1 GMM: a brief introduction

In the context of the linear model of Instrumental Variables, we observed
that the statistical model was specified through conditions involving equal-
ities of expected values of functions of the sample. This concept is closely
tied to semiparametric models; for instance, if we are only interested in
the mean of Dy, and we are somehow averse to the risk of misspecifica-
tion, it is not necessary to provide a parametric specification for the entire
distribution.?

The Instrumental Variables Estimator (IVE) essentially arose from a
relevant analogy principle given the population moment conditions; the
moments with respect to Dy were approximated by their empirical coun-
terparts, and the system was solved with respect to 6, or more generally,
an element that minimizes some norm of the vector of those empirical
moments was found. This is a potentially more complex version of a rel-
atively straightforward methodology: if we are interested in the mean of
Dy and have access to a sample of random variables following it, we can
approximate the unknown mean using the sample mean among other
methods. This methodology constitutes the Method of Moments (MoM),
a semiparametric method that broadly estimates parameters related to
moments using their empirical counterparts-see, for example, [3]. The
dimension of the parameters involved equals the number of moments used.

The Generalized Method of Moments (GMM) generalizes this approach

by allowing the number of moments to be greater than or equal to the

IThis is related to the moment problem in probability theory; given a list of moments,
how can we determine the set of distributions that satisfy them.



dimension of the parameter vector, thereby enriching the initial theory.
This, among other things, allows for the use of more information to identify
the latent 6,. This generalization was introduced by L. P. Hansen in [7]
and is particularly useful in Econometrics, where Economic Theory and
Empirical Economics often prescribe "high"-dimensional semiparametric
specifications.

This methodology also encompasses statistical inference procedures
derived from optimization, where first-order conditions take the form of
expected value equalities. For instance, approximations of Maximum Likeli-
hood Estimators (MLE) or of Quasi-Likelihood Estimators-can be considered
estimators adherent the method (GMME)-see the concept of the score esti-
mator.

Since the dimension of the moments vector does not necessarily match
the dimension of the parameter, extracting the GMME involves minimizing
the norm of the former with respect to the latter. We have already seen
this in the case of IVE. GMME is a special case of the broader framework
of optimization-based statistical inference procedures previously discussed.
In the following, we describe the relevant background? and integrate it
into the previous framework regarding the definition and properties of
GMME. Consequently, constructing and describing the tests mentioned in
the previous section becomes straightforward and is not repeated. Instead,
we develop a specification test for the model using reasoning similar to that
in the previous section. In any case, a prototypical example of the following
is the already developed model of Instrumental Variables.

Using the general notation developed so far, let m : R¥ x © — R? be

2In a relatively general form but not the most general possible.
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appropriately measurable, with ¢ > p, and the model specification arises
from the moment vector E(m(z,6,)) = 0,, where integration is with respect
to Dy, assuming that the distribution of the ith k-dimensional sample
element is independent of i.®> This forms-based on the above-the model
{E(m(z,0)) =0,, 6 € ©}, which is interpreted according to the previously
established statistical model interpretations. Thus, within the Instrumental
Variables framework, in our current context, we have m(z;,0) = Wi(Y; — X,0),
where z; is the ith k-dimensional sample element, W; is the ith row of W,
X, is the ith row of X,,, and Y; is the ith element of Y,,.

To complete the background and construct the relevant objective func-
tion ¢,, we will take a slightly more general approach compared to the
methodology seen in the example of instrumental variables-although the
path we follow is outlined in related exercises. In this context, the matrix
determining the norm will be allowed to be stochastic and/or depend on
n. This will later enable reasoning about the statistical approximation of
its optimal choice. Thus, W, is, for almost every possible sample value, a
strictly positive definite ¢ x ¢ matrix. In this theory, W, is typically referred

to as a weighting matrix. Given this, we consider the objective function:

0, W,) = g (zn: m(zi,9)> W, <zn: m(zi,9)> , (1)

which is essentially the square of the stochastic norm R? 5 x — x'W,x.

3This holds, for example, in iid settings or stationary time series environments. It
nevertheless can be generalized, yet at the cost of a more complex presentation. For
instance, the distribution over which the integration is performed could be appropriately
conditional, and m could depend on i, etc. We will not deal with such generalizations for
simplicity.



Squaring is used as it enables properties such as differentiability and
strict convexity-in at least some cases, which, as we know from our general
theory, can facilitate the study of the estimator’s properties. The square
is evaluated based on the sample analogue of the expected value of the
moment vector, which in turn is computed at §. The notation involving the
weighting matrix emphasizes the dependence of the examined objects on it.
We will see below that this is reasonable.

