

# A Labour Econometric Example

## for GMM

Consider the case where the interest lies in the determination of the conditional expectation of wages, or an exponential function of hours worked and education.

It is thus assumed that for any individual  $i$ , her wage  $y_i$ , has a conditional, on the hours worked  $x_{1i}$ , and the education years

$$x_{2i}$$
 of the form  $\mathbb{E}(y_i | x_{1i}, x_{2i}) =$

$= \exp(\theta_{10} x_{1i} + \theta_{20} x_{2i})$ . A sample generated by  $n$  individuals is available,

of the form  $(Y_n, X_n)$  where

$$Y_n = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}, \quad X_n = \begin{pmatrix} x_{11} & x_{21} \\ x_{1n} & x_{22} \\ \vdots & \\ x_{1n} & x_{2n} \end{pmatrix},$$

the random elements  $(y_i, x_{1i}, x_{2i})$ ,  $i = 1, \dots, n$

independent, and given that the vector

$$\theta_0 = \begin{pmatrix} \theta_{10} \\ \theta_{20} \end{pmatrix}$$
 is latent, the statistical /

econometric problem is the approximation of

$\theta_0$ , from the information present in the sample

and the statistical model to be determined

below: it is assumed that  $\begin{pmatrix} x_{11} \\ \vdots \\ x_{1n} \end{pmatrix}$  is observed

with measurement error which implies that

$$\text{in the relation } y_i = \exp(x_{1i}\theta_0) + \varepsilon_i$$

$E(\epsilon_i | x_{li}) \neq 0$  at least for some  $i$ .

This would result into inconsistency for an estimator as NLLSE.

It is also assumed that a sample of instruments are observed, without measurement error,  $\mathbf{W}_n = \begin{pmatrix} w_{11} & w_{12} & x_{21} \\ w_{12} & w_{22} & x_{22} \\ \vdots & \vdots & \vdots \\ w_{1n} & w_{2n} & x_{in} \end{pmatrix}$  where

$w_{ri}$  is the family size of individual  $i$ ,  
and  $w_{zi}$  is the non labour income of this individual\*. The analyst reasonably expects

that  $E(\epsilon_i | w_{ri}) = 0$   $i=1, \dots, n$ . Hence

See employ the following IV linear  
exponential semi-parametric (why?)

\*  $(\epsilon_i, x_{li}, x_{zi}, w_{ri}, w_{zi})_{i=1, \dots, n}$  are also assumed to have iid rows

$$\text{Model } V_n = \exp(X_n \theta) + \epsilon_n$$

$$\text{and } \mathbb{E}(\epsilon_n | \sigma(\omega_n)) = 0_{n \times L}$$

and  $\Theta \in \mathbb{Q}$ , which is assumed without much loss of generality to be a non-empty compact subset of  $\mathbb{R}^3$ , and  $\theta_0 \in \Theta$ ; also remember that

$$\exp(X) := \begin{pmatrix} \exp(x_1) \\ \exp(x_2) \\ \exp(x_3) \end{pmatrix}.$$

Given this structure, the 2-GMFE is considered as:

$$\hat{\theta}_n := \underset{\theta \in \mathbb{R}^3}{\operatorname{argmin}} \left( V_n' - \exp(X_n \theta) \right) W_n W_k' \left( V_n - \exp(X_n \theta) \right)$$

$$\hat{\theta}_n (V_n'(\hat{\theta}_n)) =$$

$$\underset{\theta \in \mathbb{R}^3}{\operatorname{argmin}} \left( V_n' - \exp(X_n \theta) \right) W_n V_n'(\hat{\theta}_n) W_k' \left( V_n - \exp(X_n \theta) \right)$$

where (due to independence)

$$V_n(\hat{\theta}_n) :=$$

$$\frac{1}{n} \sum_{i=1}^n (y_{i(i)} - \exp(x_{i(i)} \hat{\theta}_n))^2 W_{i(i)} W_{i(i)}'$$
$$(y_{i(i)} - \exp(x_{i(i)} \hat{\theta}_n))$$

where  $W_{i(i)} = (w_{1i} \ w_{2i} \ x_{2i})$ .

