$$
24 / 01 / 23
$$

Limit Theory of OE - Consistency (Theory and Expurfles)
Remember that $\mathrm{In}^{\text {denotes the sample, and we have at }}$ are disposal a (possibly semi-) parametric model for OO_{3} and a measurable criterion $C_{n}=\mathbb{R}^{k \times n} \times \Theta \rightarrow \mathbb{R}$ so that
(*) Once arguing $C_{n}(\theta)$

$$
\theta \in \Theta
$$

[Remarks: Q generalization of (x) can accommodate the coss Thew the optimization is approximate, or $\operatorname{argain}(C \in \Theta)=\varnothing$.
If u_{n} is a roindoul variouble with $\mathbb{P}\left(u_{n} \geqslant 0\right)=1$, then an approximate minimizer can be defined by:

$$
(* *) \quad C_{n}\left(\theta_{n}\right) \leq \inf _{\theta \in O} C_{n}(\theta)+u_{n}
$$

(**) is suitable for analysis of estimators defined by numerical optimization] [See also endnote 2 in the
previous see of notes]
Question: Can ave obtocing wild conditions under which on defined by $(*)$ or $(* *)$ is weakly consistent?
In what follows c^{*} denotes a function $\Theta \rightarrow \mathbb{R}$ tot does not depend on Zn .

- In what follows every convergence occurs as $n \rightarrow+\infty 0$.

Definition. We say that un converges in c^{*} locally uniformly in θ, and in probability iff $f\left(\theta \in \Theta, \forall \partial_{n} \rightarrow \theta, t \in>0\right.$,

$$
\lim _{n \rightarrow+\infty} \mathbb{P}\left(\left|c_{n}\left(\theta_{n}\right)-c^{*}(\theta)\right|>\varepsilon\right)=0 . \text { (li). }
$$ was θ_{n} instead of θ-typo!

Definition, We say that C_{n} converges to C^{*} pointwisely in θ, and in probability of $\forall \theta \in \Theta, f \varepsilon>0$

$$
\begin{equation*}
\left.\lim _{n \rightarrow+\infty} \mathbb{P}\left(I \operatorname{Cn}(\theta)-c^{*}(\theta)\right)>\varepsilon\right)=0 \tag{p}
\end{equation*}
$$

Remark. Notice that (lu) $\Rightarrow(P)$ (simply consider only the constant sequences), but $(\bar{p}) \Rightarrow(1 u)$.
The following result gives a sufficient condition (k), such that $(l c)+(p) \Rightarrow(l a)$.
hemal Suppose that $(i) c_{n}$ converges to c^{*} pointwiselg in θ and in probability, and ii) $\forall \theta, \theta^{*} \in \theta, \quad\left|C_{n}(\theta)-\operatorname{Cn}(\theta)\right| \leq \mid n\left\|\theta-\theta^{*}\right\|$, $\exists(x)>0$: $\lim _{n \rightarrow+\infty} \mathbb{P}(k n>M)=0$. Then $a n$ converges to $c *$ locally uniformly (*) in ${ }^{n-1+\infty}$ and in probability.
Pool. Let $\theta \in \mathcal{O}, \theta \ni \theta_{n} \rightarrow \theta, \varepsilon>O$. Notice that
(a) $\quad\left|G_{n}\left(\theta_{n}\right)-C^{*}(\theta)\right| \leq\left|G_{n}\left(\theta_{n}\right)-G_{n}(\theta)\right|+|G(\theta)-(\theta)(\theta)|$ due to the triangle inequality $(|a+b| \leqslant|x|+|b|)$.
Then, due to (ii)

$$
\begin{equation*}
\left|C_{n}\left(\theta_{n}\right)-\operatorname{Cn}(\theta)\right| \leq k_{n}\left\|\theta_{n}-\theta\right\| \tag{b}
\end{equation*}
$$

Hence (a), (b) \rightarrow

$$
\left|G_{n}\left(\theta_{n}\right)-C^{*}(\theta)\right| \leq k_{n} \|\left|Q_{n}-\theta\right|\left|+\left|G_{n}(\theta)-C^{*}(\theta)\right| \quad(-)\right.
$$

notice that $(*)$ is weaker than the condition, $\ddagger \mu>0$:
$\mathbb{E}((n) \leq M$ opthe previous version. Eg. (x) holds when $k n$ converges in probability

Due to (6) we have that:

$$
\begin{aligned}
& \mathbb{P}\left(\left|c_{n}\left(\theta_{n}\right)-c^{*}(\theta)\right|>\varepsilon\right) \\
& \mathbb{P}\left(k_{n}\left\|\theta_{n}-\theta\right\|+\left|G_{n}(\theta)-c^{*}(\theta)\right|>\varepsilon\right)
\end{aligned}
$$

$\left[\begin{array}{l}(1) \\ \leq \\ A \leq B \Rightarrow \mathbb{D} \\ \\ A \leq A\end{array}\right]$

$$
\begin{aligned}
& \text { (2) } \mathbb{P}\left(k_{n}\left\|\theta_{n}-\theta\right\|>\varepsilon / 2\right)+\mathbb{P}\left(\left|G n(\theta)-c^{*}(\theta)\right|>\varepsilon \varepsilon\right) \\
& {\left[\begin{array}{l}
(2) \\
\leq \text { follows fou that } \mathbb{P}(\alpha+b>\varepsilon)=\mathbb{P}(\alpha+b>\varepsilon, \alpha>\varepsilon / 2) \\
+\mathbb{P}(\underbrace{\alpha+b>\varepsilon, \alpha \leq \varepsilon / 2)}_{i} \\
=\mathbb{P}\left(b>\varepsilon-\alpha,-\alpha \geqslant-\frac{\varepsilon}{2}\right) \leq \mathbb{P}(b>\varepsilon / 2,-\alpha \geqslant-\varepsilon \varepsilon) \\
\leq \mathbb{P}(b>\varepsilon / 2)]
\end{array}\right.}
\end{aligned}
$$

$$
\leq \mathbb{P}\left(\| \| \theta_{u}-\theta_{\|} \|_{2} / 2\right)+\mathbb{P}\left(\left|c_{n}(\theta)-C^{*}(\theta)\right|>\varepsilon / 2\right)
$$