Given the objective function, and some related optimization error, the

GMME is the relevant extremum estimator (OE):
Cn(0n (W), W) < inf ¢, (6, W) + up. 2)
€

Conditions for existence are described in the relevant part of our general
theory. For example, when m is continuous with respect to ¢ for almost every
possible sample value and the parameter space is compact, the estimator

exists. In general, the estimator will also depend on the weighting matrix.

Exersice: Can you describe sufficient conditions under which the esti-

mator is independent of weighting?

Our work in the previous parts of the notes directly indicates that both
the IVE and the OLSE are examples of GMME, with the latter notably not
depending on the weighting matrix.

For reasons already explained in constructing the general theory of
extremum estimators, we proceed to the asymptotic properties of the GMME.

These will arise from the specialization of our general asymptotic theory.



1.1 Weak Consistency

According to what is outlined in the general theory of OE, consistency
will arise through the appropriate convergence of ¢, to a suitable objective
function that is uniquely minimized at 6,.

The form of the objective function suggests that the limit we seek will
have the form of a quadratic expression evaluated at E(m(z,0)), as this is
appropriately approximated by its empirical analogue £ " |, m(z;,6). The
quadratic form will be shaped by the asymptotic behavior of W,,. If this
is appropriately designed so that the limiting function is strictly convex,
then asymptotic identification will be ensured provided the moment vector
E(m(z,0)) vanishes only at §,. One way to obtain such a limiting objective

function is through the following high-order conditions.

Assumption 1. The following hold:

(A). m(z,0) is continuous with respect to 6, almost for every sample value,
(B). £ m(z,0) = E(m(z,0)),

(C). There exists a strictly positive definite non-stochastic matrix W such that

W, 5 W, and
(D). E(m(z,0)) =0, < 0 = 6,.

Condition (A) ensures the continuity of ¢, almost surely for every sam-
ple value. Condition (B) can arise, for instance, in iid settings or under
stationarity and ergodicity, through suitable uniform LLNs or pointwise
LLNs combined with some strong property of "joint" (with respect to z)

continuity for ||m(z, )| with respect to #.Condition (C) can similarly arise,
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and in combination with the consistency of some initial estimator for 6,
on which it may depend-we will examine this in more detail below. The
limiting matrix could also be stochastic for the following result. Conditions
(B) and (C) imply that ¢, 33 ¢ := (E(m(z,0)))'W (E(m(z,6))). This is because,

for arbitrary 6 and 6 — 6, due to the triangle inequality,
len (0, W) — (0, V)] <

e (0, W) — (0, W) + (6, W) — c(6,W)].

The first term in the previous inequality, due to a submultiplicative property
of a suitable matrix norm and related properties of the Cholesky factoriza-
tion,* is less than or equal to |- > | m(z;,0) — E(m(z,0))|]*|W, — W|. Due
to (B), (C), and the Continuous Mapping Theorem , this converges in prob-
ability to zero. Similarly, the second term above is less than or equal to
£ 370 m(z,0) —E(m(z,0))||*||W]|, which also converges in probability to zero
due to (B). Conditions (C)-(D) complete the background required for the
application of Consistency Theorem in our general theory, ensuring that ¢

is uniquely minimized at 6, (why?):

Theorem 1. Let © be compact, u, = o,(1), and assume that Assumption 1

holds. Then the GMME is a weakly consistent estimator of 6.

Exersice: Under what conditions would the application of the theorem

“We refer to properties of the Frobenius norm, which essentially extends the Euclidean
norm to matrix spaces-the interested reader may refer to ??? for further details.
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that derives consistency from pointwise convergence to a strictly convex
criterion be ensured?
For the application of the above to the case of IVE, see the related examples

and exercises in previous sections of the notes.

1.2 Rate of Convergence and Asymptotic Distribution

Following the previous section, we will aim to describe sufficient conditions
for applying our general theory regarding the determination of the rate of
convergence and the asymptotic distribution of the GMME.

We will focus on the first two sufficient conditions for our general results
to hold, as the others are not essentially related to the form of the objective
function, given its domain. We will assume that m is twice continuously
differentiable in a neighborhood of #,, and the derivatives will be appro-
priately one-sided if ¢, is a boundary point, possessing properties such
that the local Taylor expansion of m to the second degree is valid.® Since
the matrix W, is constructed to be independent of 6, this means, in the

notation of our general theory,
B 1 = 0/ (2, 60) 1 &
9(bh) =2 <E ; T) Wy (H 1 m(%ﬁo)) )

and

oo [ 1= Om (2, 07) 1 <~ Om(z;,0)
MM(EZ a6 )W” (ﬁ, a6

1 = 0P (2, 01) 1 & .
J= P

=1

.....

