
A Labour Econometric Example
for GMAL

Consider the case were the interest

lies in the determination of the conditional

expectation of waye ,
as an exponential

function of hours worked and education

# is thus assumed those for any individu

i
,
her waye Yi , has a conditional , on

the

hours worked Xi , and the education years

X2i of the form (Yi/Xixei) =

= exp(#10X+i + Frodzi). A sample gene-
rated byn individuals is available,



of the form (In,n) where
in = (3) ,=)
therandom elements (i , Xi , Xei) are

ir
, ...
~

independent , and given that the rector

Do = (O is latent
,
the statistical

econometric problem is the approximation of

Go
,
from the information present in the sample

and the statistical model to be determined

below : it is assumed that (XIt) is observed

with Measurement error which implies that

in the relation I : = exp(# 00) + Ei



E(ai/Xic) to at least for source i.

This would result into inconsistency for

an estimator as NLLSE.

It is also assumed those a sample of

instruments are observed , without measurement

error, = (W owese
wet is the family size of individual i,

and Wai is the non labour income of this

individual.
* The analyst reasonably expects

that E(ai() =0 firt ....,n. Hence

see employs the following IV linear
exponential seri-parametric (why ? )
* CEi

,
Xi

,Mi, wei ,wilin are also assumed to
have i'd rows



Model In = EXP(#0) + En

andTE (gu/oCon)) = Once
and GeG, which is assumed

without much loss of

of generality to be anon-empty compact subset of

IR"
,
and GoeO; also remember that

Exp(#) : = (e)
exp(Xn)

Given this structure
,
the 2-GMME is

Considered as :

O: argin
(E) W(n-EXP

Am (Vn(On)) =

organis (n= Exp(01)WUn(On)W (Yn-EXP(@nt))
DEIR3



where (due to independence)

Un(t) :=

(Di-exp*)W( -expi)
where Wis = (Wis Wei Xai)·

Regarding the asymptotic properties
of the estimator in this particular case:

- M(z
,f) : = WCV-eXP(xO))

which is Conti

Hous in 0 w.
r

.
E . z= (V ,X,w)

- TElwi (gr- eXp(ED =

=EII) - exp(X , +NP2)(l] =



= ET (wi (l-exp(X] and
this isfess than or equal to

[ Gail, I wil
,
Xe# and El are Monotone]

(x) & ElWin (yr - exp(X,0.+XO)l]
and since

"

Ye = exp(X,0+ X12020) +Er

( is less than or equal to [ktbl = (x)+ 181]

& ELIWE) + (Wisexp(X+XE]
+ /Win exp(X 1GotisErd1]
=WinD+Winexpl
+[Wexp(X,Go+Xit]]

Hence if Max EliNinED+May TELIWisep(XGHE]
i=1,...

i= 2
,...,
3

↳ foc due to the idness and



the standard LLN,

↓ (Vi-exp()

Ele (1-exp]] fo
Notice also that if 0= 0

11 Wil (Vi-exp(*, :10 *)) -WilViexp(*)/II

= IWise 10)- exp(*01l =
scalar

= IWill (exp (* i) 0a) -exp(*** ))
MVT

IWillsup expOIllOX
- IWill sup 11 expo /100-0

*1
um

① TO scalar

= Sup exp(* c:O) IINcil 11 call llOx-O
*11,

&EO



which then Means that

I wi (Vi-exp)-i-exp
trine W (expWi-e
upe)Will I

Anh if Esupexp IIWell]Go, 1
then due to the classical (CN

[expl]=O

Combining the previous it is obtained that

if () and (b) hold



↓Wi-exEIW(y -exp(OT)]

Furthermore suppose that (C)

E[[exp(0) -exp(Go]] = Bex
if -Do

,
which is absolutely plausible

since all the random variables employed are

non-negative [both in W
and in] , and

the exponential is an infective function.

Given that by assumption(S)
=Dex

and Yo = exp(*col +Ei , <C) implies the

identification condition in our Main consistency

theored. Hence the latter implies that under

( , (b) , (C) , ONE 00 ·



Now consider

Un(0) := (Di-expWi-exp

=i +exp(0)-exp

-Eilex-exNW
CA(f)) (B(O))

+exp(400 -exp
G(0))

Using an analogous analysis it is possible to show

that if Max(aNil(< then (d)
in,.., 3

EEnWeWil exists and due to theCA'(5))
standardLLNWi EE(SENGNc



Furthermore
,
if

max TE [18/sup exp(*18) win]
<too then (e)

Ih
,...