Regarding the asymptotic properties  
of the estimator in this particular case:

-  $W(\hat{\theta}, \theta) := W(V - \exp(x\theta))$  which is con-  
tinuous in  $\theta$  w.r.t.  $\mathbf{z} = (V, \mathbf{x}, \mathbf{w})$

-  $\mathbb{E}((W_{i(i)} (y_{i(i)} - \exp(x_{i(i)} \theta)))^2) =$

$$= \mathbb{E} \left[ \left\| \begin{pmatrix} w_{1i} \\ w_{2i} \\ w_{3i} \end{pmatrix} (y_{i(i)} - \exp(x_{1i}\theta_1 + x_{2i}\theta_2)) \right\|^2 \right] =$$

$$= \mathbb{E} \left[ \sum_{i=1}^3 (w_{iL}(y_i - \exp(x_{11}\theta_1 + x_{12}\theta_2)))^2 \right]^{1/2}, \text{ and}$$

this is less than or equal to

$$[(\mathbb{E}|w_{iL}|^2) \geq \mathbb{E}|w_i|^2, x \rightarrow \infty \text{ and } \mathbb{E}(\cdot) \text{ are monotone}]$$

$$(*) \quad \sum_{i=1}^3 \mathbb{E} \left[ |w_{iL}(y_L - \exp(x_{11}\theta_1 + x_{12}\theta_2))| \right]$$

$$\text{and since } y_L = \exp(x_{11}\theta_1 + x_{12}\theta_2) + \varepsilon_L$$

$$(*) \text{ is less than or equal to } [|\alpha + b| \leq |\alpha| + |b|]$$

$$\begin{aligned} & \sum_{i=1}^3 \mathbb{E} \left[ |w_{iL}\varepsilon_L| + |w_{iL}\exp(x_{11}\theta_1 + x_{12}\theta_2)| \right. \\ & \quad \left. + |w_{iL}\exp(x_{11}\theta_1 + x_{12}\theta_2)| \right] \\ = & \sum_{i=1}^3 \mathbb{E} [|w_{iL}\varepsilon_L|] + \sum_{i=1}^3 |w_{iL}\exp(x_{11}\theta_1 + x_{12}\theta_2)| \\ & + \sum_{i=1}^3 \mathbb{E} [|w_{iL}\exp(x_{11}\theta_1 + x_{12}\theta_2)|] \end{aligned}$$

$$\text{Hence if } \max_{i=1, \dots, 3} \mathbb{E} [|w_{iL}\varepsilon_L|] + \max_{i=1, \dots, 3} \mathbb{E} [|w_{iL}\exp(x_{11}\theta_1 + x_{12}\theta_2)|]$$

$\leftarrow \infty$   $\forall \theta \in \Theta$ , due to the iidness and

the standard LLN,

$$\frac{1}{n} \sum_{i=1}^n \mathbf{w}_{(i)}' (\mathbf{v}_i - \exp(\mathbf{x}_{(i)} \theta)) \xrightarrow{P} \mathbb{E} [\mathbf{w}_{(1)} (\mathbf{v}_1 - \exp(\mathbf{x}_{(1)} \theta))]$$

$$\mathbb{E} [\mathbf{w}_{(1)} (\mathbf{v}_1 - \exp(\mathbf{x}_{(1)} \theta))] \neq 0 \in \mathbb{C}$$

Notice also that if  $\theta^*, \theta_* \in \mathbb{C}$

$$\|\mathbf{w}_{(1)}' (\mathbf{v}_1 - \exp(\mathbf{x}_{(1)} \theta^*)) - \mathbf{w}_{(1)}' (\mathbf{v}_1 - \exp(\mathbf{x}_{(1)} \theta_*))\|$$

$$= \|\mathbf{w}_{(1)}' \underbrace{[\exp(\mathbf{x}_{(1)} \theta_*) - \exp(\mathbf{x}_{(1)} \theta^*)]}_{\text{scalar}}\| =$$

$$= \|\mathbf{w}_{(1)}\| |\exp(\mathbf{x}_{(1)} \theta_*) - \exp(\mathbf{x}_{(1)} \theta^*)|$$

