of radius ε. Since

the distribution of s is degenerate at s, B̄s(ε)) is a continuity set for it, and

thereby due to the Portmanteau Theorem limn→∞ P(Xn ∈ B̄s(ε)) = P(s ∈

B̄s(ε)) = 1, and thereby the result follows from the definition of convergence

in probability.

Exersice: Does Xn ⇝ s ∈ S necessarily imply Xn
a.s.→ s or Xn

Lp

→ s?

Exersice: Provide an example where Lemma 7 holds and simultaneously

Xn
Lp

→ s.

3.3 Continuous Mapping Theorem

Similarly to the corresponding section on earlier forms of stochastic con-

vergence, the question here pertains to what happens to measures when

transformed through a continuous (or almost everywhere continuous) mea-

surable function from (S, d) to the metric space (S ′, d′), assuming weak

convergence holds for the original measures. We have the following map-

ping theorem:

Theorem 5. [Continuous Mapping Theorem] Let Pn ⇝ P, and let h : S → S ′ be

Borel measurable, with P(Ch) = 1, where Ch consists of the points in S where
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h is continuous. Then, Pn(h ∈ ·)⇝ P(h ∈ ·). Correspondingly, for the involved

random elements Xn ∼ Pn and X ∼ P, we have

h (Xn)⇝ h (X) .

Proof. Initially, note that for all A ∈ BS′,

P ◦ h−1(A) = P(h−1(A)) = P(h−1(A) ∩ Ch) + P(h−1(A) ∩ Cc
h),

since h−1(A)∩Ch and h−1(A)∩Cc
h are disjoint by construction. Furthermore,

by assumption, P(h−1(A)∩Cc
h) = 0, as P(Cc

h) = 0, h−1(A)∩Cc
h ⊆ Cc

h, and using

the monotonicity of the measure. Thus,

P ◦ h−1(A) = P(h−1(A) ∩ Ch). (1)

Now, let B ∈ BS′, such that Ph−1(B̄) = Ph−1(Bo) . Using (1), (2) becomes

P(h−1(B̄) ∩ Ch) = P(h−1(Bo) ∩ Ch). (3)

From the definition of continuity, we also have

[
h−1(Bo) ∩ Ch

]
⊆
[(
h−1(B)

)o ∩ Ch

]
⊆
[
h−1(B) ∩ Ch

]
⊆
[
h−1(B̄) ∩ Ch

]
. (4)

Combining (4) with (3) and the monotonicity of the measure, we get

P(
(
h−1(B)

)o ∩ Ch) = P(h−1(B) ∩ Ch). (5)
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Using (1), (5) implies

P(
(
h−1(B)

)o
) = P(h−1(B)). (6)

From (6) and the weak convergence of the original measures, by the

third proposition of the Portmanteau Theorem, we have

Pn

(
h−1(B)

)
→ P

(
h−1(B)

)
. (7)

Since B was chosen arbitrarily, (7) implies

Pn ◦ h−1(B) → P ◦ h−1(B), ∀B ∈ BS′ : P ◦ h−1(B̄) = P ◦ h−1(Bo). (8)

Finally, (8) implies the desired convergence by the third proposition of

the Portmanteau Theorem.

Similarly to the analogous section above, the transfer principle here also

implies a multitude of general convergence results. For example, if S, S ′

have vector space structures with operations continuous with respect to the

involved metrics, then the corresponding limits of sums exist and coincide

with the sums of the limits, etc. Similarly, as previously mentioned, if we

construct new random elements through finite Cartesian products of the

underlying spaces, the convergence of the constituent elements implies the

convergence of the vectors with these components, etc.

Exersice: Formulate and prove the above precisely.

The analogous simple example related to the Riemann integral:
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Example 11. If Ω = S = C[0,1], based on the fact that the Riemann integral

operator C[0,1] ∋ f 7→
∫ 1

0
f(z)dz is continuous, we have that if Xn ⇝ X, then

∫ 1

0

Xn(ω, z)dz ⇝
∫ 1

0

X(ω, z)dz.

