1 The Theory of Stochastic Convergence

This section serves as an introduction to topics in stochastic convergence.
We examine forms of asymptotic behavior of sequences of random elements
to develop notions useful for understanding (approximate) properties of
statistical inference methods in the following sections. Readers interested
in a deeper understanding can refer to a wealth of relevant literature.
Indicative references include [1], [3], [4], [5], [7], [13], [14].

Let X,,, X be random elements with values in the same codomain, the
metric space S-equipped with the Borel algebra induced by its metric d,
Vn € N. The X, form the sequence (X,),cn, While X represents a limit
under one of the convergence concepts discussed below, as n — co. In
the subsequent sections, the involved random elements are assumed to
share the same domain, specifically the sample space (2 of the probability
space (2, F,P). This restriction is not necessary when discussing weak
convergence, which refers to the convergence of the distributions induced
by the random elements on their common codomain.

In what follows the term iff abbreviates the expression ’'if and only if’;
also the dependence of the random elements involved on (the typically)

latent w, is suppressed when convenient.

2 Almost Sure and Convergence in Probability

Conceptually, the simplest (but extremely demanding in the conditions
required) notion is pointwise convergence across the entire domain. Thus,

we say that X,, converges surely (or more appropriately, pointwisely w.r.t.



w) to X, denoted X,, — X, if X, (w) — X (w) for all w € (Q, that is, when for

the set for which convergence holds, i.e.,
V={weN:V¥e>0,IN (e,w),¥n > N,d (X, (w),X (w)) <e},

we have that this coincides with the whole domain of the random elements
involved, i.e., V = Q.

Relaxing the above, we may only require that the set V where con-
vergence occurs has full P-measure. The issue of V’s measurability is
addressed through the measurability of the involved random elements, the
corresponding measurability of the metric d as a continuous function, and
the properties of the associated collections of sets at which probabilities

can be attributed to. This leads to the concept of almost sure convergence:

Definition 1. We say that X,, converges to X with (P-) probability one, or
(P-) almost surely, denoted X,, *3 X, iff P(V) = 1, where V is as defined

above.
Schematically, we have X,, *3' X, if and only if the event that X,, converges
pointwise to X is of full probability, i.e.

P <{w €Q: lim d(X,(w), X (w)) = o}) ~ 1

n—oo

The following result equivalently represents this form of convergence
as asymptotic uniform convergence (with respect to n) of a sequence of

probabilities, facilitating the construction of a weaker mode of convergence.



Theorem 1. We have X,, 3 X if and only if

lim P [{w €Q:supd(X, W), X (W) < gH =1,V > 0.

m—ro0 n>m

Proof. First, note that

lim P [{we Q: sup d (X, (w), X (w)) geH — 1,V >0

m—0o0 n>m

is equivalent by definition to
P(A(e)) = 1,Ve > 0,
where for arbitrary ¢ > 0:

Ae) == U1 Anle),

m=1

and

Anle) = Pz {0 € s supdl (o (0) () <

due to the continuity of P. Assume that P(V) = 1 hence almost sure
convergence holds. It then suffices to prove V C A(e),Ve > 0 due to the
monotonicity of P. Indeed, for ¢ > 0, if w € V, then w € Ay .)(c) = w € A(e),
so V C A(e), and thereby P(A(e)) =1 for any ¢ > 0.

Conversely, assume P(A(e)) = 1,Ve > 0. Then for ¢ =

1
A =N Al - ).
()

We have P(A*) = 1 due to the De Morgan laws and countable additivity. To

£, k=1,2,---, define



show A* C V, observe that if w € A*, then w € V due to the density of the

rationals in the set of real numbers. The result follows. O

The theorem informs us that almost sure convergence is a form of
uniform convergence over the "tail" of the sequence of random elements.!
Relaxing the uniformity, which also implies strong requirements, leads to
the next (and weaker) form of stochastic convergence, namely convergence

in probability:

Definition 2. We say that X, converges to X in (P-) probability (in prob-
ability), denoted X, X (or equivalently plim, ., X,, = X), if and only
if

Ve>0, im P{we:d(X, (w),X (w)) <e})=1

Dually, and due to the law of complementary probability, this is also
representable as Ve > 0, lim, ,oc P({w € Q:d (X, (w),X (w)) >¢}) = 0. The
definition fails, and thus X,, % X, iff there exists some positive ¢, §, such that
P{we:d(X, (w),X (w)) >¢c}) > ¢ for an infinite set of n’s. The following

lemma is directly derived from the definition and Theorem 1.
Lemma 1. X, ¥ X = X, & X,

The converse does not generally hold, as it is possible for there to exist
e > 0 and a non-P-negligible subset of (2 supporting subsequences of
(d(X,, X))nen that prevent the tail uniformity of Theorem 1, but still converge
"individually".

The examples in the remaining paragraph present cases that utilize se-

quences of random variables. The last of them uses the notion of ergodicity

!Another characterization of almost sure convergence, represents it as uniform over
subsets of (); the related result is termed Egoroff’s Theorem.

4



to formulate what is known as Birkhoff’'s Law of Large Numbers (Birkhoff’s

LLN), as well as Example 5.3 later.

Example 1. Let (2, F,P) = ([0,1],B, ), where ) is the standard uniform
probability distribution. Letting S = N equipped with the usual metric,
define:
n, weE [0, %) ,
0, wée[0,%).
Clearly, V' = {w € [0,1] : lim,, 0o ¥, (w) # 0} = {0}, and A ({0}) = 0. There-

fore, X,, 23 0, and hence X,, 2 0.

Xy (w) =

Exersice: If in the previous example the sequence was defined as

X, () = n, we [0,1—n+r1),

0, w¢[0,1—n¢+1),

what would happen regarding either modes of convergence?

Example 2. Let S = R with the usual metric, and random variables X, ~

Ber(1/n~), for some x > 1. Notice that for arbitrary ¢ > 0

lim P(|X, — 1| > &) = lim P(X,, = 0) = lim Ynr =

n—o0 n—oo n—oo

)

so X,, % 1. Furthermore:

lim P(sup | X, — 1| > ¢) = lim P(In >m, X, =0) = lim P(U,>n{X,, =0})

m—00 nzm m— 00 m— 00

SAEOZ]P(ano) :,,%LI%OZI/"“-

n>m n>m
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The inequality in the display above, arises from countable sub-additivity.

When x > 1, limy, 00 Y I/n= = 0, due to the convergence of the super-

n>m
harmonic series )", 1/»= to ((x) the value of the Riemann zeta function at
x. Hence, due to complementarity, lim,, ,. P(sup,,>,, | X, — 1| < ¢) > 1, and
thereby the limit equals to one; hence X, *3 1.

When « < 1 the upper bound in the above display is non informative.
Suppose for simplicity that the random variables involved are independent.

In this case notice that for any ¢ < 1:

lim P(sup | X, — 1| <¢)= lim P(vn>m, X, =1) = lim P(Np>n{X, =1})

m—o0 n>m m—oo m—o0
= lim H P{X, =1}) = lim H (1-— i) = exp( lim Z In(1 — i))
meree n>m mereo n>m n* meree n>m nr

The third equality in the display above arises from independence. Using
the approximation —z ~ In(1 — x) which holds for small x, we have that for

large enough m, > . In(1—- =4) = -3 . -, which as m — co diverges

n>m

> 1
n=1n

to —oco, due to that the sub-harmonic ) ,°, = and the harmonic }
series diverge. Hence, the sequence (X,,) does not converge almost surely
to 1, nor does it have an almost sure limit in general (why?). This occurs
because the probability of having a subsequence consisting entirely of ones

for almost every w is zero.

