
1 GMM: a brief introduction

In the context of the linear model of Instrumental Variables, we observed

that the statistical model was specified through conditions involving equal-

ities of expected values of functions of the sample. This concept is closely

tied to semiparametric models; for instance, if we are only interested in

the mean of D0, and we are somehow averse to the risk of misspecifica-

tion, it is not necessary to provide a parametric specification for the entire

distribution.1

The Instrumental Variables Estimator (IVE) essentially arose from a

relevant analogy principle given the population moment conditions; the

moments with respect to D0 were approximated by their empirical coun-

terparts, and the system was solved with respect to θ, or more generally,

an element that minimizes some norm of the vector of those empirical

moments was found. This is a potentially more complex version of a rel-

atively straightforward methodology: if we are interested in the mean of

D0 and have access to a sample of random variables following it, we can

approximate the unknown mean using the sample mean among other

methods. This methodology constitutes the Method of Moments (MoM),

a semiparametric method that broadly estimates parameters related to

moments using their empirical counterparts-see, for example, [3]. The

dimension of the parameters involved equals the number of moments used.

The Generalized Method of Moments (GMM) generalizes this approach

by allowing the number of moments to be greater than or equal to the
1This is related to the moment problem in probability theory; given a list of moments,

how can we determine the set of distributions that satisfy them.
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dimension of the parameter vector, thereby enriching the initial theory.

This, among other things, allows for the use of more information to identify

the latent θ0. This generalization was introduced by L. P. Hansen in [7]

and is particularly useful in Econometrics, where Economic Theory and

Empirical Economics often prescribe "high"-dimensional semiparametric

specifications.

This methodology also encompasses statistical inference procedures

derived from optimization, where first-order conditions take the form of

expected value equalities. For instance, approximations of Maximum Likeli-

hood Estimators (MLE) or of Quasi-Likelihood Estimators-can be considered

estimators adherent the method (GMME)-see the concept of the score esti-

mator.

Since the dimension of the moments vector does not necessarily match

the dimension of the parameter, extracting the GMME involves minimizing

the norm of the former with respect to the latter. We have already seen

this in the case of IVE. GMME is a special case of the broader framework

of optimization-based statistical inference procedures previously discussed.

In the following, we describe the relevant background2 and integrate it

into the previous framework regarding the definition and properties of

GMME. Consequently, constructing and describing the tests mentioned in

the previous section becomes straightforward and is not repeated. Instead,

we develop a specification test for the model using reasoning similar to that

in the previous section. In any case, a prototypical example of the following

is the already developed model of Instrumental Variables.

Using the general notation developed so far, let m : Rk × Θ → Rq be
2In a relatively general form but not the most general possible.
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appropriately measurable, with q ≥ p, and the model specification arises

from the moment vector E(m(z, θ0)) = 0q, where integration is with respect

to D0, assuming that the distribution of the ith k-dimensional sample

element is independent of i.3 This forms-based on the above-the model

{E(m(z, θ)) = 0q, θ ∈ Θ}, which is interpreted according to the previously

established statistical model interpretations. Thus, within the Instrumental

Variables framework, in our current context, we have m(zi, θ) = W′
i(Yi−Xiθ),

where zi is the ith k-dimensional sample element, Wi is the ith row of Wn,

Xi is the ith row of Xn, and Yi is the ith element of Yn.

To complete the background and construct the relevant objective func-

tion cn, we will take a slightly more general approach compared to the

methodology seen in the example of instrumental variables-although the

path we follow is outlined in related exercises. In this context, the matrix

determining the norm will be allowed to be stochastic and/or depend on

n. This will later enable reasoning about the statistical approximation of

its optimal choice. Thus, Wn is, for almost every possible sample value, a

strictly positive definite q× q matrix. In this theory, Wn is typically referred

to as a weighting matrix. Given this, we consider the objective function:

cn(θ,Wn) :=
1

n2

(
n∑

i=1

m(zi, θ)

)′

Wn

(
n∑

i=1

m(zi, θ)

)
, (1)

which is essentially the square of the stochastic norm Rq ∋ x → x′Wnx.
3This holds, for example, in iid settings or stationary time series environments. It

nevertheless can be generalized, yet at the cost of a more complex presentation. For
instance, the distribution over which the integration is performed could be appropriately
conditional, and m could depend on i, etc. We will not deal with such generalizations for
simplicity.
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Squaring is used as it enables properties such as differentiability and

strict convexity-in at least some cases, which, as we know from our general

theory, can facilitate the study of the estimator’s properties. The square

is evaluated based on the sample analogue of the expected value of the

moment vector, which in turn is computed at θ. The notation involving the

weighting matrix emphasizes the dependence of the examined objects on it.

We will see below that this is reasonable.

Given the objective function, and some related optimization error, the

GMME is the relevant extremum estimator (OE):

cn(θn(Wn),Wn) ≤ inf
θ∈Θ

cn(θ,Wn) + un. (2)

Conditions for existence are described in the relevant part of our general

theory. For example, when m is continuous with respect to θ for almost every

possible sample value and the parameter space is compact, the estimator

exists. In general, the estimator will also depend on the weighting matrix.

Exersice: Can you describe sufficient conditions under which the esti-

mator is independent of weighting?