$\left[\begin{array}{l}(3) \\ \leqslant \\ \leqslant \\ \text { is obtained from }(*) \text { and again the } \\ \text { clang } A \subseteq B \rightarrow P(A) \leqslant \mathbb{P}(B)\end{array}\right]$

$$
=\mathbb{P}\left(\left\|\partial_{n}-\theta\right\|>\frac{\varepsilon}{2 \mu}\right)+\mathbb{P}\left(\left|c_{n}(\theta)-c^{*}(\theta)\right|>\varepsilon / 2\right):=\mu_{n}+d_{2_{n}}
$$

Then $M_{L_{n}} \rightarrow 0$ since $\theta_{n} \rightarrow \theta_{\text {, }}$ and $\mathbb{N}_{2_{n}} \rightarrow 0$ due to (p). (explain!)
hence $\lim _{n \rightarrow+\infty} \mathbb{P}\left(\left|G_{x}\left(\theta_{n}\right)-C^{*}(\theta)\right|>E\right)=0$ and the results follows since $\theta_{1} \theta_{n}, \varepsilon$ are arbitrourg. a
Revarr. Hence (lu) follows from (p) complemented by Salve sore of strong (Join w.e.t. n) continuity property of Gr. D
Revilers. If con be proven that (lu) respects opilmization, ie. if (lee) holds then
(I) $\quad \forall \varepsilon>0 \quad \lim _{n \rightarrow+\infty} \mathbb{P}\left(\operatorname{linf}_{\theta \in O} \cos _{n}(\theta)-\inf _{\theta \in O} c^{x}(\theta) \mid>\varepsilon\right)=0$
as bong as inf $c^{x}(\theta)$ is well defined. A
Dewars. It can be also proven that if θ is compact, i.e. closed and bounded, and (lu) holds, then for any $0_{n} \in \Theta$ that lox depend on Z_{n},
(II) $\quad \forall \varepsilon>0 \quad \operatorname{limex}_{n \rightarrow+10} \mathbb{P}\left(K_{n}\left(\theta_{n}\right)-C^{*}\left(\theta_{n}\right) \mid>\varepsilon\right)=0$.

Then (lu) to a limit that geascanzees asymptotic identification when the parameters space is coup ace ireplies Desk consistency:
Theorem. Suppose thor there exists some $c^{*}: \Theta \rightarrow \mathbb{R}$ such that a. an converges to c^{*} locally uniformly in θ and in probabili$t y$, and, b. $\forall \delta>0$, inf $c_{\| \theta-\infty} c^{*}(\theta)>c^{*}\left(\infty_{0}\right)$, and, $c . \theta$ is coupacf. Then O_{n} is aseourly consistent.

Proof. Let $\varepsilon>0$ and consider the event $\left\|\theta_{n}-\theta_{0}\right\|>\delta$. This and The the b. imply that $\exists \varepsilon>0$: $c^{*}\left(\theta_{n}\right)-c^{*}\left(\theta_{0}\right)>\varepsilon$ hence
note below]

$$
\begin{aligned}
& \mathbb{P}\left(\left\|\theta_{n}-\theta_{0}\right\|>\delta\right) \leq \mathbb{P}\left(c^{*}\left(\theta_{n}\right)-c^{*}\left(\theta_{0}\right)>\varepsilon\right)= \\
& \mathbb{P}\left(\left|c^{*}\left(\theta_{n}\right)-c^{*}\left(\theta_{0}\right)\right|>\varepsilon\right)=\mathbb{P}\left(\left|c^{*}\left(\theta_{n}\right) \pm \ln \left(\theta_{n}\right)-c^{*}\left(\theta_{0}\right)\right|>\varepsilon\right) \\
& \text { why? } \mathbb{P}\left(\left|c^{*}\left(\theta_{n}\right)-C_{n}\left(\theta_{n}\right)\right|>\varepsilon / 2\right)+\mathbb{P}\left(\left|c^{*}\left(\theta_{0}\right)-C_{n}\left(\theta_{n}\right)\right|>\varepsilon / 2\right) \\
& =\mathbb{P}\left(1 c^{*}\left(\theta_{n}\right)-G_{n}\left(\theta_{n} \|>\varepsilon_{2}\right)+\mathbb{P}\left(\operatorname{limf}_{\theta \in \theta} c^{*}(\theta)-\underset{\theta \in \theta}{\inf G_{n}(\theta)}\right)>\xi_{2}\right) \\
& :=Q_{L_{n}}+Q_{2 n} \text {. }
\end{aligned}
$$

We howe that $Q_{a_{n}} \rightarrow 0$ due to (II) and $Q_{2_{n} \rightarrow 0}$ due to (I). The result follocos since ε is orbitoary.
Remark.

1. The peculiar identificoction condition not only iaplias $\theta_{0}=\operatorname{arguin} c^{*}(\theta)$. But also excludcc pathological cases where $\theta \in \ominus$
Do despite being the unique uiniuiser is not "dissiuguichoabte" from the other Θ, egg.

It holds whenever Θ is compact, c^{*} is continuous and
(*)
θ_{0} is the unique liminizer, α when Θ is convex and and closed
G_{n} is a strictly convex function. Ting to show these!
Q. The coupaceness of Θ is not required when there is More structure re. Eg. when Θ closed and convex and c_{n} is convex then the result holds without coupaceness out the cost of a slightly lore involved proof. [actually much cosses pointwise convergence works] 3. (lu) can be further weoukened to other forms of functional convergence tailored for the agproxiuration of optimization problems - e.g. epi-convergence (completely out of the scope of the course)
4. As mentioned in the previous notes this liars theory does not depend on an explicit expression for Q_{n} as a function of Z_{n} this is Most usually anowvailable, but on properties of the optimization procedure.
Question. How are the above specialized in our examples?
Exocuple: Consider the linear model $\gamma_{n}=x_{n} \theta+E_{n}$,
$\mathbb{E} \varepsilon_{n} /_{6}\left(x_{n}\right)=O_{n \times 1}, \operatorname{Var}\left(x_{n} / 6\left(x_{n}\right)\right)=I_{n \times n}$,
rank $X_{n}=p$ (at least with probability 1).