Analogously to the discussion regarding the version of the theorem for

almost sure convergence, and convergence in probability, the following

example is potentially more useful for what follows:

Example 12. Let (Xn)n≥1 and (Yn)n≥1 be sequences of random variables. We

examine the behavior of sums, products, and reciprocals of these sequences,

leveraging the Continuous Mapping Theorem (CMT). In order to do that it is

necessary to begin from a weak convergence premise occuring in R2. We

suppose then that:

(Xn, Yn)⇝ (X, Y ).6

The sum of two sequences of random variables Xn and Yn converges in

distribution to the sum of their respective limits:

Xn + Yn ⇝ X + Y.

This follows because the function g(x, y) = x+ y is continuous.
6Contrary to what occurs regarding almost sure and convergence in probability, this

is not equivalent to that Xn ⇝ X and Yn ⇝ Y . The former (joint convergence) implies the
latter (marginal convergence) but not vice versa. This is due to the fact that generally, due
to dependence, the joint distribution of a random vector, contains more information than
the set of the marginal distributions of its constituents random variables. A sufficient
condition for equivalence between joint and marginal convergence, is that eventually, Xn

be independent of Yn-see the further exercises section in the Addendum.
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The product of two sequences of random variables Xn and Yn converges

in distribution to the product of their respective limits:

XnYn ⇝ XY.

This holds because g(x, y) = xy is a continuous function on R2.

If Yn ⇝ Y and Y ̸= 0 almost surely, then the reciprocals 1/Yn converge in

distribution to 1/Y :
1

Yn

⇝
1

Y
.

This is valid because g(y) = 1/y is continuous on R \ {0}, and the condition

Y ̸= 0 ensures the continuity of g at Y .

For combinations of sums, products, and reciprocals, the CMT applies

iteratively. For example:

XnYn

Xn + Yn

⇝
XY

X + Y
,

provided X + Y ̸= 0, since the mapping g(x, y) = xy
x+y

is continuous on its

domain.

Lemma 7 along with the above example provide directly with a result

known as (part of) Slutsky’s Lemma:

Lemma 8. (Slutsky) If Xn ⇝ X, and Yn ⇝ s, then Xn + Yn
p→ X + s and

XnYn
p→ Xs.

Proof. The fact that s is degenerate, implies that Xn is asymptotically in-

dependent from Yn. Thus marginal convergences imply the joint conver-

gence (Xn, Yn)⇝ (X, s). The results follow from the CMT as in the example
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above.

3.4 A "General" Central Limit Theorem

Central limit theorems (CLTs) describe cases of convergence in distribution.

They concern the asymptotic behavior of partial sums of random variables

(or random vectors, or more generally random elements with values in

spaces where addition is algebraically feasible), suitably shifted and scaled

so that their resulting distributions converge weakly to normal distributions.

The latter serve as significant attractors for many such sequences of partial

sums. A detailed enumeration and proof of such results are beyond the

scope of this book. The following theorem is presented without proof-see

[8]-and pertains to stationary and ergodic sequences whose component

marginal distributions possess sufficiently high-order moments, and where

the dependence between elements diminishes sufficiently fast as they

become temporally distant:

Theorem 6. Let (Xt)t∈Z be a stationary and ergodic sequence satisfying:7

1. There exists ε > 0 such that E(|X0|2+ε) < +∞, and,

2. For every t > 0,
∑∞

k=0 |Cov(E(Xt | σ(Xn, n ≤ 0)), Xk)| < +∞.

Then, as n → ∞,

Var

(
1√
n

n∑
t=1

(Xt − E(X0))

)
→ v ≥ 0. (1)

7The summation index is now turned to t in order for the time series setting to be
stressed.
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If v > 0, then
1√
n

n∑
t=1

(Xt − E(X0))⇝ X ∼ N(0, v). (2)

Moreover, if τ ∈ [0, 1], then

1√
n

⌊nτ⌋∑
t=1

(Xt − E(X0))⇝ vW (τ), (3)

in the space of CADLAG functions on [0, 1] equipped with the Skorokhod

metric.

We observe that the properties of stationarity and ergodicity, along

with the first condition of the theorem, and the fact that this implies the

existence of the first-order moment for the sequence members, already

guarantee the validity of Birkhoff’s Law of Large Numbers. Consequently,

due to the relationships between forms of convergence and the continuous

mapping theorem, it holds that 1
n

∑n
t=1(Xt − E(X0))⇝ 0 (explain!).