WYT

$$\leq \|\mathbf{w}_{(1)}\| \sup_{\theta \in \mathbb{C}} \|\frac{\partial}{\partial \theta} \exp(\mathbf{x}_{(1)} \theta)\| \|\theta_* - \theta^*\|$$

$$= \|\mathbf{w}_{(1)}\| \sup_{\theta \in \mathbb{C}} \|\mathbf{x}_{(1)} \exp(\mathbf{x}_{(1)} \theta)\| \|\theta_* - \theta^*\|$$

$$= \sup_{\theta \in \mathbb{C}} \exp(\mathbf{x}_{(1)} \theta) \|\mathbf{w}_{(1)}\| \|\mathbf{x}_{(1)}\| \|\theta_* - \theta^*\|,$$

which then means that

$$\begin{aligned} & \left\| \frac{1}{n} \sum_{i=1}^n W_{(i)} (Y_i - \exp(X_{(i)} \theta^*)) - \frac{1}{n} \sum_{i=1}^n W_{(i)} (Y_i - \exp(X_{(i)} \theta_*)) \right\| \\ & \text{tr.ineq.} \\ & \leq \frac{1}{n} \sum_{i=1}^n \| W_{(i)} (Y_i - \exp(X_{(i)} \theta^*)) - W_{(i)} (Y_i - \exp(X_{(i)} \theta_*)) \| \\ & \leq \frac{1}{n} \sum_{i=1}^n \left[ \sup_{\theta \in \Theta} \exp(X_{(i)} \theta) \| W_{(i)} \| \| X_{(i)} \| \right] \| \theta^* - \theta_* \| \end{aligned}$$

and if  $\mathbb{E} \left[ \sup_{\theta \in \Theta} \exp(X_{(1)} \theta) \| W_{(1)} \| \| X_{(1)} \| \right] < \infty$ , (b)

then due to the classical CLN

$$\frac{1}{n} \sum_{i=1}^n \left[ \sup_{\theta \in \Theta} \exp(X_{(i)} \theta) \| W_{(i)} \| \| X_{(i)} \| \right] = O_p(1).$$

Combining the previous it is obtained that

if (a) and (b) hold

$$\frac{1}{n} \sum_{i=1}^n W_{(i)} (y_{(i)} - \exp(x_{(i)} \theta)) \xrightarrow{P} \mathbb{E}[W_{(1)} (y_1 - \exp(x_{(1)} \theta))]$$

Further more suppose that (c)

$$\mathbb{E}[W_{(1)} \{\exp(x_{(1)} \theta) - \exp(x_{(1)} \theta_0)\}] = 0_{3 \times 1}$$

iff  $\theta = \theta_0$ , which is absolutely plausible since all the random variables employed are non-negative [both in  $W_n$  and in  $X_n$ ], and the exponential is an injective function.

Given that by assumption  $\mathbb{E}(W_{(1)} \varepsilon_1) = 0_{3 \times 1}$  and  $y_{(1)} = \exp(x_{(1)} \theta_0) + \varepsilon_1$ , (c) implies the identification condition in our main consistency theorem. Hence the latter implies that under (a), (b), (c),  $\hat{\theta}_n \xrightarrow{P} \theta_0$ .

Now consider

$$V_n(\theta) := \frac{1}{n} \sum_{i=1}^n (y_i - \exp(x_{(i)}\theta))^2 w_{(i)} w_{(i)}' (y_i - \exp(x_{(i)}\theta))$$

$$= \frac{1}{n} \sum_{i=1}^n [\varepsilon_i + \exp(x_{(i)}\theta_0) - \exp(x_{(i)}\theta)]^2 w_{(i)} w_{(i)}'$$

$$= \frac{1}{n} \sum_{i=1}^n \varepsilon_i^2 w_{(i)} w_{(i)}' + 2 \frac{1}{n} \sum_{i=1}^n \varepsilon_i (\exp(x_{(i)}\theta_0) - \exp(x_{(i)}\theta)) w_{(i)} w_{(i)}' \quad (A(\theta))$$

$$+ \frac{1}{n} \sum_{i=1}^n [\exp(x_{(i)}\theta_0) - \exp(x_{(i)}\theta)]^2 w_{(i)} w_{(i)}' \quad (B(\theta))$$

Using an analogous analysis it is possible to show

that if  $\max_{i=1, \dots, 3} \mathbb{E}(\varepsilon_i^2 w_{(i)}^2) < \infty$  then (d)

$\mathbb{E}(\varepsilon_i^2 w_{(i)} w_{(i)}')$  exists and due to the (A'(\theta))  
standard LLN  $\frac{1}{n} \sum_{i=1}^n \varepsilon_i^2 w_{(i)} w_{(i)}' \xrightarrow{\mathbb{P}} \mathbb{E}(\varepsilon_i^2 w_{(i)} w_{(i)}')$ .