- When $\theta=\mathbb{R}^{p}$, we howe that the OLSE has a knocon anorlyfical forme

$$
\begin{aligned}
\theta_{n} & \left.=\left(x_{n}^{\prime} x_{n}\right)^{-1} x_{n}^{\prime} V_{n} \quad \text { [using } V_{n}=x_{n} \theta_{0}+\varepsilon_{n}\right] \\
& =\left(x_{n}^{\prime} x_{n}\right)^{-1} x_{n}^{\prime}\left(x_{n} \theta_{0}+\varepsilon_{n}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\left(x_{n}^{\prime} x_{n}\right)^{-1}\left(x_{n}^{\prime} x_{n}\right) \theta_{0}+\left(x_{n}^{\prime} x_{n}\right)^{-1} x_{n}^{\prime} \varepsilon_{n} \\
& =\theta_{\text {Ip xp }}+\left(x_{n} x_{n}\right)^{-1} x_{n}^{\prime} \varepsilon_{n}\left[\begin{array}{c}
\text { convenient for analysis, } \\
\text { not for evorlcoction } \\
\text { ot the OLSE }
\end{array}\right]
\end{aligned}
$$

$(x)=\theta_{0}+\left(\frac{x_{n}^{\prime} x_{n}}{n}\right)^{-1} \frac{x_{n}^{\prime} \varepsilon_{n}}{n}\left[\begin{array}{l}\text { Convenient for establishing } \\ \text { asgenptotic properties }\end{array}\right]$
Consider the high level conditions
la Noe very defociled on the probabilistic properties on the randoms elements involved
i. $\quad \frac{x_{n}^{\prime} \varepsilon_{n}}{n} \xrightarrow{p} O_{p \times 1}$

LDotice thole $\frac{x_{n}^{\prime} \varepsilon_{n}}{n}=\left(\begin{array}{l}\frac{1}{n} \sum_{i=1}^{n} x_{i 1} \varepsilon_{i} \\ \frac{1}{n} \sum_{i=1}^{n} x_{i 2} \varepsilon_{i} \\ \frac{1}{n} \sum_{i=1}^{n} x_{i p} \varepsilon_{i}\end{array}\right)$ and
due to that $\mathbb{E}\left(\varepsilon_{1} / G\left(x_{n}\right)\right)=0, \mathbb{E}\left(x_{i z} \varepsilon_{i}\right)=0, f_{i-1, \cdots, n}^{\forall_{j}-\cdots, \cdots, p}$
Thew i, would follow by any valid how of Large Numbers - Con you provide with an example?]
ii. There exists a deterministic pap Matrix, $M_{x^{\prime} x}$, such that

$$
\frac{x_{n}^{\prime} x_{n}}{n} \xrightarrow[n]{p} H_{x^{\prime} x}
$$

LSimiloisly $\frac{x_{n}^{\prime} x_{n}}{n}=\left(\frac{1}{n} \sum_{i=1}^{n} x_{i f} x_{i f^{\prime}}\right)_{y=1_{1} \ldots, p}$ $J^{\prime}=h_{2} \ldots, p$
hence if $\mathbb{E}\left(x_{i j} x_{i y^{\prime}}\right)$ exists for all $f, f^{\prime}=t, \cdots, p$ and it is independent of the index i, then if would follow as long as a how of Large numbers were valid. this is not necessaing though. Can you provide with an exourple? I
iii. Max is invertible (E) Sons $H_{x}{ }^{\prime} x=p$)
[This is stronger thorn $\operatorname{rank} x_{4}=p\left[=\Delta \operatorname{Cank} \frac{x_{n} x_{n}}{n}=p\right]$
(why?). It is some sort of a condition of Asymptotic identification (see bebao). Since $\frac{1}{n} x_{n}^{\prime} x_{n}$ is actually a Gram matrix, it would follow-qiven ii- as long as the colliders of x_{y} remain asgarptotically lineorrly independent?
L Actually in who follows $M_{x x}$ need not be detereeinisic as long as $\mathbb{P}($ rank $d \times x=p)=1$.]

Notice that $\ddot{u}, \ddot{u} \ddot{i}$, and the continuous mapping Theorem (CMT) imply that

$$
\left(\frac{x_{n}^{\prime} x_{n}}{n}\right)^{-1} \xrightarrow{p} M_{x x}^{-1} \quad(* *)
$$

and then

$$
\begin{aligned}
& (* *), i, c u T \rightarrow \\
& \begin{aligned}
&\left(\frac{x_{n}^{\prime} x_{n}}{n}\right)^{-1} \frac{x_{n}^{\prime} \varepsilon_{n}}{n} \xrightarrow{p} \|_{x+\lambda}^{-1} O_{p \times L} \\
&=O_{p \times L} \\
&(* * *)
\end{aligned}
\end{aligned}
$$

Oud then $(* * *)$, (MT \Rightarrow

$$
\theta_{n} \xrightarrow{p} \theta_{0}+O_{p \lambda L}=\theta_{0}
$$

hence $i, i i, i i i$ are sufficient for weak consistency, when $\theta=\mathbb{R}^{P}$.
Does this also hold when $\theta \nsubseteq \mathbb{R}^{P}$?
(Remeaber that we globally assucle correct e specification hence allows $D_{0} \in \mathcal{O}$).
When $\mathcal{O} \nsubseteq \mathbb{R}^{p}$ then we dray not have an analytical form of the estimator to worn with; we could try to rely to work with results line the previous theoreali