The theorem refines this convergence to zero; it informs us that multiply-

ing 1
n

∑n
t=1(Xt−E(X0)) by the rate of convergence

√
n yields a stochastic limit

in distribution—a non-degenerate random variable following a normal dis-

tribution. Thus, among other things, it provides information about the rate

at which the Birkhoff convergence to the first moment occurs, namely at

most at a rate of
√
n. This holds because if we multiplied 1

n

∑n
t=1(Xt −E(X0))

by a sequence diverging to infinity faster than
√
n, it would not be difficult

to show—using the theorem—that we would obtain a sequence of distri-

butions whose probability mass shifts towards infinity.8 In such a case, a
8This property is known as (non-)uniform tightness, which is related to compactness,

briefly mentioned in the introductory paragraph.
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weak limit that is a well-defined distribution over the real numbers cannot

exist.9

The conditions for validity relate to:

1. The existence of moments of sufficiently high order for the random vari-

ables forming the partial sum. Any order greater than 2 suffices. Un-

der stronger assumptions for condition (b)—e.g., independence—this

condition could be weakened to require moments of order 2. However,

the theorem would not hold without at least the second moment since

Var( 1√
n

∑n
t=1(Xt − E(X0))) would not be well-defined, and (1) could not

hold.

2. The rate at which a specific type of dependence between the constituent

random variables decays as they become temporally distant. This

is described by the requirement for the convergence of the series of

covariances
∑∞

k=0 |Cov(E(Xt|σ(Xn, n ≤ 0)), Xk)|. This is ensured when

the covariance between the L2-projection of Xt onto σ(Xn, n ≤ 0) and

the k-th component converges sufficiently quickly to zero—a property

not guaranteed by ergodicity alone.

Detailed conditions like these specialize the theorem to forms of temporal

dependence found in time series models used in empirical economics

and econometrics. For example, it can be shown to hold for AR(1) and

GARCH(1,1) models as presented in the previous chapter.
9Under certain conditions, it may be possible to recover some form of limit—specifically, a

collection of accumulation points of the sequence, possibly in almost sure convergence—by
multiplying with a slower diverging rate. The interested reader could study the concept of
the Law of the Iterated Logarithm; see, e.g., [12] for the iid case. Clearly, due to Birkhoff’s
law and the continuous mapping theorem, multiplication by any convergent or bounded
sequence would preserve convergence to 0.
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Example 13 (Classical CLT). When the underlying sequence is iid, then

for the second condition it is obtained that
∑∞

k=0 |Cov(E(Xt | σ(Xn, n ≤

0)), Xk)| equals
∑∞

k=0 |Cov(E(X0), Xk)| =
∑∞

k=0 0 = 0, hence the condition

holds trivially. Furthermore, Var
(

1√
n

∑n
t=1(Xt − E(X0))

)
= 1

n

∑n
t=1 Var(X1) =

Var(X1). Hence, if Var(X1) > 0, it is obtained that 1√
n

∑n
t=1(Xt − E(X0)) ⇝

X ∼ N(0,Var(X1)), which constitutes the classical iid CLT.

Example 14 (Stationary Ergodic Square Integrable Martingale Difference

Sequence CLT). Suppose that (Ft)t∈Z is an increasing (i.e. Ft ⊆ Fs, t < s)

sequence of information sets (σ-algebras). The pair (Xt,Ft)t∈Z is a martingale

difference sequence iff E(Xt|Ft) = 0, ∀t. Suppose then that (Xt,Ft)t∈Z is

a stationary ergodic martingale difference sequence, and 0 < E(X2
0 ) <

+∞. Notice that in this case and due to LIE, E(X0) = E(E(X0 | F0)) =

0. If for all t, σ(Xt−n, n > 0)) ⊆ Ft, then due to the LIE E(Xt | σ(Xn, n ≤

0)) = E(E(Xt | Ft) | σ(Xn, n ≤ 0)) = E(0 | σ(Xn, n ≤ 0)) = 0, and thereby∑∞
k=0 |Cov(E(Xt | σ(Xn, n ≤ 0)), Xk)| equals

∑∞
k=0 |Cov(E(X0), Xk)| =

∑∞
k=0 0 =

0, hence the covariance summability condition holds trivially. The previous

also directly implies that Cov(Xt, Xs) = 0, ∀t ̸= s. Thus, Var
(

1√
n

∑n
t=1Xt

)
=

1
n

∑n
t=1 Var(X1) = Var(X1). Hence, 1√

n

∑n
t=1Xt ⇝ X ∼ N(0,Var(X1)), which

constitutes a significant generalization of the previous classical iid CLT

(why?).