Our work in the previous parts of the notes directly indicates that both

the IVE and the OLSE are examples of GMME, with the latter notably not

depending on the weighting matrix.

For reasons already explained in constructing the general theory of

extremum estimators, we proceed to the asymptotic properties of the GMME.

These will arise from the specialization of our general asymptotic theory.
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1.1 Weak Consistency

According to what is outlined in the general theory of OE, consistency

will arise through the appropriate convergence of cn to a suitable objective

function that is uniquely minimized at θ0.

The form of the objective function suggests that the limit we seek will

have the form of a quadratic expression evaluated at E(m(z, θ)), as this is

appropriately approximated by its empirical analogue 1
n

∑n
i=1m(zi, θ). The

quadratic form will be shaped by the asymptotic behavior of Wn. If this

is appropriately designed so that the limiting function is strictly convex,

then asymptotic identification will be ensured provided the moment vector

E(m(z, θ)) vanishes only at θ0. One way to obtain such a limiting objective

function is through the following high-order conditions.

Assumption 1. The following hold:

(A). m(z, θ) is continuous with respect to θ, almost for every sample value,

(B). 1
n

∑n
i=1m(zi, θ)

cp→ E(m(z, θ)),

(C). There exists a strictly positive definite non-stochastic matrix W such that

Wn
p→ W , and

(D). E(m(z, θ)) = 0q ⇔ θ = θ0.

Condition (A) ensures the continuity of cn almost surely for every sam-

ple value. Condition (B) can arise, for instance, in iid settings or under

stationarity and ergodicity, through suitable uniform LLNs or pointwise

LLNs combined with some strong property of "joint" (with respect to z)

continuity for ∥m(z, θ)∥ with respect to θ.Condition (C) can similarly arise,
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and in combination with the consistency of some initial estimator for θ0

on which it may depend-we will examine this in more detail below. The

limiting matrix could also be stochastic for the following result. Conditions

(B) and (C) imply that cn
cp→ c := (E(m(z, θ)))′W (E(m(z, θ))). This is because,

for arbitrary θ and θ⋆n → θ, due to the triangle inequality,

|cn(θn,Wn)− c(θ,W )| ≤

|cn(θn,Wn)− cn(θ,W )|+ |cn(θn,W )− c(θ,W )|.

The first term in the previous inequality, due to a submultiplicative property

of a suitable matrix norm and related properties of the Cholesky factoriza-

tion,4 is less than or equal to ∥ 1
n

∑n
i=1m(zi, θ)− E(m(z, θ))∥2∥Wn −W∥. Due

to (B), (C), and the Continuous Mapping Theorem , this converges in prob-

ability to zero. Similarly, the second term above is less than or equal to

∥ 1
n

∑n
i=1m(zi, θ)−E(m(z, θ))∥2∥W∥, which also converges in probability to zero

due to (B). Conditions (C)-(D) complete the background required for the

application of Consistency Theorem in our general theory, ensuring that c

is uniquely minimized at θ0 (why?):

Theorem 1. Let Θ be compact, un = op(1), and assume that Assumption 1

holds. Then the GMME is a weakly consistent estimator of θ0.

Exersice: Under what conditions would the application of the theorem

4We refer to properties of the Frobenius norm, which essentially extends the Euclidean
norm to matrix spaces-the interested reader may refer to ??? for further details.
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that derives consistency from pointwise convergence to a strictly convex

criterion be ensured?

For the application of the above to the case of IVE, see the related examples

and exercises in previous sections of the notes.

1.2 Rate of Convergence and Asymptotic Distribution

Following the previous section, we will aim to describe sufficient conditions

for applying our general theory regarding the determination of the rate of

convergence and the asymptotic distribution of the GMME.

We will focus on the first two sufficient conditions for our general results

to hold, as the others are not essentially related to the form of the objective

function, given its domain. We will assume that m is twice continuously

differentiable in a neighborhood of θ0, and the derivatives will be appro-

priately one-sided if θ0 is a boundary point, possessing properties such

that the local Taylor expansion of m to the second degree is valid.5 Since

the matrix Wn is constructed to be independent of θ, this means, in the

notation of our general theory,

g(θ0) = 2

(
1

n

n∑
i=1

∂m′(zi, θ0)

∂θ

)
Wn

(
1

n

n∑
i=1

m(zi, θ0)

)
,

and

q(θ⋆⋆n ) = 2

(
1

n

n∑
i=1

∂m′(zi, θ
⋆⋆
n )

∂θ

)
Wn

(
1

n

n∑
i=1

∂m(zi, θ
⋆⋆
n )

∂θ′

)

+2

[(
1

n

n∑
i=1

∂2m′(zi, θ
⋆⋆
n )

∂θ∂θj

)
Wn

1

n

n∑
i=1

m(zi, θ
⋆⋆
n )

]
j=1,...,p

.