1. We have to identify c^{*}. Remember those

$$
\begin{aligned}
\ln (\theta) & =\frac{1}{n}\left(x_{n}^{\prime} x_{n} \theta\right)^{\prime}\left(r_{n}-x_{n} \theta\right) \\
& =\cdots=\left(\theta-\theta_{0}\right)^{\prime} \frac{x_{n}^{\prime} x_{n}}{n}\left(\theta-\theta_{0}\right)-2 \frac{x_{n}^{\prime} \varepsilon_{n}}{n}(\theta-\infty)+1
\end{aligned}
$$

Given i,ii we may be tempted to assure that

$$
c^{*}(\theta)=\left(\theta-\theta_{0}\right) u_{x^{\prime} x}\left(\theta-\theta_{0}\right)+1 .
$$

2. Due to the cult, we certainly have pointwise convergence in probability for arbitrary θ.
Notice that $\forall \theta \in O, \quad k_{n}(\theta)-c^{*}(\theta) \mid$

$$
\begin{aligned}
& =1\left(\theta-\theta_{0}\right)^{\prime}\left(\frac{x_{n}^{\prime} x_{n}}{n}-u_{x \dot{x}}\right)\left(\theta_{n}-\theta_{0}\right)-\frac{2 x_{n}^{\prime} \varepsilon_{n}}{n}\left(\theta-\theta_{0}\right) \\
& \leq\left|\left(\theta-\theta_{0}\right)^{\prime}\left(\frac{x_{n}^{\prime} x_{n}}{n}-u_{x^{\prime} x}\right)\left(\theta_{n}-\theta_{0}\right)\right|+2\left|\frac{x_{n}^{\prime} \varepsilon_{n}}{n}\left(\theta-\theta_{0}\right)\right| \\
& =A_{n}+B_{n} . \quad \ddot{+}+\text { cuT } \rightarrow A_{n} \xrightarrow{p} 0, i+\text { cut } \Rightarrow B_{n} \xrightarrow{p} 0 \text {. }
\end{aligned}
$$

Hence $\forall \theta \in \theta, \operatorname{cn}_{n}(\theta) \xrightarrow{p} C^{x}(\theta)$.
3. When θ is coupecct, we can show that $\forall \theta, \theta^{*} \in \Theta$

$$
\begin{aligned}
& \left|C_{n}(\theta)-C_{n}\left(\theta^{*}\right)\right|=\left|\left(\theta-\theta_{0}\right)^{\prime} \frac{x_{n}^{\prime} x_{n}}{n}\left(\theta-\theta_{0}\right)-\left(\theta^{*}-\theta_{0}\right)^{\prime} \frac{n_{n} x_{n}\left(\theta^{*}-\theta_{0}\right)}{n} \frac{-2}{-2} \frac{x_{n}^{\prime} \varepsilon_{n}}{n}\left(\theta-\theta^{*}\right)\right| \leq\left|\left(\theta-\theta^{*}\right)^{\prime} \frac{x_{n} x_{n}}{n}\left(\theta-\theta_{0}\right)\right| \\
& \quad+\left|\left(\theta-\theta^{*}\right)^{\prime} \frac{x_{n}^{\prime} x_{n}}{n}\left(\theta^{*} \theta_{0}\right)\right|+2\left|\frac{x_{n}^{\prime} \varepsilon_{n}}{n}\left(\theta-\theta^{*}\right)\right| \\
& =A_{1}+A_{2}+A_{3}
\end{aligned}
$$

Due to the colupaceness of θ, we can show that Here exists some $C>0$: (employing Sure inequalis ties involving nodus) $A_{1} \leq C\left\|\frac{x_{n}^{\prime} x_{n}\| \| \theta-\theta * \|}{n}\right\|$ this is a Mocrix Dora called Trobenius Dorm; subuultiplicective
and $f_{2} \leq C\left\|x_{n} x_{n}\right\|\left\|\theta^{*}-\theta\right\|$

Hence we obtain the existence of a GO such that

$$
\left|C_{n}(\theta)-G_{n}\left(\theta^{*}\right)\right| \leq 2\left(-\left\|\frac{x_{n} x_{n} \|_{n}}{n}\right\| \frac{x_{n}^{\prime} \varepsilon_{n} \|}{n} \|\right)\left\|\theta-\theta^{*}\right\|, \quad f_{0}, \theta^{*} \in \Theta
$$

Furehenuore $i, i i$, CuT $\Rightarrow 2\left(\left\|\frac{x_{n}^{\prime} x_{u} \|}{n}\right\|+\left\|\frac{x_{1}^{\prime} E_{n}}{n}\right\|\right)$

$$
\xrightarrow{P} 2\left(\left\|\left\|d_{x} x\right\| .\right.\right.
$$

Thereby, when Θ is coolpact, C_{n} satisfies ($*$) with $k_{n}=2\left(C\left\|\frac{x_{n} x_{n}}{n}\right\|+\| x_{\frac{x_{n}^{\prime}}{n} n}^{n}()\right)$.
Hence, when Θ is compact, α, C and the afore established hemua imply that:
in converges to $\left(\theta-\theta_{0}\right)^{\prime} d_{x^{\prime} x}\left(0-\theta_{0}\right)+1$ locally aniforuly and in probability.
Hence we have established Conditions α and c of our Theorem. What about condition b;
4. Notice that $\left(\theta-\theta_{0}\right)^{\prime} \mu_{x x}\left(\theta-\theta_{0}\right)$ is continuous in θ, as a quadratic frenction. Due to ií, when $\Theta=\mathbb{R}^{p}$, arguain $\left(\theta-\theta_{0}\right)^{\prime} d_{x}^{\prime} x\left(\theta-\theta_{0}\right)=\theta_{0}$. $\theta \in \mathbb{R}^{P}$

When $\Theta \& \mathbb{R}^{P}$ but $\theta_{0} \in \Theta$ then the previous implies that $\underset{\theta \in O}{\operatorname{argmin}}\left(\theta-\theta_{0}\right)^{\prime} \mu_{x_{x}^{\prime} x}\left(\theta-\theta_{0}\right)=\theta_{0}$.
Hence when θ is roupace and iii holds, due to (*), b holds. Thereby we have established:
dempa [OLS-Compaceness] Under i,ii, iii and if
Θ is coupocet then the OLSE is wearily consistent.
What about other cases?
Again by a previous rellarit (see Remorrs 2 above), due to 1 , and 4 we can prove that
Lemma [Ohs-Convexity] Under i, in, ill and if θ is closed and convex then the OLSE is wecorly consistent.