The first result of the theorem informs us that the variance of the

weighted partial sums, which takes the form of an arithmetic mean of the

covariances between members of the sequence, converges. Both assump-

tions of the theorem play a role in this convergence. In certain cases of

divergence, it is possible to recover the theorem by incorporating a rate

32



that accounts for the aforementioned divergence. As mentioned above, if

the limit of the variance is strictly positive, the weak limit obtained is the

normal distribution with zero mean and variance given by the aforemen-

tioned series. If the variance limit were zero, the weak limit would instead

be Deg0.

The third result describes something even more complex, encompassing

the previous result as a special case. It concerns the asymptotic behavior of

the truncated sum at [nτ ], treated as a function of τ ∈ [0, 1]. The partial sum

thus becomes a stochastic process taking values in CADLAG real-valued

functions over [0, 1]. This space is equipped with the Skorokhod metric-

see, for instance, [2]-which modifies and generalizes the uniform metric,

incorporating appropriate transformations between the involved functions.

These transformations facilitate the study of compactness for the stochastic

processes involved. Together with the first part of the theorem, this implies

that the weak limit is the distribution of the (non-standardized version)

Wiener process. The Wiener process-actually a Gaussian process-serves

as the analogue of the normal distribution, acting as an attractor for such

processes.

The above results are particularly useful in statistical inference, among

other fields. Limit theorems like these can be employed to ascertain rates

of convergence and asymptotic distributions—along with their asymptotic

properties—of estimators and hypothesis tests in statistical models relevant

to Empirical Economics and Econometrics, as discussed in the next part

of the book. This demonstrates the utility of weak convergence: it is "weak"

enough to enable the derivation of such properties.10

10We note for the interested reader that asymptotic theories like the one described by
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Addendum

Asymptotic Tightness

The sequence of random elements (Xn)n∈N is termed asymptotically tight, if

there does not exist some n such that the distribution Pn of Xn assigns a

fixed strictly positive probability to subsets of the underlying space that

lie outside every compact subset of it. If S is actually a Euclidean space,

this is equivalent to that for any ϵ > 0, there exists Mϵ > 0, such that

limn→∞ P(∥Xn∥ > Mε) < ϵ. Asymptotically tight sequences have distributions

that do not allow any fixed positive probability mass to be attributed to

parts of the underlying space that "escape to infinity" (are not approximable

by finitary constructions in the space).

It is not difficult to show that convergence in distribution (and thereby

all the modes of convergence examined above-why?) implies asymptotic

tightness. There exists a partial converse to this (which forms the interesting

part of what is termed Prokhorov’s Theorem): a sequence is asymptotically

tight, iff every subsequence of it (i.e. an infinite part of it) has a further

subsequence that converges in distribution.

the above theorem do not generally hold for other forms of convergence. These typically
yield results in the form of laws of large numbers. Nevertheless, under certain conditions,
it is possible to represent weak convergence as almost sure convergence: the underlying
space is sufficiently augmented, and the involved random elements are extended appro-
priately to converge almost surely to limits having the distribution resulting from the weak
convergence. This process pertains to the so-called Skorokhod representations, which are
clearly beyond the scope of this book—see, for instance, [2]. However, it indicates that,
in some cases, the convergence is essentially almost sure in suitably "richer" probability
spaces.
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Exersice: If (Xn)n∈N is asymptotically tight, and h as in Theorem 5. Show

that (h(Xn))n∈N is asymptotically tight. Hint: combine Theorem 5 with

the above characterization of Prokhorov’s Theorem.

Asymptotic tightness, is directly related to concepts like the rates of

convergence of estimators, the construction of confidence regions, etc, in

statistics and econometrics.

It is often convenient-particularly in proving asymptotic properties-

to use concise expressions to denote asymptotic properties, such as

convergence in probability or asymptotic tightness of a sequence of

random variables. The expression Op(1) denotes that the sequence is

asymptotically tight, while op(1) denotes convergence in probability to

zero. More generally, if xn, yn, and zn represent the general terms of

related sequences, then xn = Op(zn) means xn = ynzn and yn = Op(1).

