
Addendums on Livelihood Theory :

The Cramer-Roo Bound

We are building on the argumentation

that resulted in the derivation of the

information matrix equality to derive

an asgrptotic version of the Cramer-Rao

bound :
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as a limit of psd matrices , the

limiting variance has to be psd (why ? use

the fact that frobenius-norm convergence-

implies convergence of eigenvalues)
,
and thereby



the matrix is psd.

Now consider the the Lixi Matrix,
a stacked Matrix
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