FEO

E(3(exp(*(400) -exp(0))WW] exists

and Sile(* 00 -expE))DeWe
(ICO)(

& EIS (ep (* (1100) -exp(*(10)WasWill]

and Analogously if

T [supTexpOWW]00 them CA

Tt[(exp( *00) - exp(*8) was] exists and

exp(*-expNN
Cr'CO)

↳ E[(exp(*(80)-ex(*(0)(Wil]



Since Foto
,

fexo

PCIACOX-A(o) (2) -> O

IP(IB(O*) - Bio(>) ->0

IP(IT(O -T0(>E) ->O we

also have that fotO
,
S>O

PLACO") +B(O*) +T(O) -(ACO) +p'c+col)( >5]
= PICACOY -Aco)) + (B(OX) -B'(O)) +(T(o

-T(o))k6]
trived .
< IP[/ACO*) -A(0)1 + IBIE

*)-BIO)+ 1T04 -Flot) >5]

EIPTIACO* -Alco) />/] +PIB(O4)
-BO)K <3)

+PTITCO* -To >%] -> 0 ,



establishing finally that

InCOC YCE) with

V(0) : = A(d) + B'(0) + T(0).

Using the above and the fact that Un(0)

andOn become asymptotically independent it is

then possible to prove that :

InCON) = V(00) = Allo +BIO0)+TCO)

with AO) = ELENeWis]

B(80) = EIG(exp(* (80)-exp(* GoDWeWi
=E(E .8. WasWall= Dax



and [C80= T(exp(*(00l-epp(*GoDODNal]

= TEToNyWc] = 03x3
.

Hence UnIOn -ELENcNis].

If Moreover Van (WW) = 3 and E is

nou degenerate at zero (g) , then

E(ErWiNce) is non singular
,
and

thereby our general consistency theoremapplies

to the 2-GMME establishing that

Under (a)-(g), An 750.



Regarding the vate and the limiting distri-

bution notice that :

- tWiiNEW)
due to theiidness framework

,
(d)
,
and the

Classical CLT.

-
and thereby-
=-Wiexp



which if 187 holds it converges continuously

in probability to -TE[WinD exp(AO],
* if vomn=3
and rancn =2,-Wiiexp) = - since
rank-[[WineO]

= 2
,
fo

= Wis ) #(1) exp(cO)
,
Fy=hi

and therebycleiexco
=We exp and

(b) is enforced to

TELsup exp(*O)Mli](to() , i

can be shown to be Op(1 uniformly on E.



Thereby , under () ,(85, (1)- (A) our theory

finally says that for the 2-GMME

U(On-fo) us NCO2x
,
Va) ,

with

=We
Due to the previous a consistent estimator

for IEINic* exp(,180)] is

Niexp(iOn) (why?

while for ei : = Yi - exp(AiiOn)
U

Di-exp(X()on)"Was Di =



(eirexp(*Go) -exp(Xin))NiWi
which we know that

it converges in probability to

ETsWaNc] from the above , and thereby

due to the non-singularity of IE(WasWin)

and the CMT,
-h

↳NW]ENW
↓

And this is at least asymptotically well deti-
led

.

Hence the CMT then implies that

in*exp
&Wil (i) exp(xicOnT] is



a consistent esticator of V*

Note The conditions on the existence

of moments that offer in this text

would directly hold if w ,

andn

were comprised by hounded random variables
-something that is not completely implausible

given the economic nature of those variables-

and IE (32) <too.

Note The compactness of O can be dispenced
the conditions involving sup can be

FEG

weawered to hold locally uniformly.



Notice also that the statistic

In can be used here in order to test

the hypothesis thatal = Ox,

given the identification condition (c).

Under this null In u &2 which is

usable for inference.



% Non-Linear GMM Estimation with J-Test in MATLAB
clear; clc; rng(42);

% Simulated Data
N = 500; % Sample size
family_size = randi([1, 5], N, 1); % Instrument 1
non_labour_income = normrnd(20000, 5000, N, 1); % Instrument 2
education = randi([8, 20], N, 1); % Instrument 3
Z = [family_size, non_labour_income, education]; % Instrument matrix

% True Parameters
theta_true = [0.05, 0.1]; % [theta1, theta2]

% Generate Endogenous Variable (hours worked)
hours = 40 + 2 * family_size - 0.001 * non_labour_income + 0.5 * randn(N, 1);

% Generate Wages (dependent variable)
epsilon = normrnd(0, 100, N, 1);
wage = exp(theta_true(1) * hours + theta_true(2) * education) + epsilon;

% Define the moment conditions
function g = gmm_moments(theta, wage, hours, education, Z)
    % Residual
    residual = wage - exp(theta(1) * hours + theta(2) * education);
    % Moment conditions
    g = (Z' * residual) / length(wage);
end

% Define the GMM objective function
function Q = gmm_objective(theta, wage, hours, education, Z, W)
    % Compute moments
    g = gmm_moments(theta, wage, hours, education, Z);
    % Compute GMM objective
    Q = g' * W * g;
end