5The interested reader is referred to [1] for a general formulation of such an assumption.
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These expressions guide us in establishing the validity of the second part of
the assumption of our general theory. Without addressing the most general

case, we limit ourselves to the following assumption:

Assumption 2. i Theterm =" 8”(9(;:”9) converges continuously in proba-

bility to a non-stochastic matrix, say dmy,, of dimensions ¢ x p, with rank

p, at 90.

ii. Forany 0} — 0o, ||= >0 1%“ =0,(1), forallj=1,....p

ii. \/Lﬁ Sor m(zi,00) ~ z ~ N(04, Ving, ), Where the ¢ x ¢ matrix V,, o, is positive
definite.

The convergences in 2.(i),(ii) can be satisfied via locally uniform LLNs
in iid or stationary and ergodic settings. The convergence in 2.(iii) can
be satisfied via a Central Limit Theorem like the one we have examined
previously, provided the appropriate conditions of dependence and exis-
tence of moments hold. Assumption 2.(ii) ensures that, for any related se-

quence, the term || [(% Yoy %) LS m(z, 0| X | converges

------

in probability to O, due to 1. Similarly, 2.(i) ensures, together with 1.C
and the Continuous Mapping Theorem , the convergence in probability of
the quadratic form (7 | %)Wn(% Sor | b)) to dmy Wdmy,, and
this p x p matrix has rank p. Therefore, the second part of the general
assumption in our general theory holds with jgo = Omy W0Omy,. Conse-
quently, 2.(i), (i), 1.C, Sluysky’s Lemma, and the Continuous Mapping
Theorem ensure that for r, = \/n, we have the Gaussian random vector

0o = 20my Wz ~ N(0,,40my WV, 9,W3my,). In conclusion:



Theorem 2. [If Assumptions 1, 2, and the third and fourth parts of our
general assumption hold, then the conclusions of our general theorem ap-
ply to the GMME with r,, = +/n, jgo = Omy WOmg,, and zg, = 20my Wz ~
N(0,, 40my WV, 9, W Omg, ).

When 0, lies in the interior of ©, the above can be interpreted as

V(O (W) = bo) ~» N(0p, Va,),

where Vp, := (Omj Womg, )~ 0my WV, 6, W Omg, (Omg W ome,) .

In any case, regardless of the location of the true parameter value, we
observe that when p = ¢, the random element —%j 0,20,» which determines
the asymptotic form of the estimator, follows N (0, ((9mg,) ") Vin.e, (Omg,) ™).
This occurs because all involved matrices are square and invertible, and
due to the properties of the inverse of a product and the commutativity
between inversion and transposition. However, this is independent of the

weighting matrix, so:

Lemma 1. When p = ¢, the GMME is asymptotically independent of weight-

ing.

In the case where ¢ > p, asymptotic independence does not generally
hold. This raises the question of the optimal choice of weighting, such
that the resulting W yields the optimal asymptotic variance, regardless of
the location of the true parameter value. We will address this in the next

section.



Exersice: Specify the above in the case of the IVE. Relevant exercises

from the previous sections may be taken into account.

1.3 Optimal Choice of Weighting

From the above, the issue of optimal selection of W, arises to minimize
asymptotic variance.®” Based on the above results, this is trivial in the
case where p = ¢: in this case, any choice is optimal. But what happens
when there are more integrals in the moment condition than components
in the parameters?

We observe that for W =V, } , the asymptotic variance of —3}Jyz, be-

m’go’

—1
m,0p

comes (Imy, Omyg,) 1.8 It is proven that this corresponds to the asymp-
totically optimal choice. This is because, since V,,, is positive definite,
it can be factored as a product LI/, where L is an appropriate triangular
matrix. Using this factorization, it follows that (Exercise: perform the

calculations in detail):
(Omp, W dma,) ™" Omy W Vi, 0, W Omg, (Omy W Ome,) ™' —(0my V4 dme,) " = KLL'K'

where K := (Omjy Wdmg,) '0my W — (Omy V, 5 Omg,) ' Omy V, 5 . The matrix

m,0o m

6This pertains to ordering based on the positive definiteness of the difference. As
previously mentioned, the optimal choice will, by definition, have the property that the
difference between any other asymptotic variance and the optimal one will be positive
definite.

Tt is noted that in what follows, the moment vector m is assumed given. We do not
address the equally important issue of the optimal selection of a moment vector when there
is availability-a problem that also relates to geometric characteristics of the distributions
forming the respective statistical model.