Similarly, xn = op(zn) means xn = ynzn and yn = op(1). It is clear from

the above definitions that Op(zn) = znOp(1), op(zn) = znop(1), and it is

easy to prove properties like op(1) + op(1) = op(1), Op(1) + Op(1) = Op(1),

op(1) + Op(1) = Op(1), op(1)op(1) = op(1), Op(1)Op(1) = Op(1), op(1)Op(1) =

op(1), and so on.
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Markov’s Inequality, Tightness, and an iid LLN

Let P be a probability distribution on R along with a random variable X ∼ P,

and p, ε > 0. From the properties of the integral, we have that:

E(|X|p) =
∫
R
|z|pdP =

∫ −ε

−∞
|z|pdP+

∫ ε

−ε

|z|pdP+

∫ +∞

ε

|z|pdP

≥
∫ −ε

−∞
min

z∈(−∞,−ε]
|z|pdP+

∫ +∞

ε

min
z∈[ε,+∞)

|z|pdP

= | − ε|p
∫ −ε

−∞
dP+ |ε|p

∫ +∞

ε

dP

= εp
(∫ −ε

−∞
+

∫ +∞

ε

)
dP = εp [P((−∞,−ε]) + P([ε,+∞))]

= εp [P((−∞,−ε]) ∪ [ε,+∞))] ,

where the first equality in the above follows from linearity, the first inequality

from monotonicity, which also implies that
∫ ε

−ε
|z|pdP ≥ 0, the second equality

from the strict monotonicity of zp and the fact that its corresponding extrema

are independent of z, and the last equality follows from the additivity of the

distribution. Rearranging the above, we have essentially proven that:

∀ε > 0, p > 0, P((−∞,−ε]) ∪ [ε,+∞)) = P(|X| > ε) ≤ E(|X|p)
εp

. (4)

The above is called Markov’s inequality, and in the special case where

p = 2, it is called Chebyshev’s inequality. We observe that this inequality is

trivial when ε is very small, or when E(|X|p) = +∞; in both cases the right-

hand side is greater than one (even if it is not a real number). The inequality

is informative on how the distribution assigns probabilities only if E(|X|p)

exists and ε is large enough that the right-hand side of the inequality is less
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than one. In this case, the inequality informs us about the decay rate of

the probability that the distribution assigns to extreme events. This decay

rate is constrained by the absolute moment of highest order that exists and

cannot decay faster than Cε−p as ε → ∞ (when p is a natural number, this

is a polynomial rate in 1/ε). The above seems to suggest that distributions

such as the exponential and the Gaussian, with decay rates faster than

the above for all p, possess moments of all orders.

Markov’s inequality is an example of a class of inequalities that link

probabilities to moment-related quantities (see, for example, Hoeffding’s

inequality and related inequalities, as detailed in [11] and [15]).

Suppose now that (Xn)n∈N is a sequence of random variables, with a

bounded sequence of absolute moments of order p, i.e., supn E(|Xn|p) < +∞,

which is equivalent to that there exists N > 0 : E(|Xn|p) ≤ N, ∀n ∈ N. For

arbitrary ϵ > 0, consider (N
ϵ
)
1
p > 0. Due to the inequality of Markov, for

arbitrary n, P(|Xn| > (N
ϵ
)
1
p ) ≤ ϵE(|Xn|p)

N
≤ ϵ. Since the outermost r.h.s. of the

previous inequality is independent of n, limn→∞ P(|Xn| > (N
ε
)
1
p ) ≤ ϵ, which

implies the definition of asymptotic tightness above for Mϵ := (N
ϵ
)
1
p . Hence

any sequence of random variables with a bounded sequence of absolute

moments of some order is asymptotically tight.

Suppose furthermore that (Xn)n∈N is iid and that p = 2. Then, due to

independence, for any n > 0, Var( 1
n

∑n
i=1 Xi) =

1
n2

∑n
i=1Var(Xn), and the latter,

due to homogeneity equals Var(X1)
n

. Remembering that due to the linearity

of the integral and homogeneity, E( 1
n

∑n
i=1 Xi)) = E(X1), then for any n, and

ε > 0, Chebychev’s inequality states that P(| 1
n

∑n
i=1 Xi − E(X1)| > ε) ≤ Var(X1)

nε2
.
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Letting n → ∞, the asymptotic version of the inequality forms

∀ε > 0, lim
n→∞

P(| 1
n

n∑
i=1

Xi − E(X1)| > ε) = 0,

which is equivalent to 1
n

∑n
i=1Xi

p→ E(X1). Hence, an LLN is obtained: if

(Xn)n∈N is iid with second moments, the sample mean converges in proba-

bility to the population mean. A bit more work, which would also utilize

Markov’s inequality, would imply the validity of the LLN in this context

for p = 1. The stationary and ergodic LLN described in a previous section

vastly generalizes this (in addition to establishing an LLN in the context of

the stronger almost sure convergence).