Example 3. Let (X,),c; be a stationary time series with E(|X;|) < +00, and

consider the sequence of arithmetic means (£ >} | X;). The general version



of Birkhoff’s Law of Large Numbers implies that
1y as
- > X W E(Xo/Tn),
t=1

where the conditional expectation exists (why?). Hence, if the process is

ergodic, the limit is E(Xj).? In this case, under stationarity and ergodicity,

the limit is degenerate (why?). For the stationary AR(1) process discussed

in the penultimate example of the notes regarding stochastic processes,
E(eo)

assuming E(|g|) < +o0, it is easily shown that E(X,) = 7557, so

1 — as. E
Ly x, o BE)
n 1-p

Similarly, for the GARCH(1,1) process discussed in the last example of the

previous chapter, we have almost sure convergence to zero by construction.

Exersice: Provide the details!

2.1 Continuous Mapping Theorem

Given that the above pertains to the convergence of sequences of functions,
we expect that any continuous transformation of these sequences will
transfer the limit. We can prove something even stronger, as we can allow

the transformation to not be continuous everywhere:

2Such results, where the sequence of arithmetic means almost surely converges to the
corresponding expectation, are called Strong Laws of Large Numbers (SLLN). When the
convergence is in probability, the law is called Weak (WLLN).



Theorem 2. Let g : S — S’ be Borel measurable. If C, is the set of continuity
points of g and P(X*(C,)) = 1 for a random element X taking values in S,

then:
* If X, &3 X, then g(X,) =% g(X).
e If X, B X, then g(X,) B ¢(X).

Proof. Consider the set V' N X !(C,). Since g is continuous on C,, we have

that vw € VN X1(C,), 9(X,) — ¢g(X). Furthermore,
P(V 1 X1(C,) = 1 - BV A[X(C,))) = 1 - B(V) + P(X1(C,)]) = .

Thus, P(V N X(C,)) =1, which proves almost sure convergence.

Now, due to continuity, V6 > 0, 3¢ > 0 such that:
XC) N{we Q:d(X,(w), X (w)) <e} C

{lweQ:d(goX,(w),g0 X(w)) < d}.

In general, if A,B € F with P(B) =1, then P(ANB)=1-PA UB') >
1 —PA) +P(B') = P(A). Setting A = {w € Q : d(X,(w),X(w)) < e} and
B =X"1(C,), we have:

P({w e Q:d(X,(w), X (w)) <e}) <

P(X'(Cy) N{w € Q: d(X,(w), X(w)) <&}) <

PHw e Q:d(go X,(w),g0 X(w)) <d}).
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Taking limits yields:

lim P{w e N :d(go X,(w),g0 X(w)) <d}) >

n—oo

lim P({w € Q:d(X,(w), X (w)) <e}) =1,

n—oo

which proves convergence in probability as 4 is arbitrary. ]

The continuous mapping result implies many general convergence re-
sults. For example, if S, S’ have vector space structures with operations
continuous under the involved metrics, then, e.g., the respective limits
of sums exist and are equal to the sums of the limits. Constructing new
random elements via finite Cartesian products of the underlying spaces
implies the convergence of vectors formed by these elements, etc.

A simple example involves the Riemann integral:

Example 4. If ) = S = Cp yj-i.e. the space of continuous real functions on
0, 1], then since the Riemann integration operator Cjy 1) > f — fol f(2)dz € Ris
linear and bounded, hence continuous, we have for the following stochastic

Riemann integrals:
e If X, ¥ X, then fol Xo(w, 2)dz 2% [} X (w, 2)dz.
e If X, % X, then fol Xn(w, 2)dz B fol X(w,2)dz.

A more useful (for the course) example relates the Continuous Mapping
Theorem, to usual algebraic transformations between finite collections of

(sequences of) random variables:



Example 5. (Properties of Sums, Products, and Reciprocals of Random
Variables Using the Continuous Mapping Theorem] Let (X,,),>1 and (Y,,),>1

be sequences of random variables. Assume that:
X, X and VY,2}Y (respectively in probability).

We examine the behavior of sums, products, and reciprocals of these
sequences, leveraging the Continuous Mapping Theorem (CMT). Transporting
the analysis in R?, choosing appropriately a metric, and appropriately
handling the topological issues and issues of measure, it is not difficult
to show that the above convergence premises are equivalent to analogous

convergences about random vectors, i.e.

(X, V) 23 (X, Y)(respectively in probability).

The CMT then allows analysis for the behavior of sums, products, and
reciprocals of random variables by treating these operations as continuous
functions. The sum of two sequences of random variables X, and Y,

converges to the sum of their respective limits:
X, +Y, 2 X +Y (respectively in probability).

This follows because the function g : R? — R, g(z,y) := x + y is continuous.
The product of two sequences of random variables X,, and Y,, converges

to the product of their respective limits:
X, Y, 28 XY (respectively in probability).
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This holds because g : R? -+ R, g(z,y) = zy is a continuous function on R?.

If P(Y # 0) = 1, then the reciprocals 1/Y,, converge to 1/Y":

1 a.s.

v (respectively in probability).

<~

This is valid because g(y) = 1/y is continuous on R \ {0}, and the condition
Y # 0 ensures the continuity of g at Y.

For combinations of sums, products, and reciprocals, the CMT applies
iteratively-the composition of continuous functions is continuous. For

example:
XoY, as. XY

_>
X, +Y, X+Y

(respectively in probability),

provided X +Y # 0, since the mapping g(z,y) = ;7% is continuous on its

domain.
2.2 Convergence in .? Mode

The third form of convergence can be seen as a generalization of convergence
in probability and is based on the L? norms and the associated metrics.
The definition of interest is as follows. Recall that p is a real number greater

than or equal to one:

Definition 3. We say that X, converges in L? metric or in p-th mean (in L?,

in p'* mean) to X, and we denote it as X,, nx , if and only if

lim E ([d(X,, X)]?) = 0.

n—oo

When p = 2, this is also called convergence in quadratic mean.

11



This convergence implies that the sequence of random variables (d(X,,, X))
is uniformly bounded in the L? metric, i.e., sup, E(d(X,, X)?) < +oco. Fur-
thermore, the behavior of this form of convergence for different values of p
is not hard to derive using Jensen’s inequality.

Lemma 2. [f1 < p* < pand X, 2% X, then X,, % X.

Proof. Since 1 < p* < p, we have

P
*

E ([d(X, X)) 2 E ([d(X, X))’

by Jensen’s inequality. The result follows by taking limits on both sides of

the above inequality. ]

Clearly, the above implies that non-convergence for smaller p also implies
non-convergence for larger p. Thus, the strength of the corresponding con-
vergence increases with p. The relative strength of these convergences can
be further understood by noting that convergence in L? implies convergence
in probability. Therefore, the latter can also be interpreted as the minimal
form of convergence in comparison to p-mean convergences.®

To relate the above to convergence in probability, we use Markov’s in-

equality, leading to the following result:
Lemma 3. I[f X, & X, then X,, & X.
Proof. Using Markov’s inequality, for any ¢ > 0, we have

E ([d(X,, X))

P(d(X,, X) > &) < .