8We note that this collapses to the expression obtained in the case where dimensions
match.
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KLI'K'= (KL)(KL)" is necessarily semi-positive definite.

The above, combined with Assumption 1.C, implies that any choice of
W, such that it converges in probability to Vrg’éo yields the asymptotically
efficient estimator given the moment vector. Given Assumption 2.(iii), any
consistent estimator of the asymptotic variance of the empirically weighted
moments’ vector scaled by /n and evaluated at 6,, i.e., \/Lﬁ S m(zi,60),
leads, through its inversion, to a consistent estimator of the optimal weight-
ing due to the Continuous Mapping Theorem . Generally, this asymptotic
variance-and therefore the optimal weighting-will depend on the unknown
0, (Exercise: Is this true for the case of the GMME?). In this case, construct-
ing an asymptotically efficient estimator for the variance can be facilitated
if (a) there exists a random element V,,(¢), a function of the sample and the
parameter, that converges continuously in probability to V,, 4, at 6y, and (b)
an initial consistent estimator of 6, say Gf, is available. Under (a) and (b),
through the invoked mode of convergence, V,,(6%) will be a weakly consistent
estimator of the asymptotic variance, and consequently, V.71(0%) will be a
weakly consistent estimator of the asymptotically optimal weighting.

The estimator 65 can be chosen as 6,(W), where W is an arbitrary
weighting matrix, independent of 6, e.g., W = 1,.° In this case, the GMME
0,(V."1(0,,(W))) is obtained through a two-step optimization process: in the
first step, 6, (W) is calculated, and in the second, 6,(V,!(6,(W))) is derived.
This estimator is called the 2-GMME. Clearly, starting from W, this process
can be extended to an arbitrary number of steps: if m > 2, the m-GMME
6™ is defined as 6, (V165" )), with 6% := 6,(W).

Another variant, which does not initially require an estimation of 6, al-

9Based on our assumptions, consistency does not require an optimal choice of weighting.

11



lows V,, to depend freely on ¢ within the criterion being optimized. This leads
to the continuously updated estimator (CUE), defined by the approximate

minimization:

Try to extend Assumptions 1 and 2 appropriately to show that the 2-
GMME, m-GMME, and CUE are asymptotically equivalent-i.e., they fall
under Theorem 2 with the same, optimal asymptotic variance.!°

The form that V,,(#) may take is partly determined by Assumption 2.(iii)
and strongly depends on the properties of the sequence (m(z;,));en. For
instance, in an iid setting, or more generally in a stationary and ergodic
setting where additionally the conditional covariances appearing in the
CLT we have examined in previous section of the notes are zero, a property
of uniform integrability that holds continuously at 6, can show that the
stochastic matrix 1 Y%  m(z;, 6)m/(z;,0) converges continuously in proba-
bility to V.4, at 6y, and thus (= 37"  m(z, 05)m'(z;,05))"" is a consistent
estimator of the optimal weighting.

When this is not the case, the above must be replaced by an estimator
that approximates the mode at which the asymptotic variance is affected

by the dependence between m(z;, ) and m(z;,6), for i # j as n — co.!!

10However, they may differ in interesting ways with respect to finer asymptotic properties
that are not examined in this book. The interested reader is referred, for example, to [8].
1The interested reader may consult [2] for a related methodology that applies in time-
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We conclude this section with the issue of consistently estimating the
optimal asymptotic variance. This may be of interest, among other things,
for the application of hypothesis testing procedures such as those developed
in the asymptotic testing theory we have examined and the exercises therein.
Due to Assumption 2.(i)) and the construction above, it follows via the
Continuous Mapping Theorem (Exercise: explain the details!) that
(A3 IC )y L yn 2 b

n “ n <
i=1 i=1

is a consistent estimator of the optimal asymptotic variance that arises in

our framework.

1.4 A Test for Partial Specification

In this section, we will challenge the basic assumption of correct model
specification that lies at the core of our investigations. The condition
E(m(z,6y)) = 0, is inherent in the specification of the model. Is it possible
to use the asymptotically optimal GMME to statistically test whether this
condition is ultimately correct? Clearly, we are dealing with a hypothesis
structure that does not fall under the ones which we addressed in our

general framework. The current hypotheses can be described as follows:

Hy: E(m(z,0)) =0, 310 € © @)
H, : E(m(z,0)) #0,, V0 € ©.

series environments and addresses a broad range of types of temporal dependence.
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Under the null hypothesis, there exists a point in the parameter space
that satisfies the system of equality constraints-under the identification
condition used this will necessarily be unique. Under the alternative
hypothesis, there will be no such point, either because one does not exist in
general in R?, in which case the specification error is global,!? or because 6,
has been incorrectly excluded via an inappropriate choice of the parameter
space ©. Note that the asymptotic theory we have outlined does not generally
hold under the alternative hypothesis. The limit theory could however
be modified to describe the limiting behavior of the estimator under the
alternative hypothesis. This modification is not very involved in the second
case of specification error.