5The interested reader is referred to [1] for a general formulation of such an assumption.
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These expressions guide us in establishing the validity of the second part of

the assumption of our general theory. Without addressing the most general

case, we limit ourselves to the following assumption:

Assumption 2. i. The term 1
n

∑n
i=1

∂m(zi,θ)
∂θ′

converges continuously in proba-

bility to a non-stochastic matrix, say ∂mθ0, of dimensions q× p, with rank

p, at θ0.

ii. For any θ⋆n → θ0, ∥ 1
n

∑n
i=1

∂2m′(zi,θ⋆n)
∂θ∂θj

∥ = Op(1), for all j = 1, . . . , p.

iii. 1√
n

∑n
i=1 m(zi, θ0)⇝ z ∼ N(0q, Vm,θ0), where the q× q matrix Vm,θ0 is positive

definite.

The convergences in 2.(i),(ii) can be satisfied via locally uniform LLNs

in iid or stationary and ergodic settings. The convergence in 2.(iii) can

be satisfied via a Central Limit Theorem like the one we have examined

previously, provided the appropriate conditions of dependence and exis-

tence of moments hold. Assumption 2.(ii) ensures that, for any related se-

quence, the term ∥
[(

1
n

∑n
i=1

∂2m′(zi,θ⋆⋆n )
∂θ∂θj

)
Wn

1
n

∑n
i=1m(zi, θ

⋆⋆
n )
]
j=1,...,p

∥ converges

in probability to 0, due to 1. Similarly, 2.(i) ensures, together with 1.C

and the Continuous Mapping Theorem , the convergence in probability of

the quadratic form ( 1
n

∑n
i=1

∂m′(zi,θ⋆⋆n )
∂θ

)Wn(
1
n

∑n
i=1

∂m(zi,θ
⋆⋆
n )

∂θ′
) to ∂m′

θ0
W∂mθ0, and

this p × p matrix has rank p. Therefore, the second part of the general

assumption in our general theory holds with J̆θ0 := ∂m′
θ0
W∂mθ0. Conse-

quently, 2.(i), (iii), 1.C, Sluysky’s Lemma, and the Continuous Mapping

Theorem ensure that for rn =
√
n, we have the Gaussian random vector

zθ0 = 2∂m′
θ0
Wz ∼ N(0p, 4∂m

′
θ0
WVm,θ0W∂mθ0). In conclusion:
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Theorem 2. If Assumptions 1, 2, and the third and fourth parts of our

general assumption hold, then the conclusions of our general theorem ap-

ply to the GMME with rn =
√
n, J̆θ0 := ∂m′

θ0
W∂mθ0, and zθ0 = 2∂m′

θ0
Wz ∼

N(0p, 4∂m
′
θ0
WVm,θ0W∂mθ0).

When θ0 lies in the interior of Θ, the above can be interpreted as

√
n(θn(Wn)− θ0)⇝ N(0p, Vθ0),

where Vθ0 := (∂m′
θ0
W∂mθ0)

−1∂m′
θ0
WVm,θ0W∂mθ0(∂m

′
θ0
W∂mθ0)

−1.

In any case, regardless of the location of the true parameter value, we

observe that when p = q, the random element −1
2
J̆θ0zθ0, which determines

the asymptotic form of the estimator, follows N(0, ((∂mθ0)
−1)′Vm,θ0(∂mθ0)

−1).

This occurs because all involved matrices are square and invertible, and

due to the properties of the inverse of a product and the commutativity

between inversion and transposition. However, this is independent of the

weighting matrix, so:

Lemma 1. When p = q, the GMME is asymptotically independent of weight-

ing.

In the case where q > p, asymptotic independence does not generally

hold. This raises the question of the optimal choice of weighting, such

that the resulting W yields the optimal asymptotic variance, regardless of

the location of the true parameter value. We will address this in the next

section.
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Exersice: Specify the above in the case of the IVE. Relevant exercises

from the previous sections may be taken into account.

1.3 Optimal Choice of Weighting

From the above, the issue of optimal selection of Wn arises to minimize

asymptotic variance.67 Based on the above results, this is trivial in the

case where p = q: in this case, any choice is optimal. But what happens

when there are more integrals in the moment condition than components

in the parameters?

We observe that for W = V −1
m,θ0

, the asymptotic variance of −1
2
J0zθ0 be-

comes (∂m′
θ0
V −1
m,θ0

∂mθ0)
−1.8 It is proven that this corresponds to the asymp-

totically optimal choice. This is because, since Vm,θ0 is positive definite,

it can be factored as a product LL′, where L is an appropriate triangular

matrix. Using this factorization, it follows that (Exercise: perform the

calculations in detail):

(∂m′
θ0
W∂mθ0)

−1∂m′
θ0
WVm,θ0W∂mθ0(∂m

′
θ0
W∂mθ0)

−1−(∂m′
θ0
V −1
m,θ0

∂mθ0)
−1 = KLL′K ′

where K := (∂m′
θ0
W∂mθ0)

−1∂m′
θ0
W − (∂m′

θ0
V −1
m,θ0

∂mθ0)
−1∂m′

θ0
V −1
m,θ0

. The matrix

6This pertains to ordering based on the positive definiteness of the difference. As
previously mentioned, the optimal choice will, by definition, have the property that the
difference between any other asymptotic variance and the optimal one will be positive
definite.

7It is noted that in what follows, the moment vector m is assumed given. We do not
address the equally important issue of the optimal selection of a moment vector when there
is availability-a problem that also relates to geometric characteristics of the distributions
forming the respective statistical model.