3We can symbolically consider convergence in probability as L° convergence.
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Taking limits on both sides of the inequality yields the desired result. [

Similarly, the above is equivalent to stating that non-convergence in
probability implies non-convergence in L? metric. The converse is not
generally true. To better understand why the direction cannot be reversed,

we need the following definition.

Definition 4. A sequence of random variables (y,) is said to be uniformly

LP-integrable if and only if
i sup |y [y, >10) = 0.

The definition imposes, in addition to uniform boundedness, restric-
tions on how "slowly" the tails of the distributions are allowed to decay.
Uniform boundedness of the corresponding sequence of moments alone is

not sufficient, as the following example illustrates:

Example 6. Referring to Example 1, and for p = 1, we observe that

1, K<n,
SUP]E(|Xn|1|Xn\2K) =
" 0, K>n.

Thus, while the sequence (d(X,,,0)) is L'-bounded, it is not L!-uniformly
integrable. For p > 1, it is not even uniformly bounded. Note that in this
example, although we have convergence to zero in probability, there is no
corresponding L? convergence for any p > 1 because E(d(X,,0)) =1,Vn > 1.
This observation also informs that almost sure convergence as well as

convergence in probability do not necessarily imply L” convergence-why?

13



The above example raises the question of whether convergence in proba-
bility supplemented with uniform integrability, leads to convergence in L?.

The following results confirm this:

Lemma 4. Let (y,) be a sequence of random variables such that:
* y, 50, and,
* the sequence is uniformly LP-integrable.

Then
lim E (|yn|p1|yn‘28) =0, Ve > 0.

n—oo

Proof. Let ¢ > 0 and K > e. Notice that E (|y,|"1},,>c) = E (|yn|Ple<iy, <) +
E (|yn|P1y. >k ). Furthermore, E (|y,|"1.<),<x) < KPP(Jy,| > ), due to mono-
tonicity (essentially, P(|y,| > &) > P(c < |y,| < K)), and 0 < E (|yn |1y, 5x) <
sup,, E (|yn|P1)y, ;> ). Thus, it is obtained that 0 < E (|y,|"1,,>c) < K*P(|y,| >
e) + sup, E (Jyn[P1y,>x). Now, for any § > 0, and due to uniform inte-
grability, there exists some K; > e such that sup, E (|yn['1,5x,) < o
also due to convergence in probability there exists some n*(d), such that
P(ly,| > ¢) < ﬁ, vn > n*(9). Hence, E (|y, [P, >:) < Kfﬁntg — 4. Since § is
arbitrary this establishes that lim,_,« E (Jyn|P1}y,>c) = 0. The result follows

since ¢ is arbitrary. ]
Lemma 5. If X,, % X and (d(X,, X)) is LP-uniformly integrable, then X,, X,

Proof. Starting with ¢ > 0:

lim E ([d(X,, X)]") =

n—oo

lim B ([d(Xn, X)P Lax,x)<e) + lim B ([d(Xn, X Lagx, x)2e) -

n—oo e}
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Clearly, lim,, oo E ([d(X,,, X)]” 14x,,x)<=) < €¥, and from the previous lemma,

limy, o0 E ([d(X,, X)]” Lacx,,x)>:) = 0. Hence, we conclude that:

lim E ([d(X,, X)]?) < &P,

n—oo

Since ¢ is arbitrary, lim,, ., E ([d(X,,, X)]") = 0, which is the desired result. []

Remark 1. Hence, almost sure convergence complemented with uniform

LP-integrability also implies L? convergence-why?

Finally, note that L” convergence does not imply almost sure convergence,

as shown by the following example:

Example 7. Consider a sequence of random variables with X; = 1, (X», X3) =
(1,0) or (0,1) with probability 1. More generally, for k£ = 1,2, ..., the sequence
section (X%k(k_l)ﬂ,...,X%k(kﬂ)) equals (1,0,...,0), or (0,1,...,0), or ..., or
0,0,...,1) with probability ;. Thus, for X, € (X1ju-1)41- - Xipps1)s W
have P(X,, = 1) = E(X?) = ,Vp > 1.

It is clear that as n — oo (and therefore k — ~0), X, = 0,Vp > 1, and
consequently, X,, = 0. However, we also observe that:

lim P (sup X, = O) =0,

m—0o0 n>m

since beyond the m-th component of the sequence, there will almost surely
be infinitely many members of the sequence equal to one. Thus, X,, »%*
0, meaning that convergence in L? metric does not ensure almost sure

convergence.
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Exersice: Provide an example in which L? convergence guarantees

almost sure convergence.

2.3 Transfer Principle for Lipschitz Transformations

If (S,ds) and (S5', dg/) are metric spaces, and g : S — S’ is a function between
them, then g is called Lipschitz continuous if and only if there exists a

constant [, > 0 such that for every s;,s, € 5,

ds(9(s1), 9(s2)) < lyds(s1, s2).

The constant /,, which is independent of S, is not unique but is the smallest
upper bound of all such constants and is called the Lipschitz constant of
the function. It is proved that every Lipschitz continuous function is also
continuous in the usual sense, but the converse is not true. When the
spaces involved are Euclidean, it can be shown that Lipschitz continuity
is equivalent to being almost everywhere differentiable (in the sense of
Lebesgue measure;) with bounded derivatives. For instance, the exponen-
tial function is not Lipschitz continuous, though it is continuous. However,
it becomes Lipschitz continuous when its domain is restricted to any arbi-
trary bounded subset of the real numbers. Extending this reasoning, one
could develop a localized version of this concept. In any case, this form
of continuity is highly useful in convergence analysis, as it can provide
insights, for instance, about the rates of convergence when such rates are
well-defined.

Regarding the transfer of limits under continuous transformations, we
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note that general results, such as Theorem 2, are generally not applicable
for convergence in the L” metric. The transformation may not even be a
suitably integrable function. Nevertheless, if we strengthen the continuity
condition to Lipschitz continuity, the desired transfer of limits can be

achieved. Our framework here is similar to that of Paragraph 2.1.

Theorem 3. Letg : S — S’ be Lipschitz continuous with respect to the involved

metrics. Then, if X, 5> X, we also have 9(Xy) L g9(X).

Proof. Observe that due to the Lipschitz continuity of g and the monotonicity
of the integral,

E((d'(9(Xn), 9(X)))") < BE((d(Xn, X)),

where [, is the Lipschitz constant. The result follows by taking limits on both

sides of the inequality, given the non-negativity of the left-hand side. [

Exersice: Let S = 5" =RP, and let A be a p x p matrix. If X, X X, does
it hold that AX, %5 AX?

Example 8. Let X, = %Z + W, where Z and W are random variables with
E[Z?] < co. Then X, 25 W, since E(|X, — W?) = LE(Z?) — 0.
Let g(z) = sin(x), which is Lipschitz continuous with Lipschitz constant

l, = 1. By the Lipschitz Transfer Principle:

sin(X,,) LN sin(W).
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3 Weak Convergence

We now focus on the weakest-compared to the previous-form of stochastic
convergence. Our framework now considers a sequence of probability
measures (P,),cy on (9, B). Compared to the previous sections, X, ~ P,,
but it is not necessary that P, = P(X ! € -), as we allow the involved random

elements to be defined on different probability spaces.