% Initial parameter guesses
theta_init = [0.01, 0.01];

% Step 1: Use identity weighting matrix
W_identity = eye(size(Z, 2));
options = optimoptions('fminunc', 'Display', 'iter', 'Algorithm', 'quasi-newton');
[theta_step1, Q_step1] = fminunc(@(theta) gmm_objective(theta, wage, hours, education, Z, W_identity), theta_init, options);

% Step 2: Update weighting matrix using residuals
g_step1 = gmm_moments(theta_step1, wage, hours, education, Z);
S_hat = cov(g_step1'); % Variance-covariance of moment conditions
W_optimal = inv(S_hat); % Optimal weighting matrix

% Step 3: Re-estimate using optimal weighting matrix
[theta_step2, Q_step2] = fminunc(@(theta) gmm_objective(theta, wage, hours, education, Z, W_optimal), theta_step1, options);

% Compute the J-statistic
g_step2 = gmm_moments(theta_step2, wage, hours, education, Z);
J_stat = N * (g_step2' * W_optimal * g_step2); % J-statistic
df = size(Z, 2) - length(theta_step2); % Degrees of freedom
p_value = 1 - chi2cdf(J_stat, df);

% Display results
fprintf('Estimated Parameters (Two-Step GMM):\n');
fprintf('Theta_1: %.4f, Theta_2: %.4f\n', theta_step2(1), theta_step2(2));
fprintf('\nJ-Test for Overidentifying Restrictions:\n');
fprintf('J-statistic: %.4f\n', J_stat);
fprintf('Degrees of Freedom: %d\n', df);
fprintf('P-value: %.4f\n', p_value);

Matlab Code for

the simulation , GoM

estimation and J-test

inference on this model.



import numpy as np
from scipy.optimize import minimize
from scipy.stats import chi2

# Simulated data
np.random.seed(42)
N = 500
family_size = np.random.randint(1, 5, N)  # Instrument 1
non_labour_income = np.random.normal(20000, 5000, N)  # Instrument 2
education = np.random.randint(8, 20, N)  # Instrument 3
Z = np.column_stack((family_size, non_labour_income, education))  # Instrument matrix

# True parameters
theta_true = [0.05, 0.1]  # [theta1, theta2]

# Generate hours worked (endogenous variable)
hours = 40 + 2 * family_size - 0.001 * non_labour_income + 0.5 * np.random.normal(0, 1, N)

# Generate wages (dependent variable)
epsilon = np.random.normal(0, 100, N)
wage = np.exp(theta_true[0] * hours + theta_true[1] * education) + epsilon

# Define the moment conditions
def gmm_moments(theta, wage, hours, education, Z):
    theta1, theta2 = theta
    residual = wage - np.exp(theta1 * hours + theta2 * education)
    moments = Z.T @ residual / len(wage)
    return moments

# Define the GMM objective function
def gmm_objective(theta, wage, hours, education, Z, W):
    moments = gmm_moments(theta, wage, hours, education, Z)
    return moments.T @ W @ moments

# Initial parameter guesses
theta_init = [0.01, 0.01]

# Step 1: Use identity weighting matrix
W_identity = np.eye(Z.shape[1])
result_step1 = minimize(gmm_objective, theta_init, args=(wage, hours, education, Z, W_identity), method='BFGS')
theta_step1 = result_step1.x

# Step 2: Update the weighting matrix using estimated residuals
moments_step1 = gmm_moments(theta_step1, wage, hours, education, Z)
S_hat = np.cov(moments_step1)  # Variance of the moment conditions
W_optimal = np.linalg.inv(S_hat)  # Optimal weighting matrix

# Step 3: Re-estimate using optimal weighting matrix
result_step2 = minimize(gmm_objective, theta_step1, args=(wage, hours, education, Z, W_optimal), method='BFGS')
theta_step2 = result_step2.x

# Compute the J-statistic
moments_step2 = gmm_moments(theta_step2, wage, hours, education, Z)
J_stat = len(wage) * moments_step2.T @ W_optimal @ moments_step2  # J-statistic
df = Z.shape[1] - len(theta_step2)  # Degrees of freedom
p_value = 1 - chi2.cdf(J_stat, df)

# Print Results
print("Estimated Parameters (Two-Step GMM):")
print(f"Theta_1: {theta_step2[0]:.4f}, Theta_2: {theta_step2[1]:.4f}")
print("\nJ-Test for Overidentifying Restrictions:")
print(f"J-statistic: {J_stat:.4f}")
print(f"Degrees of Freedom: {df}")
print(f"P-value: {p_value:.4f}")

Python code for the
sixelation

,
the Gad

estimation
,
and the

J-test inference on
this model-