8We note that this collapses to the expression obtained in the case where dimensions
match.
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KLL′K ′ = (KL)(KL)′ is necessarily semi-positive definite.

The above, combined with Assumption 1.C, implies that any choice of

Wn such that it converges in probability to V −1
m,θ0

yields the asymptotically

efficient estimator given the moment vector. Given Assumption 2.(iii), any

consistent estimator of the asymptotic variance of the empirically weighted

moments’ vector scaled by
√
n and evaluated at θ0, i.e., 1√

n

∑n
i=1m(zi, θ0),

leads, through its inversion, to a consistent estimator of the optimal weight-

ing due to the Continuous Mapping Theorem . Generally, this asymptotic

variance-and therefore the optimal weighting-will depend on the unknown

θ0 (Exercise: Is this true for the case of the GMME?). In this case, construct-

ing an asymptotically efficient estimator for the variance can be facilitated

if (a) there exists a random element Vn(θ), a function of the sample and the

parameter, that converges continuously in probability to Vm,θ0 at θ0, and (b)

an initial consistent estimator of θ0, say θ△n , is available. Under (a) and (b),

through the invoked mode of convergence, Vn(θ
△
n ) will be a weakly consistent

estimator of the asymptotic variance, and consequently, V −1
n (θ△n ) will be a

weakly consistent estimator of the asymptotically optimal weighting.

The estimator θ△n can be chosen as θn(W ), where W is an arbitrary

weighting matrix, independent of θ0, e.g., W = Iq.9 In this case, the GMME

θn(V
−1
n (θn(W ))) is obtained through a two-step optimization process: in the

first step, θn(W ) is calculated, and in the second, θn(V −1
n (θn(W ))) is derived.

This estimator is called the 2-GMME. Clearly, starting from W , this process

can be extended to an arbitrary number of steps: if m ≥ 2, the m-GMME

θ
(m)
n is defined as θn(V

−1
n (θ

(m−1)
n )), with θ

(1)
n := θn(W ).

Another variant, which does not initially require an estimation of θ0, al-
9Based on our assumptions, consistency does not require an optimal choice of weighting.
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lows Vn to depend freely on θ within the criterion being optimized. This leads

to the continuously updated estimator (CUE), defined by the approximate

minimization:

1

n2
(

n∑
i=1

m(zi, θ
CUE
n ))′V −1

n (θCUE
n )(

n∑
i=1

m(zi, θ
CUE
n ))

≤ inf
θ∈Θ

1

n2
(

n∑
i=1

m(zi, θ))
′V −1

n (θ)(
n∑

i=1

m(zi, θ)) + un.

Try to extend Assumptions 1 and 2 appropriately to show that the 2-

GMME, m-GMME, and CUE are asymptotically equivalent-i.e., they fall

under Theorem 2 with the same, optimal asymptotic variance.10

The form that Vn(θ) may take is partly determined by Assumption 2.(iii)

and strongly depends on the properties of the sequence (m(zi, θ))i∈N. For

instance, in an iid setting, or more generally in a stationary and ergodic

setting where additionally the conditional covariances appearing in the

CLT we have examined in previous section of the notes are zero, a property

of uniform integrability that holds continuously at θ0 can show that the

stochastic matrix 1
n

∑n
i=1 m(zi, θ)m

′(zi, θ) converges continuously in proba-

bility to Vm,θ0 at θ0, and thus ( 1
n

∑n
i=1m(zi, θ

△
n )m

′(zi, θ
△
n ))

−1 is a consistent

estimator of the optimal weighting.

When this is not the case, the above must be replaced by an estimator

that approximates the mode at which the asymptotic variance is affected

by the dependence between m(zi, θ) and m(zj, θ), for i ̸= j as n → ∞.11

10However, they may differ in interesting ways with respect to finer asymptotic properties
that are not examined in this book. The interested reader is referred, for example, to [8].

11The interested reader may consult [2] for a related methodology that applies in time-
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We conclude this section with the issue of consistently estimating the

optimal asymptotic variance. This may be of interest, among other things,

for the application of hypothesis testing procedures such as those developed

in the asymptotic testing theory we have examined and the exercises therein.

Due to Assumption 2.(i) and the construction above, it follows via the

Continuous Mapping Theorem (Exercise: explain the details!) that

((
1

n

n∑
i=1

∂m′(zi, θ
△
n )

∂θ
)V −1

n (θ△n )(
1

n

n∑
i=1

∂m(zi, θ
△
n )

∂θ′
))−1

is a consistent estimator of the optimal asymptotic variance that arises in

our framework.

1.4 A Test for Partial Specification

In this section, we will challenge the basic assumption of correct model

specification that lies at the core of our investigations. The condition

E(m(z, θ0)) = 0q is inherent in the specification of the model. Is it possible

to use the asymptotically optimal GMME to statistically test whether this

condition is ultimately correct? Clearly, we are dealing with a hypothesis

structure that does not fall under the ones which we addressed in our

general framework. The current hypotheses can be described as follows:

H0 : E(m(z, θ)) = 0q, ∃!θ ∈ Θ

H1 : E(m(z, θ)) ̸= 0q, ∀θ ∈ Θ.
(3)

series environments and addresses a broad range of types of temporal dependence.
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Under the null hypothesis, there exists a point in the parameter space

that satisfies the system of equality constraints-under the identification

condition used this will necessarily be unique. Under the alternative

hypothesis, there will be no such point, either because one does not exist in

general in Rp, in which case the specification error is global,12 or because θ0

has been incorrectly excluded via an inappropriate choice of the parameter

space Θ. Note that the asymptotic theory we have outlined does not generally

hold under the alternative hypothesis. The limit theory could however

be modified to describe the limiting behavior of the estimator under the

alternative hypothesis. This modification is not very involved in the second

case of specification error.