The set of all bounded functions S — R is denoted by B(S,R), while the
subset containing functions that are both bounded and continuous, is

denoted by B.(S,R).

Exersice: Show that B(S,R) and B.(S,R) are non-empty.

We are interested in a concept of convergence of probability distributions,
and an intuitively natural way to define such a notion is by requiring the
probability assigned by P, to any measurable subset of S, to converge (as a
real number) as n — oo, to the probability assigned to the same set by P.
This is essentially some sort of functional convergence for the probability
distributions involved, and it is termed as convergence in total variation.
This form of convergence relies on the total variation metric between two
distributions. Specifically, for arbitrary distributions Q, Q* on S, the total
variation distance is defined as the supremum over the absolute differences

in probabilities assigned to elements of B:

TV(Q,Q") := sup |Q(A) — Q"(A)].

AeB
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It can be shown that the total variation metric is equivalently represented
as the uniform distance over bounded measurable functions S — R between

their integrals with respect to the involved distributions:

/f ) dQ - /f ) dQy| .

Hence P, converges in total variation to P iff sup .5 |P,,(A) — P*(A4)] — 0,

TV(Q,Q") = sup

fEB(SR)

or equivalently, sup;cpsp) | [s f(s) dPn — [ f(s) dP*| — 0. Yet, this-intuitively
natural mode of convergence is quite strong for our needs; it requires a lot
of conditions that can easily fail in circumnstances of interest.

We can obtain weaker forms of convergence by selecting smaller collec-
tions of functions to construct the distances between the integrals.

Using B.(S,R) C B(S,R), we derive a metric that defines weak conver-

gence.

Definition 5. Let (P,),cy be a sequence of Borel probability measures on
S, and let Q be a Borel probability measure. The sequence (P,),cy is said

to converge weakly to QQ, denoted by P,, ~ Q, if

/Sf(s)dIP’n—/Sf(s) d@’ 0.

Furthermore, if X,, ~ P, and X ~ Q, then the random elements X,, are said

sup
f€BL1(S,R)

to converge in distribution to X, denoted as X,, ~» X.

The above implies that convergence in total variation implies weak con-
vergence, or equivalently, that divergence (weak) implies divergence in total
variation. The systematic study of weak convergence is complicated, even

in the case S = R, and exceeds the scope of the present notes. Readers
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interested in the compactness of the converging sequence, characteriza-
tions using alternative sets of functions, properties inherited by S on the
collection of probability measures when equipped with the metric in the

above definition, etc., can refer to the literature (e.g., see [14]).

3.1 The Portmanteau Theorem

We have defined the notion of weak convergence, via integrals over a class
of functions. But what does this mean for the probabilities of particular
subsets of the underlying space? We state-without proof-(a part of) the
so-called Portmanteau Theorem (see also [14]), which provides equivalent
conditions for weak convergence of measures in metric spaces, thus for-
malizing the concept.? To proceed, recall that if A C S, then A denotes the
smallest closed superset of A (the intersection of all closed subsets in the
topology containing A, the closure of A), and A° denotes the largest open
subset of A (the union of all open subsets in the topology contained in A,
the interior of A). Clearly, A D A°, and 9A := A — A° (the boundary of A).
Moreover, if A € Bg, then A, A° € By because the Borel o-algebra includes

the topology of S induced by its metric. We then have the following:
Theorem 4. [Portmanteau Theorem] The following are equivalent:

1. P, ~ P.

2. [ f(2)dP, — [, f(2)dP,Vf € B.(S,R).

3. lim, . P, (A) = P(A),VA € B such that P(A) = P(A°).

“We present only part of the theorem, omitting, for instance, descriptions involving
liminf, . P,(A) > P(A) for open sets A, or limsup,,_,., P,(A)< P(A) for closed sets A.
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4. If S = R", whence the corresponding cumulative distribution _functions
are well-defined, then lim,_,, F,,(x) = F(x), for allx € R" at which F' is

continuous.

Note that since A = 9A U A° and 9A N A° = (), the third statement holds
for all A € B such that P(9A4) = 0.° Furthermore, the fourth statement is
simply a specialization of the third for cases where cumulative distribution

functions are well-defined.

Example 9. Let S = R and P, = Deg, . Since for each n, 1 =TV(P,, Deg,) =
[Pn({0}) — Deg,({0})

the degenerate distribution at zero. However, it does converge weakly, as

, the sequence does not converge in total variation to

discrete sets containing zero are not continuity sets for the aforementioned
distribution. For any continuity set containing 0, !/» will lie within it for
sufficiently large n, guaranteeing via the third condition of the Portmanteau
Theorem that P, ~ Deg,,.

This example, while simple, is strong enough to illustrate that weak
convergence may be sufficiently weak to allow limits in cases where stronger
forms of convergence do not. The Central Limit Theorems, which will be
stated later in this chapter and used subsequently, will demonstrate that

weak convergence is also highly useful.

3.2 Relations between Modes of Convergence

In this subsection, to examine the relationship between convergence in

distribution and other forms of convergence (in probability, L”, and almost

5Borel sets for which this holds are called continuity sets of P.
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sure), we assume P, = P(X,, € -), i.e., the involved random elements are

defined on the same probability space. We state the following:

Lemma 6. If X, 5 X, then X,, ~ X. Thus, both almost sure convergence

and convergence in LP also imply convergence in distribution.

Proof. Let A € B be an arbitrary continuity set for P := P(X € -). It can be
shown (see, e.g., [6]) that due to convergence in probability, lim,, ., P(d(X,, X) >
e) = 0,Ve > 0, there exists a sequence of positive numbers (¢,) such that

€, — 0 and lim,,_,, P(d(X,, X) > ¢,) = 0. Clearly,

{Xn € A} = ({Xo € A} N {d(Xn, X) < en}) U({ X € A} N {d(Xy, X) = €0 }),

and the sets in the union are disjoint. By additivity, and using a slight

abuse of notation,
P.(A)=P(X, € ANd(X,,X) <e€,)+P(X, € And(X,, X) > €,),
for all n. By monotonicity,
P(X, € ANd(Xn, X) > €,) <P(d(X,, X) > €,),

and the probability on the right-hand side converges to zero due to conver-
gence in probability. By positivity, the same holds for the probability on
the left-hand side.

Regarding P(X,, € ANd(X,,X) <e¢,), it is upper-bounded by P(X € A),
where A := {s € S :d(s,y) < ¢,3y € A}, since if the intersection event occurs,

then X must lie within this ¢,-"enlargement" of A. Consequently, due to
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the continuity of P and the fact that A“» shrinks under set inclusion as ¢,
decreases, we have lim,, ., P(X,, € ANd(X,,X)<e,) <P(X € A) =P(X € A),
where the last equality follows from A being a continuity set.