Jensen’s Inequality

The Jensen inequality states that if h : R → R is concave, then E(h(X)) ≥

h(E(X)), for any distribution on the real numbers P that has a first moment,

with X ∼ P. The left-hand side of the inequality should be interpreted as

+∞ when the integral of h does not exist. The dual version of the inequality

pertains to the case where h is convex, in which case E(h(X)) ≤ h(E(X)). In

the case where h is also positive, the inequality, for instance, implies the

integrability of h when the mean of the distribution exists.

The inequality generalizes the property of linearity of the integral, as it

holds as equality in the case where h is linear, making it simultaneously

convex and concave (remember that the concept of convexity is dual to

concavity, f being convex if and only if −f is concave). The inequality can

be proved using subdifferential calculus, which applies to these collections
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of functions-see, for instance, [9] and [10].

Hölder’s inequality

Hölder’s inequality is a fundamental result in mathematical analysis and

probability theory, particularly in the study of integrable random variables.

It states that for any random variables X and Y and for p, q > 1 such that
1
p
+ 1

q
= 1, the following inequality holds:

E[|XY |] ≤ (E[|X|p])1/p (E[|Y |q])1/q .

Hölder’s inequality generalizes the Cauchy-Schwarz inequality, which is

recovered as the special case when p = q = 2. In this case, it simplifies to:

E[|XY |] ≤
√
E[|X|2]

√
E[|Y |2].

These inequalities are widely used in probability, statistics, and functional

analysis, providing a powerful tool for bounding expectations and under-

standing relationships between random variables.

Wold Device for Random Vectors

Let (Xn)n≥1 be a sequence of random vectors in Rd, and let X be a random

vector in Rd. Then:

Xn ⇝ X if and only if a⊤Xn ⇝ a⊤X, ∀a ∈ Rd.
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The result follows from the fact that linear tranformations a⊤Xn are Lip-

schitz continuous and bounded functions of Xn, hence (when appropriately

scaled) lie inside BL1(Rd,R), and convergence in distribution is defined by

the behavior of such functions, as noted in the main text.

Applications

1. Multivariate Central Limit Theorem (CLT)

If (Xn) is an iid sequence of random vectors in Rd with mean 0 and covariance

matrix Σ, then:
√
nXn ⇝ N(0,Σ).

Using the Wold Device, for any a ∈ Rd:

a⊤(
√
nXn)⇝ N(0, a⊤Σa),

which confirms the multivariate convergence.

2. Linear Transformations

If Xn ⇝ X and A is a fixed matrix, then AXn ⇝ AX. This follows directly

from the Wold Device by considering a⊤AXn for all a ∈ Rk.

The Wold Device simplifies proving convergence in distribution for ran-

dom vectors by reducing the problem to verifying the convergence of their

real linear transformations.
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Delta Method for Weak Convergence

The delta method is a fundamental tool in asymptotic statistics, used to

approximate the distribution of functions of estimators. Suppose we are

given the weak convergence result:

rn(Mn −M)⇝ Z,

where:

• Mn is a sequence of random p-vectors,

• M is a non-random p-vector,

• rn is a scaling sequence (typically rn =
√
n in many applications),

• Z is a random vector in Rp that represents the limiting distribution.

Let F : Rp → Rq be a continuously differentiable function. The delta

method states that:

rn
(
F (Mn)− F (M)

)
⇝ ∂F (M)Z,

where ∂F (M) is the q × p Jacobian matrix of F evaluated at M .

Explanation and Proof Outline

The result follows from an application of the Mean Value Theorem of F (Mn)

around M , justified by continuous differentiability:

F (Mn) = F (M) + ∂F (M⋆
n)(Mn −M),
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where M⋆
n is a random vector every realization of which lies in the line that

connects M with the analogous realization of Mn. Since Mn
p→ M (why?),

M⋆
n

p→ M , and due to the continuity of ∂F and the CMT, ∂F (M⋆
n)

p→ ∂F (M).