What about the rellaining cases where O is such that θ e argiain $G(\theta)$? [and thus it is not such, so that the generalized definition is needed]
When θ is closed the OLS-coupacness Lempira along with a geoveetvic argument can establish consistency:

Let $B_{\theta_{0}}(\varepsilon)$ for sone small 8 rough $8>0$, be the closed ball cantered at θ_{0} with radius ε, and consider $\Theta^{*}:=\Theta \cap B_{0_{0}}(\varepsilon) . \Theta^{*}$ can be shown compact. Consider the oracle OLS $\theta_{n}^{x} \in \operatorname{argmin} G(\theta)$. θ_{n}^{x} is weourly consistent meacoible meacible
bat tefl by the lenuca. σ^{*}
\# θ_{n} lies in IIII θ^{*} then $\theta_{n}^{x}=\theta_{n}$
for the derivation of properties
 It $\theta_{n} \phi O^{*}$ then sine G is strictly cana Que kiss on the, 'boundary of θ^{x} at a Uivimat distance for θ_{n}. But $\partial_{n}{ }^{*} \stackrel{\perp}{\rightarrow} \theta_{0}$ hence with probability converging to $\frac{1}{1} \theta_{n^{*}}=Q_{1}$ and wear consistency
whenever Θ is such hat ho l \in arguing $C u$, i, ii, ia suffice for wean consistence.
Hot: We return for a while to the asymptotic identification In relation condition that appears in the theorem of consistency. to the R Reotreabber that it says, that for any $\delta>0$ the proof of Remealserced optimization of c^{*} outside the closed boll of cuss- centered at Do with radius δ, lust not resat into the starr) approximation of $\operatorname{lin}_{\theta \in \Theta} c^{*}(\theta)$ (global optimization)

This directly implies that:
a. θ_{0} is the unique Rliniuizer of c^{x}, since if $\theta_{l} \neq \theta_{0}$ was also a lunuizer, then

$$
\inf _{\theta \in O} c^{*}(\theta)=\inf _{\theta:\left\|0-\theta_{0}\right\|>\delta} C^{x}(\theta)
$$

for any $\delta<\left\|\theta_{1}-\theta_{0}\right\|$
b. Since for any $\delta>0 \quad C^{*}(\theta)=\inf _{\theta \in \theta} c^{*}(\theta)<\inf f c^{*}(\theta)$ θ : 110 -OHIO then there exists $\varepsilon \times O$:

$$
\begin{gathered}
c^{*}\left(\theta_{0}\right)<\inf ^{2} c^{*}(\theta)-\varepsilon \quad\left(* *-\theta_{1} \|>\delta\right.
\end{gathered}
$$

$\left[\right.$ Simply choose ε as anything less than inf $\left.c^{*}(\theta)-c^{*}((\theta))\right]$
c. Then $(* *)$ iapliae that for any $\delta>0, \exists \varepsilon>0$ such that for any $\theta: \| \theta$ - $\theta \| l>\delta$

$$
\begin{aligned}
& c^{*}\left(\theta_{0}\right)<c^{*}(\theta)-\varepsilon \Longrightarrow \\
& c^{*}(\theta)-c^{*}\left(\theta_{0}\right)>\varepsilon \stackrel{\left(c^{*}(\theta)-c^{*}\left(\theta_{0}\right)>0\right.}{\Rightarrow} \\
& \left|c^{*}(\theta)-c^{x}(\theta)\right|>\varepsilon \quad(* * *)
\end{aligned}
$$

d. Thus in the proof of our theorem, and since we were occuppied with the event $\left\|\theta_{n}-\theta_{0}\right\|>\delta,(* *)$ replies the existence of $\varepsilon>0$ independent of θ_{n} such that

$$
\left\|\theta_{u}-\theta_{0}\right\|>\delta \Rightarrow \quad\left|c^{*}\left(\theta_{n}\right)-c *\left(\theta_{0}\right)\right|>\varepsilon
$$

and thus due so the ulonotonicity of \mathbb{P}
$\mathbb{P}\left(\left\|\theta_{1}-\theta_{0}\right\|>\delta\right) \leq \mathbb{P}\left(\left|c *\left(\theta_{n}\right)-c^{*}\left(\theta_{0}\right)\right|>\varepsilon\right)$ an claimed in the proof.

What about our lurcher examples?
Example [linear Model - IV case]
Qevember chock Row o $V_{n}=X \theta_{0}+$ Bn $_{n}$ but for Wi the dloceix of instruments $\operatorname{TE}\left(\omega_{n}^{\prime} \varepsilon_{n}\right)=O_{q \times L}$ and rank $x_{n}=p, \operatorname{ronk}\left(\omega_{n}=q, n \geqslant 40 \times(p, p), q \geqslant p\right.$.
Reveaber that for a strictly positive definite 9×9 Maven V,

$$
\begin{align*}
& C_{n}(\theta j v)_{8}=\left(\frac{1}{n} \omega_{n}^{\prime}\left(x_{n}-x_{n} \theta\right)\right)^{\prime} V\left(\frac{1}{n} \omega_{n}^{\prime}\left(Y_{n}-x_{n} \theta\right)\right) \\
& =\frac{1}{n^{2}}\left(V_{n}-x_{n} \theta\right)^{\prime} \omega_{n} V \omega_{n}^{\prime}\left(v_{n}-x_{n} \theta\right) \tag{d}\\
& =\frac{1}{n^{2}}\left(x_{n}\left(\theta_{0}-\theta\right)+\varepsilon_{n}\right)^{\prime} \omega_{n} \sqrt{\omega_{n}}\left(x_{n}\left(\theta_{0}-\theta\right)+\varepsilon_{n}\right) \\
& \left.\begin{array}{l}
=\left(\theta_{0}-\theta\right)^{\prime} \frac{x_{n} \omega_{n} v \omega_{n}^{\prime} x_{n}^{\prime}}{n}\left(\theta_{0}-\theta\right) \\
+2\left(\theta_{0}-\theta\right)^{\prime} x_{n}^{\prime} \frac{\omega_{n}}{n} V \omega_{n} \varepsilon_{n} \\
+\quad \varepsilon_{n}^{\prime} \frac{\omega_{n}}{n} v \omega_{\frac{n}{n}}^{n} \varepsilon_{n}
\end{array}\right\} \tag{b}
\end{align*}
$$