Additionally, the intersection of X € A with d(X,, X) < ¢,,Vn, coincides
with X, € And(X,,X) < ¢,,Vn, due to symmetry. Hence, X € A D X, €
ANd(X,,X) < €,Vn, and, due to monotonicity and the continuity of P,
P(X € A) > lim, o P(X, € ANd(X,,X) < ¢,). Combining this with the
above, we finally obtain P(X € A) = lim,, o, P(X,, € ANd(X,,X) <e¢,), and
the first result follows from condition (3) of the Portmanteau Theorem and
the fact that A is arbitrary. The remaining results follow from Lemmas 1

and 3. O]

The converse does not hold. Convergence in distribution does not im-
ply convergence in probability and, consequently, the other two forms of

convergence, as shown by the following example:

Example 10. Let S = R, and X ~ Unif__,;. Forn > 1, let X,, = —-X + &.

Then P(|X,, — X| < 1/2) = P(—=1/a+1/2n < X < 1/4 —1/2n) — 1/2—why? Therefore,

X,, % X. Moreover, we have that F,(z) = P(—X <z —1/n) = P(X > —z+1/n) =
(

1, r>1—1/n, 1, x> 1,
1-PX < —z4¥n)=qMH2 1 <ol —n = (52 —1<a<1,,
0, r<—1—17 0, r<—1

\ \
for every = € R, and therefore, from the last case of the previous theorem,

it follows that X, ~ X.

Thus, convergence in distribution is the weakest among the forms we

have discussed. However, there exists a case where convergence in distri-
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bution is equivalent to convergence in probability; this occurs when the

limit is degenerate:
Lemma 7. IfX, ~ s € S, then X,, 5 s.

Proof. Let ¢ > 0 be arbitrary, and notice that P(d(X,,, s) < ¢) = P(X,, € B,(¢)),
with B,(¢)) denoting the d-closed ball centered at s and of radius . Since
the distribution of s is degenerate at s, B,(¢)) is a continuity set for it, and
thereby due to the Portmanteau Theorem lim,, ... P(X, € B,(c)) = P(s €
B,(g)) = 1, and thereby the result follows from the definition of convergence

in probability. O

. o s. Lp
Exersice: Does X,, ~ s € S necessarily imply X, >3 s or X,, = s?

Exersice: Provide an example where Lemma 7 holds and simultaneously

P
X, = s.

3.3 Continuous Mapping Theorem

Similarly to the corresponding section on earlier forms of stochastic con-
vergence, the question here pertains to what happens to measures when
transformed through a continuous (or almost everywhere continuous) mea-
surable function from (5, d) to the metric space (5',d’), assuming weak
convergence holds for the original measures. We have the following map-

ping theorem:

Theorem 5. [Continuous Mapping Theorem] Let P, ~~ P, and leth : S — S’ be

Borel measurable, with P(C},) = 1, where C), consists of the points in S where
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h is continuous. Then, P, (h € -) ~ P(h € -). Correspondingly, for the involved

random elements X,, ~ P, and X ~ P, we have
h(X,) ~ h(X).
Proof. Initially, note that for all A € By,
Poh Y(A)=P(h'(4) =P(h (A NCy) +P(RHA) N CF),
since h~!'(A)NC), and h='(A) N C¢ are disjoint by construction. Furthermore,
by assumption, P(h~'(A)NCs) =0, as P(Cs) =0, A1 (A)NCE C Cf, and using
the monotonicity of the measure. Thus,
Poh ' (A) =P(h ' (A)NCY). (1)
Now, let B € By, such that Ph~1(B) = Ph=1(B°) . Using (1), (2) becomes
P(h~!(B) N Cy) = P(h™1(B°) N Ch). (3)
From the definition of continuity, we also have
BN G C[(B) NG C [BING] S B)ING]. @

Combining (4) with (3) and the monotonicity of the measure, we get

P((h""(B))"NCy) =P(h-1(B) N Cy). (5)
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Using (1), (5) implies

P((h™'(B))") = P(h=1(B)). (6)

From (6) and the weak convergence of the original measures, by the

third proposition of the Portmanteau Theorem, we have
P, (h"Y(B)) =P (h'(B)). (7)
Since B was chosen arbitrarily, (7) implies
P,oh ' (B) -Poh™'(B), VB€Bs :Poh '(B)=Poh !(B°). (8)
Finally, (8) implies the desired convergence by the third proposition of

the Portmanteau Theorem. ]

Similarly to the analogous section above, the transfer principle here also
implies a multitude of general convergence results. For example, if S, 5’
have vector space structures with operations continuous with respect to the
involved metrics, then the corresponding limits of sums exist and coincide
with the sums of the limits, etc. Similarly, as previously mentioned, if we
construct new random elements through finite Cartesian products of the
underlying spaces, the convergence of the constituent elements implies the

convergence of the vectors with these components, etc.

Exersice: Formulate and prove the above precisely.

The analogous simple example related to the Riemann integral:

26



Example 11. If Q = S = Cy ), based on the fact that the Riemann integral

operator Cjq; 2 f fol f(2)dz is continuous, we have that if X, ~» X, then

1 1
/ Xn(w, 2)dz ~ / X(w, z)dz.
0 0

Analogously to the discussion regarding the version of the theorem for
almost sure convergence, and convergence in probability, the following

example is potentially more useful for what follows:

Example 12. Let (X,,),>; and (Y,,),>1 be sequences of random variables. We
examine the behavior of sums, products, and reciprocals of these sequences,
leveraging the Continuous Mapping Theorem (CMT). In order to do that it is
necessary to begin from a weak convergence premise occuring in R?. We

suppose then that:

(X, Y,) ~ (X,Y).5

The sum of two sequences of random variables X,, and Y,, converges in

distribution to the sum of their respective limits:
X, +Y,~ X+Y.

This follows because the function g(z,y) = x + y is continuous.

SContrary to what occurs regarding almost sure and convergence in probability, this
is not equivalent to that X,, ~ X and Y,, ~ Y. The former (joint convergence) implies the
latter (marginal convergence) but not vice versa. This is due to the fact that generally, due
to dependence, the joint distribution of a random vector, contains more information than
the set of the marginal distributions of its constituents random variables. A sufficient
condition for equivalence between joint and marginal convergence, is that eventually, X,
be independent of Y,,-see the further exercises section in the Addendum.
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The product of two sequences of random variables X, and Y,, converges

in distribution to the product of their respective limits:
XY, ~ XY.

This holds because g(z,y) = xy is a continuous function on R?.
IfY, ~ Y and Y # 0 almost surely, then the reciprocals 1/Y,, converge in
distribution to 1/Y:
1 1

_— Ay —

Y, Y’
This is valid because g(y) = 1/y is continuous on R \ {0}, and the condition
Y # 0 ensures the continuity of g at Y.
For combinations of sums, products, and reciprocals, the CMT applies

iteratively. For example:

X.,Y, XY
EVSY
X, +Y, X+Y’

provided X + Y # 0, since the mapping g(z,y) = ;7 is continuous on its

domain.

Lemma 7 along with the above example provide directly with a result

known as (part of) Slutsky’s Lemma:

Lemma 8. (Slutsky) If X,, ~ X, and Y, ~ s, then X, +Y, & X + s and
XY, 5 Xs.