For the design of a testing procedure for the above hypotheses, we
will focus on the asymptotic behavior of the random vector of empirical
moments evaluated at the estimator!? %ﬁ > m(z,6,) under Assumptions
1, and 2 and correct specification. We observe that due to the assumed
differentiability and given that 6, is an interior point, we will have that,

with probability converging to 1,

% ;m(zi, 0,) = % ;m(zi, o) + % Z W)ﬁ(@n — By),

where, as is known, 6 lies on the line segment connecting the estimator

to 6y, and thus, due to Theorem 1, will converge in probability to 6, (why?).

12That is, the specific system of moments is not satisfied.
13For simplicity, the dependence of the estimator on the weighting matrix will not be
explicitly stated.
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This, combined with Assumption 2.(i), implies that

om(z;, 0%)
_ Z By —> 8m90.

Additionally, Assumption 2.(iii), combined with Theorem 2, implies the joint

convergence

1 n
(ﬁ > m(zi,60), v/n(0, — 90)> s (2, —Omg, (Omp, Vi h Omg,) ™ 0mp Vb 2) .
=1

This, along with Slutsky’s Lemma and the Continuous Mapping Theorem ,

ultimately implies that when the model is well-specified and under 1 and 2,

% Z m<zi’ Qn) ~ N(OQ’ (Iq - MGO)Vmﬂo (Iq - M@o)/)7 (4)
=1

where

My, = Ome,(Omp, V., 5 Ome,) ' Omy V.,

m,0p*

Exersice: Show that M, is idempotent.* Then show that I, — My, is

idempotent.

“That is, it satisfies M = Mp,.

Exersice: Show that tr(My,) = p. Then show that tr(I, — M,,) = q — p.

The above exercises outline the proof of:

Lemma 2. rank((I, — My,)Vy9,(I, — My,)') = q — p.

15



Proof. Since I, — My, is idempotent, its eigenvalues can only take the values
O or 1. By construction, their sum equals the trace of the matrix, which is
q — p. Therefore, the matrix necessarily has ¢ — p unit eigenvalues and p
zero eigenvalues. Consequently, its rank equals ¢ — p, and this is inherited

(why?) by the rank of (I, — Mp,) V0,1, — My,)'. O

When p = q, (I, — My,)Vine, (I, — My,)" is zero, so 4 describes a non-
degenerate matrix only when p > ¢. We therefore proceed by focusing
exclusively on the case where p > ¢q. The above are not useful in cases where
the number of parameter components matches the number of conditions.

The construction of the desired test may be facilitated if-using the above
asymptotic theory-we manage to construct a test statistic with a quadratic
form, derive a procedure that has an asymptotic chi-squared distribution
under the null hypothesis, and proceed as in our general OE theory to
determine the asymptotic rejection region. The problem is that even in the
case where p < ¢, the above asymptotic distribution is partially degenerate
since it assigns zero probability to a p-dimensional subspace of R?; its
variance is not an invertible matrix.

To construct the test, as outlined earlier, we need the following concept
of the generalized inverse matrix, based on which the required quadratic

form will be constructed:

If Ais an m x n matrix, then the Moore-Penrose generalized inverse of

A, denoted AT, is defined as any n x m matrix satisfying:¢

(1). AATA = A, (i). ATAAT = AT, (iii). (AAYY = AAT,
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(iv). (ATA) = AT A, (v). rank(A4) = rank(A™).

It can be shown-see Theorem 2.1 in [5]-that a matrix satisfying the
above always exists and is unique. For example, if A = 0,,«,, then
£y

0
that if A is invertible, then its unique generalized inverse is the usual

At = 0,,5m, Or if A = with z; # 0, then AT = (Iil,o). It is clear

inverse. It is also shown-see Theorem 3.2 in the aforementioned work-
that if x ~ N(0,,V) and 0 < rank(V) < ¢,” then x'V*x ~ xZ, 1> Which
generalizes a previous similar observation in our examination of the

behavior of quadratic forms w.r.t. Gaussian random vectors.

“Any matrix satisfying (i) is called a generalized inverse. It can be shown that the
generalized inverse is not generally unique. This is because such a matrix is restricted
to act as an isomorphism between im(A) and R™ /ker(A4), while acting arbitrarily on
R™ —im(A). The remaining conditions enforce uniqueness, which arises via solving
an optimization problem. For y € R” —im(A4), A"y is obtained by finding the unique
projection of y onto the closed and convex im(A) and then inverting the projection
through the invertible part of A.