For the design of a testing procedure for the above hypotheses, we

will focus on the asymptotic behavior of the random vector of empirical

moments evaluated at the estimator13 1√
n

∑n
i=1m(zi, θn) under Assumptions

1, and 2 and correct specification. We observe that due to the assumed

differentiability and given that θ0 is an interior point, we will have that,

with probability converging to 1,

1√
n

n∑
i=1

m(zi, θn) =
1√
n

n∑
i=1

m(zi, θ0) +
1

n

n∑
i=1

∂m(zi, θ
⋆
n)

∂θ′
)
√
n(θn − θ0),

where, as is known, θ⋆n lies on the line segment connecting the estimator

to θ0, and thus, due to Theorem 1, will converge in probability to θ0 (why?).
12That is, the specific system of moments is not satisfied.
13For simplicity, the dependence of the estimator on the weighting matrix will not be

explicitly stated.
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This, combined with Assumption 2.(i), implies that

1

n

n∑
i=1

∂m(zi, θ
⋆
n)

∂θ′
)

p→ ∂mθ0 .

Additionally, Assumption 2.(iii), combined with Theorem 2, implies the joint

convergence(
1√
n

n∑
i=1

m(zi, θ0),
√
n(θn − θ0)

)
⇝
(
z,−∂mθ0(∂m

′
θ0
V −1
m,θ0

∂mθ0)
−1∂m′

θ0
V −1
m,θ0

z
)
.

This, along with Slutsky’s Lemma and the Continuous Mapping Theorem ,

ultimately implies that when the model is well-specified and under 1 and 2,

1√
n

n∑
i=1

m(zi, θn)⇝ N(0q, (Iq −Mθ0)Vm,θ0(Iq −Mθ0)
′), (4)

where

Mθ0 := ∂mθ0(∂m
′
θ0
V −1
m,θ0

∂mθ0)
−1∂m′

θ0
V −1
m,θ0

.

Exersice: Show that Mθ0 is idempotent.a Then show that Iq − Mθ0 is

idempotent.
aThat is, it satisfies M2

θ0
= Mθ0 .

Exersice: Show that tr(Mθ0) = p. Then show that tr(Iq −Mθ0) = q − p.

The above exercises outline the proof of:

Lemma 2. rank((Iq −Mθ0)Vm,θ0(Iq −Mθ0)
′) = q − p.
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Proof. Since Iq −Mθ0 is idempotent, its eigenvalues can only take the values

0 or 1. By construction, their sum equals the trace of the matrix, which is

q − p. Therefore, the matrix necessarily has q − p unit eigenvalues and p

zero eigenvalues. Consequently, its rank equals q − p, and this is inherited

(why?) by the rank of (Iq −Mθ0)Vm,θ0(Iq −Mθ0)
′.

When p = q, (Iq − Mθ0)Vm,θ0(Iq − Mθ0)
′ is zero, so 4 describes a non-

degenerate matrix only when p > q. We therefore proceed by focusing

exclusively on the case where p > q. The above are not useful in cases where

the number of parameter components matches the number of conditions.

The construction of the desired test may be facilitated if-using the above

asymptotic theory-we manage to construct a test statistic with a quadratic

form, derive a procedure that has an asymptotic chi-squared distribution

under the null hypothesis, and proceed as in our general OE theory to

determine the asymptotic rejection region. The problem is that even in the

case where p < q, the above asymptotic distribution is partially degenerate

since it assigns zero probability to a p-dimensional subspace of Rp; its

variance is not an invertible matrix.

To construct the test, as outlined earlier, we need the following concept

of the generalized inverse matrix, based on which the required quadratic

form will be constructed:

If A is an m× n matrix, then the Moore-Penrose generalized inverse of

A, denoted A+, is defined as any n×m matrix satisfying:a

(i). AA+A = A, (ii). A+AA+ = A+, (iii). (AA+)′ = AA+,
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(iv). (A+A)′ = A+A, (v). rank(A) = rank(A+).