Proof. The fact that s is degenerate, implies that X, is asymptotically in-
dependent from Y,,. Thus marginal convergences imply the joint conver-

gence (X,,,Y,) ~ (X,s). The results follow from the CMT as in the example
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above. O]

3.4 A "General" Central Limit Theorem

Central limit theorems (CLTs) describe cases of convergence in distribution.
They concern the asymptotic behavior of partial sums of random variables
(or random vectors, or more generally random elements with values in
spaces where addition is algebraically feasible), suitably shifted and scaled
so that their resulting distributions converge weakly to normal distributions.
The latter serve as significant attractors for many such sequences of partial
sums. A detailed enumeration and proof of such results are beyond the
scope of this book. The following theorem is presented without proof-see
[8]-and pertains to stationary and ergodic sequences whose component
marginal distributions possess sufficiently high-order moments, and where
the dependence between elements diminishes sufficiently fast as they

become temporally distant:

Theorem 6. Let (X,);c; be a stationary and ergodic sequence satisfying:”
1. There exists ¢ > 0 such that E(| X,|*™) < 400, and,
2. Foreveryt >0, 7 |Cov(E(X; | o(X,,n <0)),X)| < +oo.

Then, as n — oo,

Var (% tzn;(Xt - E(XO))> —v>0. (1)

“The summation index is now turned to ¢ in order for the time series setting to be
stressed.
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Ifv >0, then
1 n
% t:E 1 (Xt - E(Xo)) o X o~ N(O, U). (2)

Moreover, if T € [0, 1], then

7]
1
7 > (Xi = E(Xo)) ~ oW (7), (3)
t=1
in the space of CADLAG functions on |0, 1] equipped with the Skorokhod

metric.

We observe that the properties of stationarity and ergodicity, along
with the first condition of the theorem, and the fact that this implies the
existence of the first-order moment for the sequence members, already
guarantee the validity of Birkhoff’'s Law of Large Numbers. Consequently,
due to the relationships between forms of convergence and the continuous
mapping theorem, it holds that * > | (X, — E(Xj)) ~ 0 (explain!).

The theorem refines this convergence to zero; it informs us that multiply-
ing L 31" (X, —E(Xo)) by the rate of convergence /n yields a stochastic limit
in distribution—a non-degenerate random variable following a normal dis-
tribution. Thus, among other things, it provides information about the rate
at which the Birkhoff convergence to the first moment occurs, namely at
most at a rate of \/n. This holds because if we multiplied + > | (X, — E(X)))
by a sequence diverging to infinity faster than /n, it would not be difficult
to show—using the theorem—that we would obtain a sequence of distri-

butions whose probability mass shifts towards infinity.? In such a case, a

8This property is known as (non-)uniform tightness, which is related to compactness,
briefly mentioned in the introductory paragraph.
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weak limit that is a well-defined distribution over the real numbers cannot
exist.?

The conditions for validity relate to:

1. The existence of moments of sufficiently high order for the random vari-
ables forming the partial sum. Any order greater than 2 suffices. Un-
der stronger assumptions for condition (b)—e.g., independence—this
condition could be weakened to require moments of order 2. However,
the theorem would not hold without at least the second moment since
Var(\/iﬁ > i (Xy —E(Xy))) would not be well-defined, and (1) could not
hold.

2. The rate at which a specific type of dependence between the constituent
random variables decays as they become temporally distant. This
is described by the requirement for the convergence of the series of
covariances Y ;- , |Cov(E(X,|o(X,,n < 0)), X;)|. This is ensured when
the covariance between the L?-projection of X; onto o(X,,,n < 0) and
the k-th component converges sufficiently quickly to zero—a property

not guaranteed by ergodicity alone.

Detailed conditions like these specialize the theorem to forms of temporal
dependence found in time series models used in empirical economics
and econometrics. For example, it can be shown to hold for AR(1) and

GARCH(1,1) models as presented in the previous chapter.

9Under certain conditions, it may be possible to recover some form of limit—specifically, a
collection of accumulation points of the sequence, possibly in almost sure convergence—by
multiplying with a slower diverging rate. The interested reader could study the concept of
the Law of the Iterated Logarithm; see, e.g., [12] for the iid case. Clearly, due to Birkhoff’s
law and the continuous mapping theorem, multiplication by any convergent or bounded
sequence would preserve convergence to O.
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Example 13 (Classical CLT). When the underlying sequence is iid, then
for the second condition it is obtained that >~ |Cov(E(X; | o(X,,n <
0)), Xx)| equals > 77 |Cov(E(Xy), Xi)| = > 72,0 = 0, hence the condition
holds trivially. Furthermore, Var (\/Lﬁ S (X — IE(XO))> = L5 Var(X;) =
Var(X,). Hence, if Var(X;) > 0, it is obtained that —=>7" (X, — E(X,)) ~
X ~ N(0,Var(X,)), which constitutes the classical iid CLT.

Example 14 (Stationary Ergodic Square Integrable Martingale Difference
Sequence CLT). Suppose that (F;)cz is an increasing (i.e. F; C F,, t < )
sequence of information sets (c-algebras). The pair (X, F;)cz is a martingale
difference sequence iff E(X,|F;) = 0, Vt. Suppose then that (X;, )iz is
a stationary ergodic martingale difference sequence, and 0 < E(X}?) <
+00. Notice that in this case and due to LIE, E(X,) = E(E(X, | Fy)) =
0. If for all ¢, o(X;_,,n > 0)) C F;, then due to the LIE E(X; | o(X,,,n <
0) = E(EX; | F) | o(Xu,n <0)) = E0O | o(X,,n < 0)) =0, and thereby
S [COV(E(X, | o(X,.n < 0)),X,)| equals 357, [Cov(E(Xo), Xp)| = 5,0 =
0, hence the covariance summability condition holds trivially. The previous
also directly implies that Cov(X;, X;) =0, Vt # s. Thus, Var <\/iﬁ Yoy Xt) =
W i Var(X;) = Var(X;). Hence, J=33" X, ~ X ~ N(0,Var(X,)), which
constitutes a significant generalization of the previous classical iid CLT

(why?).

The first result of the theorem informs us that the variance of the
weighted partial sums, which takes the form of an arithmetic mean of the
covariances between members of the sequence, converges. Both assump-
tions of the theorem play a role in this convergence. In certain cases of

divergence, it is possible to recover the theorem by incorporating a rate
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that accounts for the aforementioned divergence. As mentioned above, if
the limit of the variance is strictly positive, the weak limit obtained is the
normal distribution with zero mean and variance given by the aforemen-
tioned series. If the variance limit were zero, the weak limit would instead
be Deg,,.

The third result describes something even more complex, encompassing
the previous result as a special case. It concerns the asymptotic behavior of
the truncated sum at [n7], treated as a function of v € [0, 1]. The partial sum
thus becomes a stochastic process taking values in CADLAG real-valued
functions over [0, 1]. This space is equipped with the Skorokhod metric-
see, for instance, [2]-which modifies and generalizes the uniform metric,
incorporating appropriate transformations between the involved functions.
These transformations facilitate the study of compactness for the stochastic
processes involved. Together with the first part of the theorem, this implies
that the weak limit is the distribution of the (non-standardized version)
Wiener process. The Wiener process-actually a Gaussian process-serves
as the analogue of the normal distribution, acting as an attractor for such
processes.

