

Systems of Difference Equations

Mathematics for Economists, Fall 2025-26

Homework Exercises Set 3

Teaching Assistant: Maria Gioka

Email: gkiokam@aueb.gr

1 Express the following n-order linear difference equations as a first-order linear ($n \times n$) difference equations systems:

a) $y_{t+3} + 5y_{t+2} - 4y_{t+1} + y_t = t$

$$\begin{bmatrix} z_{t+1} \\ x_{t+1} \\ y_{t+1} \end{bmatrix} = \begin{bmatrix} -5 & 4 & -1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} z_t \\ x_t \\ y_t \end{bmatrix} + \begin{bmatrix} t \\ 0 \\ 0 \end{bmatrix}$$

b) $y_t + y_{t-2} + 0.25y_{t-4} = 0$

$$\begin{bmatrix} y_t \\ x_t \\ z_t \\ w_t \end{bmatrix} = \begin{bmatrix} 0 & -1 & 0 & -0.25 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} y_{t-1} \\ x_{t-1} \\ z_{t-1} \\ w_{t-1} \end{bmatrix}$$

c) $y_{t+4} + 5y_{t+2} + 4y_t = 0$

$$\begin{bmatrix} w_{t+1} \\ z_{t+1} \\ x_{t+1} \\ y_{t+1} \end{bmatrix} = \begin{bmatrix} 0 & -5 & 0 & -4 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} w_t \\ z_t \\ x_t \\ y_t \end{bmatrix}$$

2 Solve the following first order difference systems, using the direct method:

a)

$$x_{t+1} = -x_t + y_t - 8$$

$$y_{t+1} = -0.3x_t + 0.9y_t + 4$$

Eigenvalues $\lambda_1 = 0.73$, $\lambda_2 = -0.83$. The system is stable. $v_1 = \begin{bmatrix} 0.58 \\ 1 \end{bmatrix}$, $v_2 = \begin{bmatrix} 5.75 \\ 1 \end{bmatrix}$, Particular solution $\begin{bmatrix} 6.4 \\ 20.8 \end{bmatrix}$

$$x_t = c_1 0.58\lambda_1^t + c_2 5.75\lambda_2^t + 6.4$$

$$y_t = c_1 \lambda_1^t + c_2 \lambda_2^t + 20.8$$

b)

$$x_{t+1} = x_t - y_t$$

$$y_{t+1} = x_t + 3y_t$$

Characteristic equation: $\lambda^2 - 4\lambda + 4 = 0$, $\lambda_1 = \lambda_2 = \lambda = 2 > 1$. The system is unstable.

$$\begin{bmatrix} 1-2 & -1 \\ 1 & 3-2 \end{bmatrix} \begin{bmatrix} v_{11} \\ v_{12} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Rightarrow \begin{array}{l} -v_{11} - v_{12} = 0 \\ v_{11} + v_{12} = 0 \end{array}$$

So, we have that $v_{11} = -v_{12}$. Therefore

$$v_1 = \begin{bmatrix} v_{11} \\ v_{12} \end{bmatrix} = \begin{bmatrix} -v_{12} \\ v_{12} \end{bmatrix} = v_{12} \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

So, for $v_{12} = 1$ the independent eigenvector corresponding to $\lambda_1 = 2$ is

$$v_1 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

while the generalized eigenvector v_2 is

$$(A - \lambda)v_2 = v_1$$

where v_1 is the independent eigenvector. So we have that:

$$\begin{bmatrix} -1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} v_{21} \\ v_{22} \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

$$\begin{aligned} -v_{21} - v_{22} &= -1 \\ v_{21} + v_{22} &= 1 \end{aligned} \rightarrow v_{21} = 1 - v_{22}$$

Therefore, for $v_{22} = 1$ the generalized eigenvector is:

$$v_2 = \begin{bmatrix} v_{21} \\ v_{22} \end{bmatrix} = \begin{bmatrix} 1 - v_{22} \\ v_{22} \end{bmatrix} \stackrel{v_{22}=1}{=} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

The general solution of the system is:

$$x_t = c_1 v_{11} \lambda^t + c_2 t v_{11} \lambda^{t-1} + c_2 v_{21} \lambda^t = -c_1 2^t - c_2 t 2^{t-1}$$

$$y_t = c_1 v_{12} \lambda^t + c_2 t v_{12} \lambda^{t-1} + c_2 v_{22} \lambda^t = c_1 2^t + c_2 t 2^{t-1} + c_2 2^t$$

where c_1 and c_2 are arbitrary constants.