It can be shown-see Theorem 2.1 in [5]-that a matrix satisfying the

above always exists and is unique. For example, if A = 0m×n, then

A+ = 0n×m, or if A =

 x1

0

 with x1 ̸= 0, then A+ =
(

1
x1
, 0
)

. It is clear

that if A is invertible, then its unique generalized inverse is the usual

inverse. It is also shown-see Theorem 3.2 in the aforementioned work-

that if x ∼ N(0q, V ) and 0 < rank(V ) ≤ q,b then x′V +x ∼ χ2
rank(V ), which

generalizes a previous similar observation in our examination of the

behavior of quadratic forms w.r.t. Gaussian random vectors.
aAny matrix satisfying (i) is called a generalized inverse. It can be shown that the

generalized inverse is not generally unique. This is because such a matrix is restricted
to act as an isomorphism between im(A) and Rm/ker(A), while acting arbitrarily on
Rn − im(A). The remaining conditions enforce uniqueness, which arises via solving
an optimization problem. For y ∈ Rn − im(A), A+y is obtained by finding the unique
projection of y onto the closed and convex im(A) and then inverting the projection
through the invertible part of A.

bThe comment on non-uniqueness tells us that rank(A+A) = rank(A). Also, from
(i), we obtain A+AA+A = A+A, so A+A is idempotent.

From the above, the construction of a consistent estimator for the op-

timal weighting matrix described in Section 1.3, Slutsky’s Lemma, and

the Continuous Mapping Theorem , it follows-using the objects from the

aforementioned section-that:

Lemma 3. Under Assumptions 1 and 2, if the null hypothesis in 7 holds,

and if θ0 is in the interior of Θ, then for the random variable

Jn :=
1

n
(

n∑
i=1

m(zi, θn))
′((Iq −Mn)Vn(Iq −Mn)

′)+(
n∑

i=1

m(zi, θn)),
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with14

Mn := (
1

n

n∑
i=1

∂m(zi, θn)

∂θ′
)×

((
1

n

n∑
i=1

∂m′(zi, θn)

∂θ
)V −1

n (
1

n

n∑
i=1

∂m(zi, θn)

∂θ′
))−1×

(
1

n

n∑
i=1

∂m′(zi, θn)

∂θ
)V −1

n ,

and Vn the respective weakly consistent estimator15 of Vm,θ0, it holds that:

Jn ⇝ χ2
q−p. (5)

Proof. The above partially demonstrate the validity of 5. The uniqueness

of the Moore-Penrose inverse, combined with the fact that the rank of

(Iq − Mn)Vn(Iq − Mn)
′ necessarily matches that of (Iq − Mθ0)Vm,θ0(Iq − Mθ0)

′

(Exercise: prove this!), can be shown to imply that the first converges in

probability to the second.16 Thus, 5 ultimately follows.

The above allows us to construct the following hypothesis test, commonly

referred to as the J-test:
14Note that given the extraction of the estimator, there is no need to use the auxiliary

θ△n -why?
15See Section 1.3.
16The interested reader may consult Corollary 8 in [12], or think in terms of the conver-

gence of solutions in sequences of strictly convex optimization problems, similarly to our
relevant general consistency theorem regarding convex criteria!
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Algorithm 1 J-Test

1. Choose a significance level α ∈ (0, 1).

2. Given α, find

qα := inf

{
x ∈ (0,+∞) :

∫ x

0

z
q−p
2

−1

2q−p/2Γ( q−p
2
)
exp (−z

2
)dz ≥ 1− α

}
.

3. Define the rejection region for H0 as the interval (q1−α,+∞).

4. Evaluate Jn on the sample value and reject H0 if and only if Jn ∈
(q1−α,+∞).

Based on the Lemma 3, it is easily proven:

Theorem 3. Under Assumptions 1 and 2, if the null hypothesis in 7 holds,

and if θ0 is in the interior of Θ, then the J-test is asymptotically exact.

Exersice: How does the above theorem change if θ0 lies on the boundary

of the parameter space?

Exersice: What is the form of the hypotheses structure anf of Jn in the

case of IVE?

When the null hypothesis does not hold, we cannot say much about

the asymptotic behavior of Jn unless further assumptions are made about

the specification error of the model and the asymptotic behavior of the

estimator under this error. For example, if the conditions are not globally

misspecified but there exists a unique θ0 ∈ Rp −Θ that satisfies them, then

under Assumption 1.A, B, and provided that Θ is closed and convex, and
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the limiting criterion is strictly convex, it can be shown that θn
p→ θ00, a

unique element of Θ. If in Assumption 2.(i), (ii), θ0 is replaced with θ00,

Assumption 2.(iii) is modified to

1√
n

n∑
i=1

(m(zi, θ00)− E(m(z0, θ00)))⇝ z ∼ N(0q, Vm,θ00),

with the q × q matrix Vm,θ00 strictly positive definite, and E(m(z0, θ00)) not

in the kernel of the corresponding matrix (Iq −Mθ00)Vm,θ00(Iq −Mθ00)
′, then

Jn diverges to +∞ (Exercise: prove this!), and thus the procedures is

asymptotically consistent.

When the null hypothesis is not valid, and the identification condition

fails outside the designated parameter space,17 then the limiting behavior of

the statistic generally becomes more complicated, although consistency may

be guaranteed under conditions that take care the behavior of accumulation

points. For instance, if every subsequence of the estimator converges to a

non-stchastic parameter value inside Θ,18 then every subsequence of the

statistic diverges to infinity, rendering the test consistent.