Analogously to the case of the OLSE, (α) is observable, and (b) latent, yet useful for properties derivation.
Given $\left(\mathcal{O}\right.$, the IVE is defined by $\theta_{n} \in \operatorname{arguin} G_{n}(\theta, v)$ $\theta \in O$ and when $\Theta=\mathbb{R}^{2}$, given G_{n} is twice differentiable we have that the oprialization problem is analytically solvable using for:

$$
\begin{aligned}
& \text { hoc: } \frac{\theta C_{n}(\theta, v)}{\partial \theta}=O_{p \times L} \stackrel{(\Delta)}{\Rightarrow} \\
& {\left[\frac{g_{x}^{\prime} A_{x}}{g x}=A x+\left(x^{\prime} A\right)^{\prime}=\left(A+A^{\prime}\right) x\right.}
\end{aligned}
$$

and when A is symuluefric this reduces to $2 A$ - in our case

$$
\begin{aligned}
& A=\omega_{n} V \omega_{n}^{\prime}, A^{\prime}=\left(\omega_{n} \sqrt{n} w_{n}^{\prime}\right)^{\prime}=\left(w_{n}^{\prime}\right)^{\prime} v^{\prime} \omega_{n}^{\prime} \stackrel{V \operatorname{syu}}{=} \omega_{n} \vee \omega_{n}^{\prime} \\
& =A, \quad x=\left(x_{n}-x_{n} \theta\right) \text {, and } \frac{\partial x}{\partial \theta}=\frac{\partial\left(\left(_{n}-x_{n} \theta\right)\right.}{\partial \theta}=-x_{n}^{\prime}
\end{aligned}
$$

thereby

$$
\begin{align*}
& \left.\frac{\operatorname{scn}_{n}(\theta, v)}{\partial \theta}=\frac{1}{n^{2} \partial \theta} \frac{\partial x^{\prime} A x}{\partial x}=-\frac{2}{n^{2}} x_{n}^{\prime} \omega_{n} v \omega_{n}^{\prime}\left(v_{n} x_{n} \theta\right)\right] \\
& \left.-\frac{2}{n^{2}} x_{n}^{\prime} \omega_{n} v \omega_{n}^{\prime}\left(v_{n}-x_{n} \theta\right)=0_{p \times 2}=1\right) \\
& \frac{2}{n^{2}}\left(x_{n}^{\prime} \omega_{n}\right) v\left(\omega_{n}^{\prime} x_{n}\right) \theta=\frac{2}{n^{2}}\left(x_{n}^{\prime} \omega_{n}\right) v \omega_{n}^{\prime} v_{n} \Leftrightarrow 1 \\
& \theta_{n}=\left(\left(x_{n}^{\prime} \omega_{n}\right) v\left(\omega_{n}^{\prime} x_{n}\right)\right)^{-1}\left(x_{n}^{\prime} \omega_{n}\right) v \omega_{n}^{\prime} v_{n} \tag{3}
\end{align*}
$$

Since the aforementioned rank and dimension conditions imply that $\left(x_{n}^{\prime} w_{n}\right) \cup\left(w_{n}^{\prime} \times n_{n}\right)$ is invertible - why?]

This duse be the unique dinillizer since $\omega_{n} \vee \omega_{n}^{\prime}$ has rank q, and thereby it is strictly positive definite [why? use the Cholesny decomposition of r]
Then $Q_{k}=\left(\left(x_{n}^{\prime} \omega_{n}\right) v\left(\omega_{n}^{\prime} x_{n}\right)\right)^{-2}\left(x_{n}^{\prime} \omega_{n}\right) v \omega_{n}^{\prime} v_{n}$

$$
\begin{align*}
& =\left(\left(x_{n}^{\prime} \omega_{n}\right) \vee\left(\omega_{n}^{\prime} x_{n}\right)\right)^{-1}\left(x_{n}^{\prime}\left(\omega_{n}\right) r \omega_{n}^{\prime}\left(x_{n} \theta_{0}+\varepsilon_{n}\right)\right. \\
& =\left(\left(x_{n}^{\prime} \omega_{n}\right) v\left(\operatorname{vin}^{\prime} x_{n}\right)\right)^{-1}\left(x_{n}^{\prime}\left(\omega_{n}\right) v\left(\omega_{n}^{\prime} x_{n}\right) \theta_{0}+\right. \\
& I_{x \times P}^{2}\left(\left(x_{n}^{\prime} \omega_{n}\right) r\left(\omega_{n}^{\prime} x_{n}\right)\right)^{-1}\left(x_{n}^{\prime}\left(\omega_{n}\right) v \omega_{n}^{\prime} \varepsilon_{n}\right. \\
& =I_{\operatorname{axp}} \theta_{0}+\left(\left(x_{n}^{\prime}\left(\omega_{n}\right) r\left(\omega_{n}^{\prime} x_{n}\right)\right)^{-1}\left(x_{n}^{\prime} \omega_{n}\right) v \omega_{n}^{\prime} \varepsilon_{n}\right. \\
& \left.=\theta_{0}+\left(\left(x_{n}^{\prime} \omega_{n}\right) v c \omega_{n}^{\prime} x_{n}\right)\right)^{-1}\left(x_{n}^{\prime} \omega_{n}\right) v \omega_{n}^{\prime} \varepsilon_{n} \tag{c}\\
& =\theta_{0}+\left(\left(\frac{x_{n}^{\prime} \omega_{n}}{n}\right) v\left(\frac{\omega_{n}^{\prime} x_{n}}{n}\right)\right)^{-1}\left(\frac{x_{n}^{\prime} \omega_{n}}{n}\right) v \frac{\omega_{n}^{\prime} \epsilon_{n}}{n}
\end{align*}
$$

(c) directly shows that On need noe be unbiased, eg. we do not necessarily have that

$$
\operatorname{TE}\left(\varepsilon_{n} / 6\left(x_{n}, w_{n}\right)\right)=0_{n \times t} .
$$

(c') is convenient for the derivation of osgapptocic properties.