Furthermore, if

$$\max_{i=1, \dots, p} \mathbb{E} \left[ |\varepsilon_i| \sup_{\theta \in \Theta} \exp(x_{i1} \theta) W_{i1}^2 \right] < \infty \text{ then (e)}$$

$$\mathbb{E} \left[ \varepsilon_i (\exp(x_{i1} \theta_0) - \exp(x_{i1} \theta)) W_{i1} W_{i1}' \right] \text{ exists}$$

$$\text{and } \frac{1}{n} \sum_{i=1}^n \varepsilon_i (\exp(x_{i1} \theta_0) - \exp(x_{i1} \theta)) W_{i1} W_{i1}'$$

( $\mathbb{E}(\theta)$ )

$$\xrightarrow{\text{CP}} \mathbb{E} \left[ \varepsilon_i (\exp(x_{i1} \theta_0) - \exp(x_{i1} \theta)) W_{i1} W_{i1}' \right]$$

And Analogously if

$$\mathbb{E} \left[ \sup_{\theta \in \Theta} (\exp(x_{i1} \theta)) W_{i1} W_{i1}' \right] < \infty \text{ then (f)}$$

$$\mathbb{E} \left[ (\exp(x_{i1} \theta_0) - \exp(x_{i1} \theta))^2 W_{i1} W_{i1}' \right] \text{ exists and}$$

$$\frac{1}{n} \sum_{i=1}^n (\exp(x_{i1} \theta_0) - \exp(x_{i1} \theta))^2 W_{i1} W_{i1}'$$

( $\mathbb{E}(\theta)$ )

$$\xrightarrow{\text{CP}} \mathbb{E} \left[ (\exp(x_{i1} \theta_0) - \exp(x_{i1} \theta))^2 W_{i1} W_{i1}' \right]$$

Since  $\nexists \theta^* \rightarrow \theta$ ,  $\forall \epsilon > 0$

$$P(|A(\theta^*) - A'(\theta)| > \epsilon) \rightarrow 0$$

$$P(|B(\theta^*) - B'(\theta)| > \epsilon) \rightarrow 0$$

$$P(|\Gamma(\theta^*) - \Gamma(\theta)| > \epsilon) \rightarrow 0 \quad \text{we}$$

also have that  $\nexists \theta^* \rightarrow \theta$ ,  $\forall \delta > 0$

$$P[|A(\theta^*) + B(\theta^*) + \Gamma(\theta^*) - (A'(\theta) + B'(\theta) + \Gamma'(\theta))| > \delta]$$

$$= P[(A(\theta^*) - A'(\theta)) + (B(\theta^*) - B'(\theta)) + (\Gamma(\theta^*) - \Gamma(\theta))| > \delta]$$

$$\stackrel{\text{using}}{\leq} P[|A(\theta^*) - A'(\theta)| + |B(\theta^*) - B'(\theta)| + |\Gamma(\theta^*) - \Gamma(\theta)| > \delta]$$

$$\leq P[|A(\theta^*) - A'(\theta)| > \delta/3] + P[|B(\theta^*) - B'(\theta)| > \delta/3]$$

$$+ P[|\Gamma(\theta^*) - \Gamma(\theta)| > \delta/3] \rightarrow 0,$$

Establishing finally that

$$V_n(\theta) \xrightarrow{CP} V(\theta) \quad \text{with}$$

$$V(\theta) := A'(\theta) + B'(\theta) + \Gamma'(\theta).$$

Using the above and the fact that  $V_n(\theta)$  and  $\theta_n^\wedge$  become asymptotically independent it is then possible to prove that:

$$V_n(\theta_n^\wedge) \xrightarrow{P} V(\theta_0) = A'(\theta_0) + B'(\theta_0) + \Gamma'(\theta_0)$$

$$\text{with } A'(\theta_0) = \mathbb{E} [\varepsilon_L^2 W_{(1)} W_{(1)}']$$

$$\begin{aligned} B'(\theta_0) &= \mathbb{E} [\varepsilon_L (\exp(X_{(1)}\theta_0) - \exp(X_{(1)}\theta_0) W_{(1)} W_{(1)}')] \\ &= \mathbb{E} (\varepsilon_L \cdot \sigma \cdot W_{(1)} W_{(1)}') = \sigma_{3 \times 3} \end{aligned}$$

$$\text{and } \Gamma'(\theta) = \mathbb{E} \left[ (\exp(x_{01} \theta_0) - \exp(x_{11} \theta_0))^2 w_{01} w_{01}' \right]$$

$$= \mathbb{E} [0 \, w_{01} w_{01}'] = 0_{3 \times 3}.$$

$$\text{hence } \sqrt{n}(\hat{\theta}_n) \rightarrow \mathbb{E} [\varepsilon_L^2 w_{01} w_{01}'].$$