2 A Glance at Empirical Likelihood

The example about the Market Entry Game that we have previously en-

countered, was not explicitly addressed. In this example, the statistical

model involves relations defined through integrals-moments, but unlike

other examples, these relations are partially inequalities. Generally, such
17Something that can be perceived to include as a special case the Θc = ∅ one.
18that may correspond to a parameter value in the alternative hypothesis that satisfies

the population moment conditions.
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a model can be described by systems of inequality-equality equations of

the form E(meq(z, θ)) = 0q1 , E(mineq(z, θ)) ≥ 0q2. The function meq is defined

as Rk ×Θ → Rq1 and corresponds to the part of the vector-valued function

that satisfies the equality moment conditions. Similarly, mineq is defined

as Rk ×Θ → Rq2 and corresponds to the part of the vector-valued function

satisfying the inequality moment conditions; the vector inequality is in-

terpreted component-wise, meaning that E(mineq(z, θ)) ≥ 0q2 implies every

component of E(mineq(z, θ)) is non-negative. Clearly, m = (meq,mineq) and

q1+q2 = q.19 Thus, in this Market Entry Game Example, we have meq(z, θ) :=

(Z1Z2 − (1 − θ1)(1 − θ2), Z1(1 − Z2) − (1 − θ1)θ2), mineq(z, θ) := θ2 − Z1(1 − Z2),

q1 = 2, q2 = 1.

In such cases-commonly encountered in Econometrics-and assuming

proper specification, it is reasonable to expect multiple parameter val-

ues satisfying the system of equations and inequalities. If this is the

case, the conditions for asymptotic identification become vacuous; θ =

θ0 ⇒ E(meq(z, θ)) = 0q1 , E(mineq(z, θ)) ≥ 0q2, but the converse is not true:

E(meq(z, θ)) = 0q1 , E(mineq(z, θ)) ≥ 0q2 ⇏ θ = θ0. Incidentally, deriving the

GMME for such a model is feasible, though the estimator may exhibit com-

plex asymptotic behavior. In this context, Assumption 1.C would not hold,

even if 1.A-B are satisfied, potentially leading to different stochastic limits

for subsequences of θn.

In these models, there exists a set Θ0 ⊂ Θ such that θ ∈ Θ0 ⇔ E(meq(z, θ)) =

0q1 , E(mineq(z, θ)) ≥ 0q2.20 Since Θ0 is not a singleton, the statistical model is
19The vector notation here is used somewhat loosely; it is relatively accurate when

the function values take the form of row vectors. In earlier parts of the chapter, m was
presented as if referring to column vectors.

20Recall that we are working under Assumption ??, implying Θ0 ̸= ∅.
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referred to as set-identified. In such scenarios-which generalize the cases

encountered thus far-the objectives of statistical inference may become

more intricate. For instance, it may be desirable to identify at least one ele-

ment of Θ0 to confirm the validity of the assumptions underlying the game

that generated the statistical model in the Market Entry Game Example.

Alternatively, it may be necessary to test whether a specific θ⋆ lies within

Θ0. More generally, it may be desirable to test whether Θ⋆⋆ ⊂ Θ0, Θ⋆⋆ = Θ0,

or Θ⋆⋆ ∩Θ0 ̸= ∅.21

The resulting question is how to conduct inference on such set-identified

models involving inequality constraints on moment integrals. One approach

is through the technology of Empirical Likelihood (EL). This section provides

a brief overview of this methodology, focusing on its geometric intuition

rather than proofs. For this purpose, the following will be useful:

The empirical distribution, denoted as Pn, of the sample is the discrete

uniform distribution over Rk with support {zi, i = 1, . . . , n}. This descrip-

tion is not entirely precise. In essence, Pn is a collection of discrete

uniform distributions; for each possible realization of the sample, Pn

is the corresponding discrete uniform distribution, supported on the

specific values taken by the sample components. Moreover, it is a ran-

dom element if the relevant measurable structures are considered; it

can be understood as a mapping from Rk×n, equipped with its usual

Borel algebra, to the set of probability distributions over Rk, equipped

with the Borel algebra induced by the topology of weak convergence.

However, such details will not concern us here. What matters is that,

21Observe that when Θ0 is a singleton, all these cases are equivalent.
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by the definition of the integral, the empirical expressions for the in-

volved moments are essentially integrals with respect to Pn; specifically,
1
n

∑n
i=1 m(zi, θ) = EPn(m(z, θ)) (why?).

If P and Q are two discrete distributions over Rk with the same support,

then the Kullback-Leibler (KL) divergence of Q from P is defined as:

DKL(P||Q) :=
∑

i∈supp

log

(
P({i})
Q({i})

)
P({i}) = EP

(
log

P(z)
Q(z)

)
.

The DKL(P||Q) is also called the relative entropy between P and Q, and

belongs to the broader category of functions on collections of probability

distributions that encode notions of "distance" and are referred to as

statistical divergences. These typically do not have the structure of

a metric (e.g., KL is not symmetric and does not satisfy the triangle

inequality), yet due to their properties, they represent certain aspects of

the geometry/topology of collections of probability distributions.ab The

DKL is appropriately extended to any pair of distributions over Rk and

yields finite values if and only if P is absolutely continuous with respect

to Q (which is equivalent to that if Q(A) = 0 then P(A) = 0). KL satisfies

characteristic inequalities with respect to various metrics on collections

of probability distributions. For example, it is proven that the total

variation distance between P and Q-that is, the maximum absolute

difference in probabilities assigned to Borel sets-is bounded above by

a constant times the square root of DKL(P||Q). This observation aligns

with the earlier remark regarding the representation of aspects of the
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associated geometries by this divergence.
aIt does, however, satisfy the property of being positive-definite-why?
bThe interested reader is referred to [9] for further details.