Remarks. Notice, in analogy to the OW S case, that $\frac{x_{n}^{\prime} W_{n}}{n}$,
and $\frac{\omega_{n}^{\prime} \varepsilon_{n}}{n}$ are arrays of empirical averages.
We employ the following high level conditions:

$$
i!\quad \frac{\omega_{n}^{\prime} \varepsilon_{n}}{n} \xrightarrow{\varphi} 0
$$

$\stackrel{x_{n}^{\prime} \omega_{n}}{n} \xrightarrow{\text { io.! }} N_{x^{\prime} \omega}$ which is a deterministic $\begin{gathered}\text { pro dlocrix }\end{gathered}$ $\ddot{i}^{\prime} \quad$ rank $M x w^{\prime} w=$
E We can also aesauce that V is stochastic and sample dependent-this could be justifiable in the cove where \checkmark was needed to be optimally chosen. We would in this case require a condition of the form:
$i i^{\prime} \cdot \quad V \xrightarrow{p} V^{*}$ deterministic

$$
V^{\prime} \quad \operatorname{Vank} V^{*}=q
$$

We will no pursue this for siaplicits - try it as an exercise]
Qemanr i^{\prime}, i^{\prime} could have lower level analogues that involve laws of large numbers, egg. in the ind framework. Additionally, in' could be facilitated $^{\prime}$ by conditions Ghat ensure asymptotic algebraic independence for the collccums of x_{1} and coss.

Under $i^{\prime}, i i$ ' and \ddot{u}^{\prime} ' and due to the CUT:

$$
\left(\frac{x_{n}^{\prime} \omega_{n}}{n}\right) V\left(w_{n}^{\prime} x_{n}\right) \xrightarrow{p} \mathbb{M}_{x} w V \mathbb{M}_{w_{x}}^{\prime}
$$

since $\operatorname{sank} \mu_{x} w=P$ and sank $V=q \Rightarrow \operatorname{rank} \mu_{x i o v i d u}$

$$
=p \stackrel{C u T}{=\Delta}\left(\left(\frac{x_{n}^{\prime} \omega_{n}}{n}\right) \vee\left(\omega_{\frac{1}{n}}^{n} x_{n}\right)\right)^{-1} \xrightarrow{p}\left(N_{x}^{\prime} w^{\prime} \| \omega_{w^{\prime} x}\right)^{-1}
$$

Analogously, $\quad\left(\frac{x_{n}^{\prime} \omega_{n}}{n}\right) V \frac{\omega_{n}^{\prime} \varepsilon_{n}}{n} \xrightarrow{p} M_{x^{\prime} w} V O_{a \times 1}=O_{p \times L}$.
Hence due to the CMT

$$
\begin{aligned}
& \theta_{0}+\left(\left(\frac{x_{n}^{\prime} \omega_{n}}{n}\right) r\left(\frac{\omega_{n}^{\prime} x_{n}}{n}\right)\right)^{-1}\left(\frac{x_{n}^{\prime} \theta_{n}}{n}\right) r \frac{\omega_{n}^{\prime} \varepsilon_{n}}{n} \rightarrow \\
& \theta_{0}+\left(l_{x^{\prime} w} V d x_{x^{\prime} w}\right)^{-1} U_{x^{\prime} w} V O_{q \times L}=\theta_{0}+O_{p x L} \\
& =\theta_{0}
\end{aligned}
$$

Hence:
heurua If $\Theta=\mathbb{R}^{P}$ and i^{\prime}, i^{\prime}, iii' hold then the $N E$ is weardy insistent.
What about when $\Theta \neq \mathbb{R}^{p}$? We con then use our general results and perform an analogous analysis to the previous example:

1. Identify c^{*}. Using (b^{\prime}) and $i^{\prime}, i_{i l}^{\prime \prime} i_{i c}^{\prime \prime}$ we have that for any $\theta \subset \theta \times\left(\theta-\theta_{0}\right)^{\prime}\left(\frac{x^{\prime} \omega_{n}}{n}\right) \cup\left(\frac{\operatorname{con}_{n}^{\prime} x_{n}}{n}\right)\left(\theta-\theta_{0}\right)$

$$
\begin{aligned}
& \stackrel{P}{\rightarrow}\left(\theta-\theta_{0}\right) \\
* & M_{x^{\prime} \omega} \vee\left(M_{x^{\prime} O}^{\prime}\left(\theta-\theta_{0}\right)\right. \\
& \left.\xrightarrow{P} \theta_{0}\right)^{\prime}\left(\frac{\kappa_{m}^{\prime} \omega_{n}}{n}\right) \vee \frac{\omega_{n}^{\prime} \varepsilon_{n}}{n} \\
& 2\left(\theta-\theta_{0}\right)^{\prime} M_{x^{\prime} \omega} \vee O_{q x_{2}}=0,
\end{aligned}
$$

$$
* \varepsilon_{0}^{\prime} \omega_{n} \sqrt{n} \omega_{n}^{n} \varepsilon_{n}^{\prime} \rightarrow O_{1 \times 01} \vee \theta_{q \times 2}=0
$$

Hence $C_{n}(\theta, v) \xrightarrow{P} C^{x}(\theta, v)=$

$$
=\left(\theta-\theta_{0}\right)^{\prime} \mu_{x^{\prime} \omega} v \mu_{x^{\prime} \omega}^{\prime}\left(\theta-\theta_{0}\right) \forall \theta_{\in} \theta .
$$

