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% Non-Linear GMM Estimation with J-Test in MATLAB
clear; clc; rng(42);

% Simulated Data

N = 500; % Sample size

family_size = randi([1, 5], N, 1); % Instrument 1

non_labour_income = normrnd(20000, 5000, N, 1); % Instrument 2
education = randi([8, 20], N, 1); % Instrument 3

Z = [family_size, non_labour_income, education]; % Instrument matrix

% True Parameters
theta_true = [0.05, 0.1]; % [thetal, theta2]

% Generate Endogenous Variable (hours worked)
hours = 40 + 2 * family_size - 0.001 * non_labour_income + 0.5 * randn(N, 1);

% Generate Wages (dependent variable)
epsilon = normrnd(0, 100, N, 1);
wage = exp(theta_true(1) * hours + theta_true(2) * education) + epsilon;

% Define the moment conditions

function g = gmm_moments(theta, wage, hours, education, 2)
% Residual
residual = wage - exp(theta(1) * hours + theta(2) * education);
% Moment conditions
g = (Z' * residual) / length(wage);

end

% Define the GMM objective function
function Q = gmm_objective(theta, wage, hours, education, Z, W)
% Compute moments
g = gmm_moments(theta, wage, hours, education, Z);
% Compute GMM objective
Q=9g'"W~g;
end

% Initial parameter guesses
theta_init = [0.01, 0.01];

% Step 1: Use identity weighting matrix

W_identity = eye(size(Z, 2));

options = optimoptions(‘fminunc', 'Display', 'iter', 'Algorithm', 'quasi-newton');

[theta_step1, Q_step1] = fminunc(@(theta) gmm_objective(theta, wage, hours, education, Z, W_identity), theta_init, options);

% Step 2: Update weighting matrix using residuals

g_step1 = gmm_moments(theta_step1, wage, hours, education, 2);
S_hat = cov(g_step1'); % Variance-covariance of moment conditions
W_optimal = inv(S_hat); % Optimal weighting matrix

% Step 3: Re-estimate using optimal weighting matrix
[theta_step2, Q_step2] = fminunc(@(theta) gmm_objective(theta, wage, hours, education, Z, W_optimal), theta_step1, options);

% Compute the J-statistic

g_step2 = gmm_moments(theta_step2, wage, hours, education, 2);
J_stat = N * (g_step2' * W_optimal * g_step2); % J-statistic

df = size(Z, 2) - length(theta_step2); % Degrees of freedom
p_value = 1 - chi2cdf(J_stat, df);

% Display results

fprintf('Estimated Parameters (Two-Step GMM):\n');

fprintf('Theta_1: %.4f, Theta_2: %.4f\n", theta_step2(1), theta_step2(2));
fprintf("\nd-Test for Overidentifying Restrictions:\n");

fprintf('J-statistic: %.4f\n', J_stat);

fprintf('Degrees of Freedom: %d\n', df);

fprintf('P-value: %.4f\n', p_value);



import numpy as np ’Qg n QO( M
flom scipyerats import chiz Stmcho\aou‘ {ve G\
# Simulated data eww%n . wd eke’

np.random.seed(42)

N = 500

family_size = np.random.randint(1, 5, N) # Instrument 1 s .

non_labour_income = np.random.normal(20000, 5000, N) # Instrument 2 - %e | Cf- w
education = np.random.randint(8, 20, N) # Instrument 3

Z = np.column_stack((family_size, non_labour_income, education)) # Instrument matrix eus Mﬂ_

# True parameters
theta_true = [0.05, 0.1] # [thetal, theta2]

# Generate hours worked (endogenous variable)
hours = 40 + 2 * family_size - 0.001 * non_labour_income + 0.5 * np.random.normal(0, 1, N)

# Generate wages (dependent variable)
epsilon = np.random.normal(0, 100, N)
wage = np.exp(theta_true[0] * hours + theta_true[1] * education) + epsilon

# Define the moment conditions
def gmm_moments(theta, wage, hours, education, Z):
thetal, theta2 = theta
residual = wage - np.exp(thetal * hours + theta2 * education)
moments = Z.T @ residual / len(wage)
return moments

# Define the GMM objective function

def gmm_objective(theta, wage, hours, education, Z, W):
moments = gmm_moments(theta, wage, hours, education, 2)
return moments.T @ W @ moments

# Initial parameter guesses
theta_init = [0.01, 0.01]

# Step 1: Use identity weighting matrix

W_identity = np.eye(Z.shape[1])

result_step1 = minimize(gmm_objective, theta_init, args=(wage, hours, education, Z, W_identity), method='BFGS')
theta_step1 = result_step1.x

# Step 2: Update the weighting matrix using estimated residuals
moments_step1 = gmm_moments(theta_step1, wage, hours, education, Z)
S_hat = np.cov(moments_step1) # Variance of the moment conditions
W_optimal = np.linalg.inv(S_hat) # Optimal weighting matrix

# Step 3: Re-estimate using optimal weighting matrix
result_step2 = minimize(gmm_objective, theta_step1, args=(wage, hours, education, Z, W_optimal), method='BFGS')
theta_step2 = result_step2.x

# Compute the J-statistic

moments_step2 = gmm_moments(theta_step2, wage, hours, education, Z)

J_stat = len(wage) * moments_step2.T @ W_optimal @ moments_step2 # J-statistic
df = Z.shapel[1] - len(theta_step2) # Degrees of freedom

p_value = 1 - chi2.cdf(J_stat, df)

# Print Results

print("Estimated Parameters (Two-Step GMM):")

print(f"Theta_1: {theta_step2[0]:.4f}, Theta_2: {theta_step2[1]:.4f}")
print("\nJ-Test for Overidentifying Restrictions:")

print(f"J-statistic: {J_stat:.4f}")

print(f"Degrees of Freedom: {df}")

print(f"P-value: {p_value:.4f}")