The above results are particularly useful in statistical inference, among
other fields. Limit theorems like these can be employed to ascertain rates
of convergence and asymptotic distributions—along with their asymptotic
properties—of estimators and hypothesis tests in statistical models relevant
to Empirical Economics and Econometrics, as discussed in the next part
of the book. This demonstrates the utility of weak convergence: it is "weak"

enough to enable the derivation of such properties.!©

10We note for the interested reader that asymptotic theories like the one described by
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Addendum

Asymptotic Tightness

The sequence of random elements (X, ),cy is termed asymptotically tight, if
there does not exist some n such that the distribution P, of X,, assigns a
fixed strictly positive probability to subsets of the underlying space that
lie outside every compact subset of it. If S is actually a Euclidean space,
this is equivalent to that for any ¢ > 0, there exists M, > 0, such that
lim,, o P(|| X,|| > M) < e. Asymptotically tight sequences have distributions
that do not allow any fixed positive probability mass to be attributed to
parts of the underlying space that "escape to infinity" (are not approximable
by finitary constructions in the space).

It is not difficult to show that convergence in distribution (and thereby
all the modes of convergence examined above-why?) implies asymptotic
tightness. There exists a partial converse to this (which forms the interesting
part of what is termed Prokhorov’'s Theorem): a sequence is asymptotically
tight, iff every subsequence of it (i.e. an infinite part of it) has a further

subsequence that converges in distribution.

the above theorem do not generally hold for other forms of convergence. These typically
yield results in the form of laws of large numbers. Nevertheless, under certain conditions,
it is possible to represent weak convergence as almost sure convergence: the underlying
space is sufficiently augmented, and the involved random elements are extended appro-
priately to converge almost surely to limits having the distribution resulting from the weak
convergence. This process pertains to the so-called Skorokhod representations, which are
clearly beyond the scope of this book—see, for instance, [2]. However, it indicates that,
in some cases, the convergence is essentially almost sure in suitably "richer" probability
spaces.
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Exersice: If (X,,).cn is asymptotically tight, and & as in Theorem 5. Show
that (h(X,)).en is asymptotically tight. Hint: combine Theorem 5 with

the above characterization of Prokhorov’'s Theorem.

Asymptotic tightness, is directly related to concepts like the rates of
convergence of estimators, the construction of confidence regions, etc, in

statistics and econometrics.

It is often convenient-particularly in proving asymptotic properties-
to use concise expressions to denote asymptotic properties, such as
convergence in probability or asymptotic tightness of a sequence of
random variables. The expression O,(1) denotes that the sequence is
asymptotically tight, while o0,(1) denotes convergence in probability to
zero. More generally, if z,,, y,, and z, represent the general terms of
related sequences, then z, = O,(z,) means z,, = y,z, and y, = O,(1).
Similarly, z, = 0,(z,) means z,, = y,z, and y, = o,(1). It is clear from
the above definitions that O,(z,) = 2,0,(1), 0,(z,) = 2,0,(1), and it is
easy to prove properties like 0,(1) + 0,(1) = 0,(1), O,(1) + O,(1) = O,(1),
0p(1) + 0,(1) = Oy(1), 0,(1),(1) = 0,(1), Op(1)O,(1) = Op(1), 0,(1)O(1) =

0p(1), and so on.
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Markov’s Inequality, Tightness, and an iid LLN

Let P be a probability distribution on R along with a random variable X ~ P,

and p,e > 0. From the properties of the integral, we have that:

—& € “+oo
E(\X\p):/]z\pdﬁ”:/ \z\pd]P’Jr/ |z\pd]P’+/ 2P dP
R —00 —€ €

— +oo
2/ min }|z|de+/ min )|z|deP’

o0 2E(—00,—¢€ z€[e, 400

:|—5|p/:dIP>+|e|p/:deP
_ (/_oo +/:°°) 0P = & [P((—o0, —<]) + P([e, +00))]

= ? [P((—00, —¢]) U [¢, +00))] ,

where the first equality in the above follows from linearity, the first inequality

from monotonicity, which also implies that [°_|z|dP > 0, the second equality

from the strict monotonicity of z? and the fact that its corresponding extrema

are independent of z, and the last equality follows from the additivity of the

distribution. Rearranging the above, we have essentially proven that:
E(XT)

Ve > 07 p > Oa ]P)((—OO, _5]) U [57+OO>> = P(|X| > E) S 5—1’7 (4)

The above is called Markov’s inequality, and in the special case where
p = 2, it is called Chebyshev’s inequality. We observe that this inequality is
trivial when ¢ is very small, or when E(|X |’) = 4+oc0; in both cases the right-
hand side is greater than one (even if it is not a real number). The inequality
is informative on how the distribution assigns probabilities only if E(| X|?)

exists and ¢ is large enough that the right-hand side of the inequality is less
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than one. In this case, the inequality informs us about the decay rate of
the probability that the distribution assigns to extreme events. This decay
rate is constrained by the absolute moment of highest order that exists and
cannot decay faster than Cs7? as ¢ — oo (When p is a natural number, this
is a polynomial rate in /). The above seems to suggest that distributions
such as the exponential and the Gaussian, with decay rates faster than
the above for all p, possess moments of all orders.

Markov’s inequality is an example of a class of inequalities that link
probabilities to moment-related quantities (see, for example, Hoeffding’s
inequality and related inequalities, as detailed in [11] and [15]).

Suppose now that (X, ),cn is a sequence of random variables, with a
bounded sequence of absolute moments of order p, i.e., sup, E(] X, |’) < o0,
which is equivalent to that there exists N > 0 : E(|X,|?) < N,Vn € N. For
arbitrary ¢ > 0, consider (%)% > 0. Due to the inequality of Markov, for
arbitrary n, P(|X,,| > (%)%) < ew < e. Since the outermost r.h.s. of the
previous inequality is independent of n, lim,_,., P(|X,| > (g)%) < ¢, which
implies the definition of asymptotic tightness above for M, := (%)%. Hence
any sequence of random variables with a bounded sequence of absolute
moments of some order is asymptotically tight.

Suppose furthermore that (X, ),y is iid and that p = 2. Then, due to
independence, for any n > 0, Var(+ " | X;) = 5 > | Var(X,,), and the latter,
due to homogeneity equals W Remembering that due to the linearity

of the integral and homogeneity, E(+ """ | X;)) = E(X;), then for any n, and
e > 0, Chebychev’s inequality states that P(|+ Y% | X, —E(X;)| > ¢) < %
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Letting n — oo, the asymptotic version of the inequality forms

1
Ve > O,JLIEOP(\E;Xi —E(X,)| >¢) =0,
which is equivalent to 1 3°"  X; % E(X;). Hence, an LLN is obtained: if
(X1 )nen is iid with second moments, the sample mean converges in proba-
bility to the population mean. A bit more work, which would also utilize
Markov’s inequality, would imply the validity of the LLN in this context
for p = 1. The stationary and ergodic LLN described in a previous section
vastly generalizes this (in addition to establishing an LLN in the context of

the stronger almost sure convergence).