2! when Θ is compact it can be shown that

$$
\begin{aligned}
& \exists k_{u}>0: \forall \theta, \theta^{*} \in \Theta \\
& \quad\left|C_{n}(\theta, v)-C_{n}\left(\theta^{*}, v\right)\right| \leq k_{n}\left\|\theta-\theta^{*}\right\|
\end{aligned}
$$

for $k_{n}=C\left\|\frac{x_{n}^{\prime} \omega_{n}}{n} V \frac{\omega_{n}^{\prime} x_{n}}{n}\right\|+\left\|\frac{x_{n}^{\prime} \omega_{n}}{n} V \omega_{n}^{n} \varepsilon_{n}\right\|$
for souse large Enough $C^{*} \rightarrow 0$ that depends on the diaMetes of Θ. then $k n \xrightarrow{p} C^{*}\left\|M_{x^{\prime}} w v u_{x^{\prime}} w\right\|$ hence it is bounded in probability, ie. $\mp \subset O$: $\lim _{n \rightarrow+\infty} P P(K n>C)=0$.
3. 1,2 imply that when θ is coupace C_{n} converges to c^{*} locally uniformly and in probability.
4!. $c^{*}(0, v)$ is continuous in θ as a quadratic. Since $U_{x^{\prime} \omega} V M_{x i \omega}^{\prime}$ is of full sank, it is strictly positive definite. Hence $c^{*}(O, v)$ is uniquely miminitized at θ_{0}. Thereby when \mathcal{O} is coalpacce the asspuptotic identification condition holds, due to the remark imuredialteby after the proof of the consistency Theorell.

Hence due to $1,2,3,3,4^{\prime}$
derma When Θ is compact, and $i^{\prime}, i^{\prime}, \ddot{u}^{\prime}$ hold then the IVE weakly consistent.
5. When θ is closed convex, 1,4 and the second part of the remark imuediately after the proof of the consistency theoreall imply that:
della when Θ is closed and convex, and $i^{\prime}, i^{\prime}, i_{i}^{\prime}$, hold then the lV E is wearly consistent.

6: Finally and for a general Θ for which $Q_{n} \in \underset{\theta \in E}{\operatorname{arguin}} C_{n}\left(\theta_{1} V\right)$ we can apply an analogoces geometric ovrguvtent similifow co the ore in the OhS case fo conclude that:
Lemma Under $i^{\prime}, \ddot{u}^{\prime}$, \ddot{u}^{\prime} ' the IVE is weocrly consistent.
Remark [a glimpse at Misspecificaction] Suppose that everything else holds, \mathcal{F} is closed and convex but $\theta_{0} \notin \Theta$. Then the previous imply that
Oo \quad On $\xrightarrow{P} \operatorname{argmiar} C^{*}(\theta)$. This is unique by iii?, $0^{-\infty}$

La pseudo true value
0 true value converges in probability
at which

Using souse convex analysis it is not difficult to show that $\operatorname{argaiil} c^{*}(\theta, v)=\underset{\theta \in \Theta}{\operatorname{argllin}}\left\|\theta-\theta_{0}\right\|$.
Hence the esciulutas will converge to a pseudo true value defined us the unique element of Θ that is "loses," to θ_{0}.

E
Example. For the $\operatorname{GARCH}(1,1)$ case the derivations are wore complicated. It can be proven using the theoreal above, that when Θ is compact, and additionally to the conditions chat define the Model, $\alpha 0+b_{0}<l$, and the dicsribation of 20 is supported on at least three points, the Gaussian QULE is wearly consistent. a Appendix

* This colouring designates end notes; they are indicated by numbers appearing in the loin text Endnotes
(1) Notice there $\operatorname{Cn}(\theta)$ is not actually what appears there. Instead of the term 1 , the correct tenn Cree also its derivortion in the previous see of notes) is Even $/ 12$, ill.

$$
C_{n}(\theta)=\left(\theta-\theta_{0}\right)^{\prime} \frac{x_{n}^{\prime} x_{n}}{n}\left(\theta-\theta_{0}\right)-2\left(\theta-\theta_{0}\right)^{\prime} \frac{x_{1}^{\prime} \varepsilon_{n}}{n}+\varepsilon^{\prime} \delta_{n} / \omega .
$$

However notice that the feral ε^{\prime} 'in/n does not depend on θ (ir depends on θ ! ?, hence it does not affect the optimization of on w.S.E. θ. Thereby we con equivalently ("optimization-wise,") consider this "deformed,
(2) $G_{n}(\theta)=\left(\theta-\theta_{0}\right)^{\prime} \frac{x_{n} x_{n}}{n}\left(\theta-\theta_{0}\right)-2\left(\theta-\theta_{0}\right)^{\prime} \frac{x^{\prime} \varepsilon_{n}}{n}+L$ Notice for example that Minimizing (D) over $\Theta=\mathbb{R}^{P}$ (©) is also strictly convex - why?) results into θ - $\theta 0=\left(\frac{x_{n}^{\prime} x_{n}}{n}\right)^{-1} \frac{x_{n}^{\prime} \varepsilon_{n}}{n}$ (deriveit!) which is the latent version of the OLSE (derive the equivalence of optimizing (A) with optillizing the correct an for general -).
Notice also thole:
a. the terce $\&$ in (D) is isselevernt; it can be replaced by on ourbitrociy $\alpha \in \mathbb{R}$, (or a rocndom variable?) as long as c^{*} is analogously trans formed - explain!
B. it essentially chows that the variance specifications in the linear model is irrelewant for consistency - whys?
(2) There actually exists a different derivoction of consistency for the OLSE that goes through the consiseency - under i,iu, icu, of the urresericted estivertor $\left(x_{n} x^{\prime} x_{n}\right)^{-1} x_{n}^{\prime} \mathrm{V}_{n}$. Con yous find it?
(3) A sufficient condition under which On does not depend on V is that $p=9$.
Please show it.