KL divergence widely appears as a component in methodologies for con-

structing statistical inference procedures. Under certain conditions, the

expected values of likelihood functions in parametric statistical models

are represented as KL divergences between the distributions involved in

the model and that corresponding to θ0. This observation motivates the

question of whether it is possible to construct "likelihood functions" in semi-

parametric models using KL. The concept of empirical likelihood arises

as a response to this question. Let us attempt to examine it under the

lens of the set-identified model defined by the aforementioned equality-

inequality moment relations. Suppose we are interested in testing the

following hypothesis structure:

H0 : θ ∈ Θ0

H1 : θ /∈ Θ0.

which is clearly equivalent to:

H0 : E(meq(z, θ)) = 0q1 , E(mineq(z, θ)) ≥ 0q2

H1 : E(meq(z, θ)) ̸= 0q1 , or E(mineq(z, θ)) < 0q2 .
(6)

Let Pn denote the collection of discrete distributions over Rk that are abso-

lutely continuous with respect to Pn. This collection includes all (potentially

stochastic) distributions whose support is some subset of the sample compo-

nents. If θ ∈ Θ⋆⋆, then the empirical likelihood of the aforementioned model
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computed at Θ, ELn(θ), is defined as the result of the following optimization

problem:

ELn(θ) := min
P∈Pn

DKL(Pn||P), subject to the constraints

EP(meq(z, θ)) = 0q1 ,and EP(mineq(z, θ)) ≥ 0q2 .

Hence, the value of the likelihood function at θ results from finding

the discrete probability distribution for which the equality-inequality con-

straints are satisfied and which "deviates" the least from the empirical

distribution based on the KL divergence.

If the likelihood value is "sufficiently small," the sample value is consid-

ered evidence supporting the null hypothesis. For example, if EP(meq(z, θ)) =

0q1 , and EP(mineq(z, θ)) ≥ 0q2 for P = Pn, the empirical distribution itself

supports the null hypothesis, and the likelihood value in this case is

zero (Exercise: Prove this.). Inference for the null hypothesis employs a

statistic called the Empirical Likelihood Ratio (ELR) statistic, defined as

ELRn(θ) := 2nEL(θ). Under assumptions such as iid data, existence of suf-

ficient moments of the random elements involved, and covariance matrix

consistency of the empirical moments satisfying equality constraints, it

is shown that the asymptotic distribution of the statistic under the null

hypothesis resembles the distribution of the minimum of a quadratic form

arising in GMME asymptotic theory when θ0 is a boundary point. In this

context, H represents the positive part of the Euclidean space whose di-

mension equals the number of constraints ultimately satisfied as equalities.

The challenge is that this dimension is generally unknown, as it may exceed

q1. However, it can be consistently estimated, and the asymptotic rejection
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region can be approximated using resampling techniques-see, for example,

[11]. Given the above, the testing procedure is straightforward: ELRn is

computed for the given sample value, and the null hypothesis is rejected

if the resulting value lies within the approximate rejection region. It is

proven that this test is asymptotically accurate and consistent-see [4]. The

same work also proves that, under the independence framework, the test

is optimal under certain asymptotic properties not previously discussed.

These properties pertain to the rate at which probabilities defining the

accuracy and consistency characteristics converge to their respective limits.

This optimality feature makes the test particularly preferable to alternatives.

Moreover, whether extensions of the test to non-iid environments retain this

optimality is, to the best of our knowledge, an interesting and unresolved

research question.

The above framework extends to other hypothesis structures related to

previously mentioned observations on inference in such statistical models.

For instance, if we have:

H0 : Θ⋆⋆ ⊆ Θ0

H1 : ∃θ ∈ Θ⋆⋆ : θ /∈ Θ0.

which is clearly equivalent to:

H0 : ∀θ ∈ Θ⋆⋆,E(meq(z, θ)) = 0q1 , E(mineq(z, θ)) ≥ 0q2

H1 : ∃θ ∈ Θ⋆⋆,E(meq(z, θ)) ̸= 0q1 , or E(mineq(z, θ)) < 0q2 .
(7)

then the test statistic supθ∈Θ⋆⋆
ELRn(θ) can be used. Based on the aforemen-

tioned results, it is possible to derive the asymptotic distribution of this
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statistic under the current null hypothesis and design an asymptotically

accurate and consistent test procedure using resampling techniques.

Exersice: What would the corresponding statistic look like for the

hypothesis Θ⋆⋆ ∩Θ0 ̸= ∅?

It should be noted that the optimizations involved in computing the afore-

mentioned statistics may not be trivial! For example, complex operational

research methodologies, such as those involving biconvex programming

problems,22 may be required for related tests in econometric models of

stochastic dominance.23

Finally, it should not be assumed that empirical likelihood techniques

are only applicable in set-identified model frameworks like those described

above. They can also be used in contexts such as those of previous sec-

tions for point estimation, hypothesis testing, etc. For further details, the

interested reader may consult [10] and the references therein.
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