PThe comment on non-uniqueness tells us that rank(A* A) = rank(A4). Also, from
(i), we obtain ATAATA = At A, so AT A is idempotent.

From the above, the construction of a consistent estimator for the op-
timal weighting matrix described in Section 1.3, Slutsky’s Lemma, and
the Continuous Mapping Theorem , it follows-using the objects from the

aforementioned section-that:

Lemma 3. Under Assumptions 1 and 2, if the null hypothesis in 7 holds,

and if 0, is in the interior of ©, then for the random variable

T = (3l 0) (1, = Ma)Vally = M) (3 m(z1,0,)),
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with!'*
Z am ZZ, n
— o0’

GL m,za ng ">>> :

i=1 i=1
1 — om'(zi,0n) . ., _4
%; AR

and V,, the respective weakly consistent estimator'® of V,, 4,, it holds that:

T~ X2y (5)

Proof. The above partially demonstrate the validity of 5. The uniqueness
of the Moore-Penrose inverse, combined with the fact that the rank of
(I, — M,)V,(I, — M,)’ necessarily matches that of (I, — My,)V,.0,(I, — Mp,)’
(Exercise: prove this!), can be shown to imply that the first converges in

probability to the second.!® Thus, 5 ultimately follows. O

The above allows us to construct the following hypothesis test, commonly

referred to as the J-test:

l4Note that given the extraction of the estimator, there is no need to use the auxiliary
02 -why?

15See Section 1.3.

16The interested reader may consult Corollary 8 in [12], or think in terms of the conver-
gence of solutions in sequences of strictly convex optimization problems, similarly to our
relevant general consistency theorem regarding convex criteria!
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Algorithm 1 J-Test

1. Choose a significance level a € (0, 1).

2. Given «, find

x Z%—l Py
o = inf {x € (0,+00) : / —exp(—§)dz >1- a} :
0

20-p/2[(L2)

3. Define the rejection region for H, as the interval (¢;_,, +0).

4. Evaluate J, on the sample value and reject H, if and only if 7, €
(QI—Om +OO)

Based on the Lemma 3, it is easily proven:

Theorem 3. Under Assumptions 1 and 2, if the null hypothesis in 7 holds,

and if 6, is in the interior of ©, then the J-test is asymptotically exact.

Exersice: How does the above theorem change if 6, lies on the boundary

of the parameter space?

Exersice: What is the form of the hypotheses structure anf of 7, in the

case of IVE?

When the null hypothesis does not hold, we cannot say much about
the asymptotic behavior of .7, unless further assumptions are made about
the specification error of the model and the asymptotic behavior of the
estimator under this error. For example, if the conditions are not globally
misspecified but there exists a unique 0, € R? — O that satisfies them, then

under Assumption 1.A, B, and provided that © is closed and convex, and
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the limiting criterion is strictly convex, it can be shown that 6, 2 0y, a
unique element of ©. If in Assumption 2.(i), (ii), 6, is replaced with 6y,

Assumption 2.(iii) is modified to
1 n
7n > (M2, 600) — E(m(z0,000))) ~> 2 ~ N(0g, Vingyo);
=1

with the ¢ x ¢ matrix V,, 4, strictly positive definite, and E(m(zo, fy)) not

oo
in the kernel of the corresponding matrix (I, — My,, ) Vim0 (I, — Mp,,)’, then
J. diverges to +oo (Exercise: prove this!), and thus the procedures is
asymptotically consistent.

When the null hypothesis is not valid, and the identification condition
fails outside the designated parameter space,!” then the limiting behavior of
the statistic generally becomes more complicated, although consistency may
be guaranteed under conditions that take care the behavior of accumulation
points. For instance, if every subsequence of the estimator converges to a

non-stchastic parameter value inside ©,!® then every subsequence of the

statistic diverges to infinity, rendering the test consistent.