Thus, collecting terms in the Mean Value expansion and multiplying by rn,

we have:

rn
(
F (Mn)− F (M)

)
= ∂F (M⋆

n)
(
rn(Mn −M)

)
,

and the result follows by Slutsky’s Lemma, the Wold device and the CMT.

Applications

The delta method is widely used in asymptotic statistics for:

• Transforming estimators, such as using F (M) = log(M), F (M) = M2,

or higher-dimensional transformations.

• Establishing the asymptotic distribution of maximum likelihood esti-

mators (MLEs) under transformations of parameters.

• Deriving the standard errors for non-linear functions of estimators.

Example

Consider Mn ∼ N(µ, σ2/n), where Mn is a sequence of estimators for µ. If

rn =
√
n, then, trivially:

√
n(Mn − µ)⇝ N(0, σ2).

Let F (M) = M2. Then:

∂F (x) = 2x.
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By the delta method:

√
n
(
M2

n − µ2
)
⇝ N(0, 4µ2σ2).

Further Exercises

1. Consider a sequence of random variables (Xn)n≥1 such that Xn
p→ X

and Xn ⇝ Y . Prove or disprove: X = Y almost surely.

2. Suppose (Xn)n≥1 is a sequence of random variables such that Xn ⇝ X.

Let g : R → R be a continuous function. Show that g(Xn)⇝ g(X) using

the Continuous Mapping Theorem.

3. Consider (Xn)n≥1 where Xn = I{Un>1/n}, with Un ∼ Uniform[0, 1]. Show

that Xn
p→ 1. Does Xn

a.s.→ 1? Justify your answer.

4. Consider the simple linear regression model:

Yt = β0 + β1Xt + ϵt, t = 1, . . . , n,

where (Xt, ϵt) are i.i.d., E[ϵt] = 0, and Var(ϵt) = σ2. Show that the

ordinary least squares (OLS) estimator β̂1 =
∑n

t=1 XtYt∑n
t=1 X

2
t

satisfies β̂1
p→ β1.

5. Let (Xn)n≥1 be a sequence of random variables such that Xn ⇝ X and

Yn ⇝ Y . Assume Xn and Yn are independent for all n. Show that

(Xn, Yn)⇝ (X, Y ).

6. Let (Xn)n∈N be a stationary and ergodic sequence of non-negative ran-

dom variables such that E(X1) < +∞. Derive the asymptotic behaviour

43



of (
∏n

i=1 exp(Xi))
1/n.

Epilogue

The modes of convergence of sequences of random elements (e.g., random

variables, random vectors, stochastic processes, random functions) are ex-

tremely useful for the determination of asymptotic properties of sequences

of inferential procedures (e.g. estimators, statistical tests, statistical fore-

casting procedures, etc.). Those properties are helpful in deciding what

procedure to use for a given statistical problem, as well as in designing

statistical methodologies with desired properties.

In what follows, we will use notions like almost sure convergence and

convergence in probability to ascertain whether an estimator asymptotically

locates the parameter value of interest. In such frameworks, tools like

the Laws of Large Numbers, and Continuous Mapping Theorems, will be

of importance. In many cases the estimators at hand will be defined as

optimizers of criteria that somehow reflect the statistical/probabilistic

information available to the researcher. Those will be random functions

of the parameter of interest; when they appropriately converge in some of

the aforementioned modes, to a limiting non-stochastic criterion that is

uniquely optimized at the parameter value of interest, their optimizers will

accordingly converge to the latter.

We will also use notions like asymptotic tightness, and convergence in

distribution, in order to ascertain the rate at which an estimator converges

to the parameter value of interest, as well as, the limiting distribution of its

deviation from this value, scaled by the rate of convergence. Analogously,
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suchlike notions will be used in order to study the asymptotic behavior of

test statistics under the hypotheses of interest. When the aforementioned

criteria are implicated in the construction of the estimators and/or test

statistics at hand, then local properties of the criteria will be thus useful.

In such derivations Central Limit Theorems and Laws of Large Numbers, as

well as tools like the Continuous Mapping Theorem and the Delta Method

(see the Wald-type tests paragraph in the notes regarding OE) will be useful.
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