Jensen’s Inequality

The Jensen inequality states that if 2 : R — R is concave, then E(h(X)) >
h(E(X)), for any distribution on the real numbers P that has a first moment,
with X ~ P. The left-hand side of the inequality should be interpreted as
+oo when the integral of 4 does not exist. The dual version of the inequality
pertains to the case where h is convex, in which case E(h(X)) < h(E(X)). In
the case where h is also positive, the inequality, for instance, implies the
integrability of h when the mean of the distribution exists.

The inequality generalizes the property of linearity of the integral, as it
holds as equality in the case where £ is linear, making it simultaneously
convex and concave (remember that the concept of convexity is dual to
concavity, f being convex if and only if —f is concave). The inequality can

be proved using subdifferential calculus, which applies to these collections
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of functions-see, for instance, [9] and [10].

Holder’s inequality

Hoélder’s inequality is a fundamental result in mathematical analysis and
probability theory, particularly in the study of integrable random variables.
It states that for any random variables X and Y and for p,q > 1 such that

5+ 2 =1, the following inequality holds:
E[IXY|] < (B[X]P)"” (B[|Y])"".

Holder’s inequality generalizes the Cauchy-Schwarz inequality, which is

recovered as the special case when p = ¢ = 2. In this case, it simplifies to:

E[IXY]] < VE[IX[]VE[Y]].

These inequalities are widely used in probability, statistics, and functional
analysis, providing a powerful tool for bounding expectations and under-

standing relationships between random variables.

Wold Device for Random Vectors

Let (X, ),>1 be a sequence of random vectors in R?, and let X be a random

vector in R¢. Then:

X, ~ X ifandonlyif a'X,~ a'X, VacR%
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The result follows from the fact that linear tranformations a'X,, are Lip-
schitz continuous and bounded functions of X,,, hence (when appropriately
scaled) lie inside BL,(R% R), and convergence in distribution is defined by

the behavior of such functions, as noted in the main text.

Applications
1. Multivariate Central Limit Theorem (CLT)

If (X,,) is an iid sequence of random vectors in R? with mean 0 and covariance

matrix X, then:

VX, ~ N(0,3).

Using the Wold Device, for any a € R¢:
a' (v/nX,) ~ N(0,a’Ya),
which confirms the multivariate convergence.

2. Linear Transformations

If X,, ~ X and A is a fixed matrix, then AX, ~» AX. This follows directly
from the Wold Device by considering a’ AX,, for all a € R*.

The Wold Device simplifies proving convergence in distribution for ran-
dom vectors by reducing the problem to verifying the convergence of their

real linear transformations.
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Delta Method for Weak Convergence

The delta method is a fundamental tool in asymptotic statistics, used to
approximate the distribution of functions of estimators. Suppose we are

given the weak convergence result:
(M, — M) ~ Z,

where:

* M, is a sequence of random p-vectors,

* M is a non-random p-vector,

* r, is a scaling sequence (typically r, = /n in many applications),

* 7 is a random vector in R? that represents the limiting distribution.

Let F' : R? — R? be a continuously differentiable function. The delta

method states that:
ra(F(M,) = F(M)) ~ 0F (M)Z,

where 0F (M) is the ¢ x p Jacobian matrix of F' evaluated at M.

Explanation and Proof Outline
The result follows from an application of the Mean Value Theorem of F'(M,,)
around M, justified by continuous differentiability:

F(M,) = F(M) + 0F (M) (M, — M),
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where M} is a random vector every realization of which lies in the line that
connects M with the analogous realization of M, . Since M, & M (why?),
M* 2 M, and due to the continuity of OF and the CMT, 0F (M?*) 5 0F (M).
Thus, collecting terms in the Mean Value expansion and multiplying by r,,

we have:

ro(F(M,) — F(M)) = OF (M) (ra(M, — M)),

and the result follows by Slutsky’s Lemma, the Wold device and the CMT.

Applications

The delta method is widely used in asymptotic statistics for:

* Transforming estimators, such as using F(M) = log(M), F(M) = M?,

or higher-dimensional transformations.

¢ Establishing the asymptotic distribution of maximum likelihood esti-

mators (MLEs) under transformations of parameters.

* Deriving the standard errors for non-linear functions of estimators.

Example

Consider M,, ~ N(u,0%/n), where M, is a sequence of estimators for u. If

r, = y/n, then, trivially:

V(M = ) ~ N(0,07).

Let F(M) = M?. Then:
OF (z) = 2x.
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By the delta method:

V(Mg — %) ~ N(0,4p%0?).

Further Exercises

1. Consider a sequence of random variables (X, ),>; such that X, B X

and X, ~» Y. Prove or disprove: X =Y almost surely.

2. Suppose (X, ),>1 is a sequence of random variables such that X, ~ X.
Let g : R — R be a continuous function. Show that g(X,,) ~ ¢g(X) using

the Continuous Mapping Theorem.

3. Consider (X, ),>; where X,, = Iy, ~1/n}, With U, ~ Uniform[0, 1]. Show

that X,, 2 1. Does X,, *3 1? Justify your answer.

4. Consider the simple linear regression model:
}/tZBO"f',BlXt"}_Et, t:17"'an7

where (X;,¢) are i.i.d., El¢] = 0, and Var(e,) = ¢%. Show that the

_ Z?:l XYy

. A D,
= & isfi .
S satisfies 6, — 1

ordinary least squares (OLS) estimator Bl

5. Let (X,),>1 be a sequence of random variables such that X,, ~» X and
Y, ~ Y. Assume X, and Y, are independent for all n. Show that

(Xn, Yn) ~ (X, Y).

6. Let (X, ),en be a stationary and ergodic sequence of non-negative ran-

dom variables such that E(X;) < +oco. Derive the asymptotic behaviour
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of (ITi-y exp(X:))".

Epilogue

The modes of convergence of sequences of random elements (e.g., random
variables, random vectors, stochastic processes, random functions) are ex-
tremely useful for the determination of asymptotic properties of sequences
of inferential procedures (e.g. estimators, statistical tests, statistical fore-
casting procedures, etc.). Those properties are helpful in deciding what
procedure to use for a given statistical problem, as well as in designing
statistical methodologies with desired properties.

In what follows, we will use notions like almost sure convergence and
convergence in probability to ascertain whether an estimator asymptotically
locates the parameter value of interest. In such frameworks, tools like
the Laws of Large Numbers, and Continuous Mapping Theorems, will be
of importance. In many cases the estimators at hand will be defined as
optimizers of criteria that somehow reflect the statistical/probabilistic
information available to the researcher. Those will be random functions
of the parameter of interest; when they appropriately converge in some of
the aforementioned modes, to a limiting non-stochastic criterion that is
uniquely optimized at the parameter value of interest, their optimizers will
accordingly converge to the latter.

We will also use notions like asymptotic tightness, and convergence in
distribution, in order to ascertain the rate at which an estimator converges
to the parameter value of interest, as well as, the limiting distribution of its

deviation from this value, scaled by the rate of convergence. Analogously,
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suchlike notions will be used in order to study the asymptotic behavior of

test statistics under the hypotheses of interest. When the aforementioned

criteria are implicated in the construction of the estimators and/or test

statistics at hand, then local properties of the criteria will be thus useful.

In such derivations Central Limit Theorems and Laws of Large Numbers, as

well as tools like the Continuous Mapping Theorem and the Delta Method

(see the Wald-type tests paragraph in the notes regarding OE) will be useful.
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