2 A Glance at Empirical Likelihood

The example about the Market Entry Game that we have previously en-
countered, was not explicitly addressed. In this example, the statistical
model involves relations defined through integrals-moments, but unlike

other examples, these relations are partially inequalities. Generally, such

17Something that can be perceived to include as a special case the ©° = () one.
18that may correspond to a parameter value in the alternative hypothesis that satisfies
the population moment conditions.
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a model can be described by systems of inequality-equality equations of
the form E(meq(2,0)) = 04y, E(mineq(2,6)) > 04,. The function meq is defined
as R* x © — R% and corresponds to the part of the vector-valued function
that satisfies the equality moment conditions. Similarly, mineq is defined
as R* x © — R and corresponds to the part of the vector-valued function
satisfying the inequality moment conditions; the vector inequality is in-
terpreted component-wise, meaning that E(mineq(2,6)) > 0,, implies every
component of E(mineq(2,0)) is non-negative. Clearly, m = (meq, Mineq) and
¢1+q2 = ¢.'® Thus, in this Market Entry Game Example, we have meq(z,6) :=
(Z1Zy — (1 = 01)(1 — 62), Z1(1 — Z3) — (1 — 61)03), Mineq(2,0) := 02 — Z1(1 — Zs),
=2, =1

In such cases-commonly encountered in Econometrics-and assuming
proper specification, it is reasonable to expect multiple parameter val-
ues satisfying the system of equations and inequalities. If this is the
case, the conditions for asymptotic identification become vacuous; 6 =
0y = E(meq(2,0)) = 04, E(mineq(2,6)) > 0,4, but the converse is not true:
E(meq(2,0)) = 0g,, E(Mineq(2,6)) > 04, # 6 = 6y. Incidentally, deriving the
GMME for such a model is feasible, though the estimator may exhibit com-
plex asymptotic behavior. In this context, Assumption 1.C would not hold,
even if 1.A-B are satisfied, potentially leading to different stochastic limits
for subsequences of 6,,.

In these models, there exists a set ©, C O such thatf € Oy < E(meq(z,0)) =

04, E(mineq(2,0)) > 0,,.2° Since O, is not a singleton, the statistical model is

19The vector notation here is used somewhat loosely; it is relatively accurate when
the function values take the form of row vectors. In earlier parts of the chapter, m was
presented as if referring to column vectors.

20Recall that we are working under Assumption ??, implying 0, # (.
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referred to as set-identified. In such scenarios-which generalize the cases
encountered thus far-the objectives of statistical inference may become
more intricate. For instance, it may be desirable to identify at least one ele-
ment of O, to confirm the validity of the assumptions underlying the game
that generated the statistical model in the Market Entry Game Example.
Alternatively, it may be necessary to test whether a specific * lies within
©y. More generally, it may be desirable to test whether ©,, C 0y, 0,, = O,
or ©,, N O, # 0.2

The resulting question is how to conduct inference on such set-identified
models involving inequality constraints on moment integrals. One approach
is through the technology of Empirical Likelihood (EL). This section provides
a brief overview of this methodology, focusing on its geometric intuition

rather than proofs. For this purpose, the following will be useful:

The empirical distribution, denoted as P,, of the sample is the discrete
uniform distribution over R* with support {z;,i = 1,...,n}. This descrip-
tion is not entirely precise. In essence, PP, is a collection of discrete
uniform distributions; for each possible realization of the sample, P,
is the corresponding discrete uniform distribution, supported on the
specific values taken by the sample components. Moreover, it is a ran-
dom element if the relevant measurable structures are considered; it
can be understood as a mapping from R**", equipped with its usual
Borel algebra, to the set of probability distributions over R*, equipped
with the Borel algebra induced by the topology of weak convergence.

However, such details will not concern us here. What matters is that,

210bserve that when O is a singleton, all these cases are equivalent.
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by the definition of the integral, the empirical expressions for the in-

volved moments are essentially integrals with respect to P,,; specifically,

w 21 m(zi,0) = Ep, (m(2,0)) (why?).

If P and Q are two discrete distributions over R* with the same support,

then the Kullback-Leibler (KL) divergence of Q from P is defined as:

w0~ 5 v (- (52)

1Esupp

The Dk (P||Q) is also called the relative entropy between P and Q, and
belongs to the broader category of functions on collections of probability
distributions that encode notions of "distance" and are referred to as
statistical divergences. These typically do not have the structure of
a metric (e.g., KL is not symmetric and does not satisfy the triangle
inequality), yet due to their properties, they represent certain aspects of
the geometry/topology of collections of probability distributions.*”? The
Dy, is appropriately extended to any pair of distributions over R* and
yields finite values if and only if P is absolutely continuous with respect
to Q (which is equivalent to that if Q(A) = 0 then P(A) = 0). KL satisfies
characteristic inequalities with respect to various metrics on collections
of probability distributions. For example, it is proven that the total
variation distance between P and Q-that is, the maximum absolute
difference in probabilities assigned to Borel sets-is bounded above by
a constant times the square root of D (P||Q). This observation aligns

with the earlier remark regarding the representation of aspects of the
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associated geometries by this divergence.

4t does, however, satisfy the property of being positive-definite-why?