If moreover  $\text{rank}(W_n W_n') = 3$  and  $\varepsilon_L$  is non degenerate at zero (g), then

$\mathbb{E} (\varepsilon_L^2 w_{01} w_{01}')$  is non singular, and thereby our general consistency theorem applies to the 2-GMLE establishing that under (a)-(g),  $\hat{\theta}_n \xrightarrow{P} \theta_0$ .

Regarding the rate and the limiting distribution notice that :

$$- \frac{1}{\sqrt{n}} \sum_{i=1}^n W_{(i)} \varepsilon_i \sim N(0_{3 \times 1}, \mathbb{E}[\varepsilon_i^2 W_{(i)} W_{(i)}'])$$

due to the iidness framework, (d), and the classical CLT.

$$- \frac{\partial W_{(i)}'(y_i - \exp(x_{(i)}\theta))}{\partial \theta'} =$$

$$= - \underbrace{W_{(i)}'}_{3 \times 1} \underbrace{x_{(i)}}_{1 \times 2} \underbrace{\exp(x_{(i)}\theta)}_{1 \times 1}$$

$$\text{And thereby } \frac{1}{n} \sum_{i=1}^n \frac{\partial W_{(i)}'(y_i - \exp(x_{(i)}\theta))}{\partial \theta'}$$

$$= - \frac{1}{n} \sum_{i=1}^n W_{(i)}' x_{(i)} \exp(x_{(i)}\theta)$$

which if (B) holds it converges continuously in probability to  $-\mathbb{E}[W_{(i)}' X_{(i)} \exp(X_{(i)} \theta)]$ ,

$$-\frac{\partial^2 W_{(i)}(y_i - \exp(X_{(i)} \theta))}{\partial \theta' \partial \theta_j} =$$

$$= W_{(i)}' X_{(i)} X_{(i,1)} \exp(X_{(i)} \theta), \quad \text{if } j=1,2$$

and thereby  $\frac{1}{n} \sum_{i=1}^n \frac{\partial^2 W_{(i)}(y_i - \exp(X_{(i)} \theta))}{\partial \theta' \partial \theta_j}$

$$= \frac{1}{n} \sum_{i=1}^n W_{(i)}' X_{(i)} X_{(i,1)} \exp(X_{(i)} \theta) \quad \text{and if}$$

(B) is enforced to

$$\mathbb{E} \left[ \sup_{\theta} \exp(X_{(i)} \theta) \| W_{(i)} \| \| X_{(i)} \| \right] < \infty \quad (\text{B}^*), \text{ if}$$

can be shown to be  $O_p(1)$  uniformly on  $\theta$ .

if  $\text{rank } W_n = 3$   
and  $\text{rank } X_n = 2$   
since  $e^{X_{(i)} \theta} > 0$ ,  
 $\text{rank } \mathbb{E}[W_{(i)}' X_{(i)} e^{X_{(i)} \theta}] = 2, \forall \theta$

Thereby, under (a), (b)\*, (c) - (f) our theory  
 finally says that for the 2-GMLE

$$n^{1/2}(\hat{\theta}_n - \theta_0) \sim N(0_{2x_n}, V_{\hat{\theta}}) \text{, with}$$

$$V_{\hat{\theta}} := \mathbb{E} \left[ \underbrace{\mathbf{x}_{(1)}' \mathbf{W}_{(1)} \exp(\mathbf{x}_{(1)} \theta_0)}_{2x_1} \underbrace{\mathbf{x}_{(2)}' \mathbf{W}_{(2)} \exp(\mathbf{x}_{(2)} \theta_0)}_{2x_2} \right] - \mathbb{E} \left[ \mathbf{E}_{\epsilon}^2 \mathbf{W}_{(1)} \mathbf{W}_{(1)}' \right] \mathbb{E} \left[ \mathbf{W}_{(1)}' \mathbf{x}_{(1)} \exp(\mathbf{x}_{(1)} \theta_0) \right]$$