PThe interested reader is referred to [9] for further details.
KL divergence widely appears as a component in methodologies for con-
structing statistical inference procedures. Under certain conditions, the
expected values of likelihood functions in parametric statistical models
are represented as KL divergences between the distributions involved in
the model and that corresponding to #,. This observation motivates the
question of whether it is possible to construct "likelihood functions" in semi-
parametric models using KL. The concept of empirical likelihood arises
as a response to this question. Let us attempt to examine it under the
lens of the set-identified model defined by the aforementioned equality-
inequality moment relations. Suppose we are interested in testing the

following hypothesis structure:

H()ZQe@()
H129¢®0.

which is clearly equivalent to:

Ho : E(meq(2,0)) = 04, E(ineq(2,6)) > 0y, )

Hy : E(meq(2,0)) # 04y, OF E(Mineq(2,0)) < 0g,.

Let P,, denote the collection of discrete distributions over R* that are abso-
lutely continuous with respect to PP,,. This collection includes all (potentially
stochastic) distributions whose support is some subset of the sample compo-

nents. If € ©,,, then the empirical likelihood of the aforementioned model

24



computed at ©, ££,,(0), is defined as the result of the following optimization

problem:

EL,(O) = ]{5“}%“ Dxi (P, ||P), subject to the constraints
E n

EP(mCQ<Z7 8)) = Oqu and EP(miHCQ(Zv ‘9)) > OQ2'

Hence, the value of the likelihood function at 6 results from finding
the discrete probability distribution for which the equality-inequality con-
straints are satisfied and which "deviates" the least from the empirical
distribution based on the KL divergence.

If the likelihood value is "sufficiently small," the sample value is consid-
ered evidence supporting the null hypothesis. For example, if Ep(meq(2,6)) =
04, and Ep(mineq(2,6)) > 04, for P = P,, the empirical distribution itself
supports the null hypothesis, and the likelihood value in this case is
zero (Exercise: Prove this.). Inference for the null hypothesis employs a
statistic called the Empirical Likelihood Ratio (ELR) statistic, defined as
ELR,(0) :=2nEL(A). Under assumptions such as iid data, existence of suf-
ficient moments of the random elements involved, and covariance matrix
consistency of the empirical moments satisfying equality constraints, it
is shown that the asymptotic distribution of the statistic under the null
hypothesis resembles the distribution of the minimum of a quadratic form
arising in GMME asymptotic theory when 6, is a boundary point. In this
context, H represents the positive part of the Euclidean space whose di-
mension equals the number of constraints ultimately satisfied as equalities.
The challenge is that this dimension is generally unknown, as it may exceed

¢:. However, it can be consistently estimated, and the asymptotic rejection
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region can be approximated using resampling techniques-see, for example,
[11]. Given the above, the testing procedure is straightforward: ££R,, is
computed for the given sample value, and the null hypothesis is rejected
if the resulting value lies within the approximate rejection region. It is
proven that this test is asymptotically accurate and consistent-see [4]. The
same work also proves that, under the independence framework, the test
is optimal under certain asymptotic properties not previously discussed.
These properties pertain to the rate at which probabilities defining the
accuracy and consistency characteristics converge to their respective limits.
This optimality feature makes the test particularly preferable to alternatives.
Moreover, whether extensions of the test to non-iid environments retain this
optimality is, to the best of our knowledge, an interesting and unresolved
research question.

The above framework extends to other hypothesis structures related to
previously mentioned observations on inference in such statistical models.

For instance, if we have:

HO: @**QGO
Hll 396@**19¢@0.

which is clearly equivalent to:

Hy: V0 € O,,,E(meq(2,0)) = 04y, E(1ineq(2,6)) > 0g, @)
Hy : 30 € 04, E(meq(2,0)) # 0,4, OF E(Mineq(z,0)) < 0y,.

then the test statistic supyco,  ELR, () can be used. Based on the aforemen-

tioned results, it is possible to derive the asymptotic distribution of this
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statistic under the current null hypothesis and design an asymptotically

accurate and consistent test procedure using resampling techniques.

Exersice: What would the corresponding statistic look like for the

hypothesis ©,, N O, # 0?

It should be noted that the optimizations involved in computing the afore-
mentioned statistics may not be trivial! For example, complex operational
research methodologies, such as those involving biconvex programming
problems,?? may be required for related tests in econometric models of
stochastic dominance.??

Finally, it should not be assumed that empirical likelihood techniques
are only applicable in set-identified model frameworks like those described
above. They can also be used in contexts such as those of previous sec-
tions for point estimation, hypothesis testing, etc. For further details, the

interested reader may consult [10] and the references therein.
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