Due to the previous a consistent estimator  
 for  $\mathbb{E} \left[ \mathbf{W}_{(1)}' \mathbf{x}_{(1)} \exp(\mathbf{x}_{(1)} \theta_0) \right]$  is

$$\frac{1}{n} \sum_{i=1}^n \mathbf{W}_{(i)}' \mathbf{x}_{(i)} \exp(\mathbf{x}_{(i)} \hat{\theta}_n) \quad (\text{why?})$$

while for  $\epsilon_i := y_i - \exp(\mathbf{x}_{(i)} \hat{\theta}_n)$

$$\frac{1}{n} \sum_{i=1}^n (y_i - \exp(\mathbf{x}_{(i)} \hat{\theta}_n))^2 \mathbf{W}_{(i)} \mathbf{W}_{(i)}' =$$

$$\frac{1}{n} \sum_{i=1}^n (\varepsilon_i + \exp(x_{(i)} \theta_0) - \exp(x_{(i)} \theta_n))^2 W_{(i)} W_{(i)}'$$

which we know that it converges in probability to  $\mathbb{E}[\varepsilon_i^2 W_{(i)} W_{(i)}']$  from the above, and thereby due to the non-singularity of  $\mathbb{E}(\varepsilon_i^2 W_{(i)} W_{(i)}')$  and the CMT,

$$\left[ \frac{1}{n} \sum_{i=1}^n \varepsilon_i^2 W_{(i)} W_{(i)}' \right]^{-\frac{1}{2}} \xrightarrow{\text{P}} \mathbb{E}[\varepsilon_i^2 W_{(i)} W_{(i)}']^{-\frac{1}{2}}$$

↓

And this is at least asymptotically well defined.

Hence the CMT then implies that

$$V_n^* := \frac{1}{n} \left\{ \sum_{i=1}^n x_{(i)}' W_{(i)} \exp(x_{(i)} \theta_n) \left( \sum_{i=1}^n \varepsilon_i^2 W_{(i)} W_{(i)}' \right)^{-1} x_{(i)}' W_{(i)} \exp(x_{(i)} \theta_n) \right\}$$

$\hat{\theta}$  consistent estimator of  $\theta^*$ .

**Note** The conditions on the existence of moments that appear in this text would directly hold if  $W_n$ , and  $X_n$  were comprised by bounded random variables - something that is not completely implausible given the economic nature of those variables - and  $\sum (\varepsilon_i^2) < \infty$ .

**Note** The compactness of  $\Theta$  can be dispensed. The conditions involving  $\sup_{\theta \in \Theta}$  can be weakened to hold locally uniformly.

Notice also that the statistic

$J_n$  can be used here in order to test the hypothesis that  $\text{TE}(W_{in \epsilon n}) = O_{3 \times 1}$ , given the identification condition (C).

Under this null  $J_n \sim \chi^2_1$  which is usable for inference.

# Matlab Code for the simulation, GMM estimation and J-test inference on this model.

```
% Non-Linear GMM Estimation with J-Test in MATLAB
clear; clc; rng(42);

% Simulated Data
N = 500; % Sample size
family_size = randi([1, 5], N, 1); % Instrument 1
non_labour_income = normrnd(20000, 5000, N, 1); % Instrument 2
education = randi([8, 20], N, 1); % Instrument 3
Z = [family_size, non_labour_income, education]; % Instrument matrix

% True Parameters
theta_true = [0.05, 0.1]; % [theta1, theta2]

% Generate Endogenous Variable (hours worked)
hours = 40 + 2 * family_size - 0.001 * non_labour_income + 0.5 * randn(N, 1);

% Generate Wages (dependent variable)
epsilon = normrnd(0, 100, N, 1);
wage = exp(theta_true(1) * hours + theta_true(2) * education) + epsilon;

% Define the moment conditions
function g = gmm_moments(theta, wage, hours, education, Z)
    % Residual
    residual = wage - exp(theta(1) * hours + theta(2) * education);
    % Moment conditions
    g = (Z' * residual) / length(wage);
end

% Define the GMM objective function
function Q = gmm_objective(theta, wage, hours, education, Z, W)
    % Compute moments
    g = gmm_moments(theta, wage, hours, education, Z);
    % Compute GMM objective
    Q = g' * W * g;
end

% Initial parameter guesses
theta_init = [0.01, 0.01];

% Step 1: Use identity weighting matrix
W_identity = eye(size(Z, 2));
options = optimoptions('fminunc', 'Display', 'iter', 'Algorithm', 'quasi-newton');
[theta_step1, Q_step1] = fminunc(@(theta) gmm_objective(theta, wage, hours, education, Z, W_identity), theta_init, options);

% Step 2: Update weighting matrix using residuals
g_step1 = gmm_moments(theta_step1, wage, hours, education, Z);
S_hat = cov(g_step1'); % Variance-covariance of moment conditions
W_optimal = inv(S_hat); % Optimal weighting matrix

% Step 3: Re-estimate using optimal weighting matrix
[theta_step2, Q_step2] = fminunc(@(theta) gmm_objective(theta, wage, hours, education, Z, W_optimal), theta_step1, options);

% Compute the J-statistic
g_step2 = gmm_moments(theta_step2, wage, hours, education, Z);
J_stat = N * (g_step2' * W_optimal * g_step2); % J-statistic
df = size(Z, 2) - length(theta_step2); % Degrees of freedom
p_value = 1 - chi2cdf(J_stat, df);

% Display results
fprintf('Estimated Parameters (Two-Step GMM):\n');
fprintf('Theta_1: %.4f, Theta_2: %.4f\n', theta_step2(1), theta_step2(2));
fprintf('\nJ-Test for Overidentifying Restrictions:\n');
fprintf('J-statistic: %.4f\n', J_stat);
fprintf('Degrees of Freedom: %d\n', df);
fprintf('P-value: %.4f\n', p_value);
```

# Python code for the simulation, the GMM estimation, and the J-test inference on this model.

```
import numpy as np
from scipy.optimize import minimize
from scipy.stats import chi2

# Simulated data
np.random.seed(42)
N = 500
family_size = np.random.randint(1, 5, N) # Instrument 1
non_labour_income = np.random.normal(20000, 5000, N) # Instrument 2
education = np.random.randint(8, 20, N) # Instrument 3
Z = np.column_stack((family_size, non_labour_income, education)) # Instrument matrix

# True parameters
theta_true = [0.05, 0.1] # [theta1, theta2]

# Generate hours worked (endogenous variable)
hours = 40 + 2 * family_size - 0.001 * non_labour_income + 0.5 * np.random.normal(0, 1, N)

# Generate wages (dependent variable)
epsilon = np.random.normal(0, 100, N)
wage = np.exp(theta_true[0] * hours + theta_true[1] * education) + epsilon

# Define the moment conditions
def gmm_moments(theta, wage, hours, education, Z):
    theta1, theta2 = theta
    residual = wage - np.exp(theta1 * hours + theta2 * education)
    moments = Z.T @ residual / len(wage)
    return moments

# Define the GMM objective function
def gmm_objective(theta, wage, hours, education, Z, W):
    moments = gmm_moments(theta, wage, hours, education, Z)
    return moments.T @ W @ moments

# Initial parameter guesses
theta_init = [0.01, 0.01]

# Step 1: Use identity weighting matrix
W_identity = np.eye(Z.shape[1])
result_step1 = minimize(gmm_objective, theta_init, args=(wage, hours, education, Z, W_identity), method='BFGS')
theta_step1 = result_step1.x

# Step 2: Update the weighting matrix using estimated residuals
moments_step1 = gmm_moments(theta_step1, wage, hours, education, Z)
S_hat = np.cov(moments_step1) # Variance of the moment conditions
W_optimal = np.linalg.inv(S_hat) # Optimal weighting matrix

# Step 3: Re-estimate using optimal weighting matrix
result_step2 = minimize(gmm_objective, theta_step1, args=(wage, hours, education, Z, W_optimal), method='BFGS')
theta_step2 = result_step2.x

# Compute the J-statistic
moments_step2 = gmm_moments(theta_step2, wage, hours, education, Z)
J_stat = len(wage) * moments_step2.T @ W_optimal @ moments_step2 # J-statistic
df = Z.shape[1] - len(theta_step2) # Degrees of freedom
p_value = 1 - chi2.cdf(J_stat, df)

# Print Results
print("Estimated Parameters (Two-Step GMM):")
print(f"Theta_1: {theta_step2[0]:.4f}, Theta_2: {theta_step2[1]:.4f}")
print("\nJ-Test for Overidentifying Restrictions:")
print(f"J-statistic: {J_stat:.4f}")
print(f"Degrees of Freedom: {df}")
print(f"P-value: {p_value:.4f}")
```