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Economic application
Consider Samuelson’s (1939) multiplier-accelerator model of
income determination:

Ct = bYt−1 0 < b < 1 (1)

It = I ′t + I ′′t (2)

I ′t = k(Ct − Ct−1) k > 0 (3)

I ′′t = G G = constant (4)

Yt = Ct + It (5)
The consumption equation (1) is a linear function of lagged
income where b stands for the marginal propensity to consume
(MPC). Income has two components, namely induced investment,
I ′t , and autonomous investment, I ′′t , equals to public spending,
G ,assumed constant at all periods (strictly exogenous). Induced
income evolves according to the acceleration equation (3) where k
is the acceleration coefficient.
Solving the model (substituting and separating endogenous form
exogenous variables) yields:



Economic application

Yt = Ct + It

Yt = bYt−1 + I ′t + I ′′t

Yt = bYt−1 + k(Ct − Ct−1) + G

Yt = bYt−1 + k(bYt−1 − bYt−2) + G

Yt − b(1 + k)Yt−1 + kbYt−2 = G

This is linear second order difference equation in Yt .



Economic application

Since its RHS is constant an appropriate guess function would be
Yt = µ. Substituting into the second order difference equation we
have

µ− b(1 + k)µ+ kbµ = G ⇔ µ = G 1
1 − b

which is the particular solution i.e. the long run equilibrium.
The solution to the homogeneous equation is a function of the
roots of the following characteristic polynomial:

λ2 − b(1 + k)λ+ bk = 0

λ2 + a1λ+ a2 = 0

a1 ≡ −b(1 + k) a2 ≡ bk
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So,

a1 ≡ −b(1 + k) a2 ≡ bk

These coefficients satisfy the stability conditions stated in (5.19)
on p.58 in Gandolfo:

1 + a1 + a2 > 0 ⇒ 1 − b(1 + k) + bk > 0 ⇒ 1 − b > 0

1 − a2 > 0 ⇒ 1 − bk > 0

1 − a1 + a2 > 0 ⇒ 1 + b(1 + k) + bk > 0

The second condition requires that:

bk < 1 or b <
1
k

Moreover according to Descartes’ theorem (Gandolfo p.54), since
the coefficients of the characteristic equation alternate in sign, no
negative root may occur, hence improper oscillations are excluded.
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The quality of the roots depends on the discriminant, ∆:

∆ S 0

b2(1 + k)2 − 4bk S 0 b > 0

b S
4k

(1 + k)2



Economic application

Figure: Samuelson’s multiplier-accelerator diagram.



Economic application 2

Consider the following rational expectations model:
Ct = −βpt , β > 0 (6)

Qt = γpe
t + zt , γ > 0 (7)

It = a(pe
t+1 − pt), a > 0 (8)

Ct + It = Qt + It−1 (9)

pe
t = pt , pe

t+1 = pt+1 (10)
Equation (6) expresses current consumption (demand) as a
function of current price, pt . Equation (7) expresses current
production (supply) as a function of the price expected to hold in
the current period, pe

t , while zt is an exogenous (deterministic)
supply shock. Equation (8) is the current inventory level held for
speculative purposes. Equation (10) is the transition equation or
adjustment equation. It assumes rational expectations i.e. mean
perfect foresight. Substituting equations (6) - (8) into (9) using
(10) yields the following sode:
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−βpt + a(pe

t+1 − pt) = γpe
t + zt + a(pe

t − pt−1)

−βpt + a(pt+1 − pt) = γpt + zt + a(pt − pt−1)

−βpt + apt+1 − apt = γpt + zt + apt − apt−1

apt+1 − 2apt − βpt − γpt + apt−1 = zt

apt+1 − (2a + β + γ)pt + apt−1 = zt

pt+1 − (
2a + β + γ

a )pt + pt−1 =
zt
a

Lagging once and setting Xt ≡ zt−1
a ≡ L1( zt

a ) yields:

pt − (
2a + β + γ

a )pt−1 + pt−2 = Xt



Economic application 2

The characteristic polynomial of the homogeneous equation is

λ2 − (
2a + β + γ

a )λ+ 1 = 0

∆ = (
2a + β + γ

a )2 − 4 =
(2a + β + γ)2 − 4a2

a2 > 0

Given ∆ > 0, applying Descartes’ theorem, both roots will be
positive (the coefficients of the characteristic polynomial alternate
in sign). Thus, the solution of the homogeneous equation equals

ph
t = A1λ

t
1 + A2λ

t
2

Since the product of the roots equals unity, λ1λ2 = 1, they are
inverse related i.e. λ1 = 1

λ2
. Let λ1 < 1 implying that |λ1| < 1 so

λ1 is the stable root. Them, λ2 > 1 implying that |λ2| > 1 so λ2 is
the unstable root. Therefore, the solution is unstable.
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Next, use lag operators in order to find the solution of the
non-homogeneous equation

pt − (
2a + β + γ

a )pt−1 + pt−2 = Xt

pt − (
2a + β + γ

a )Lpt + L2pt = Xt

Thus the particular solution equals:

p̄t = [
1

1 − (2a+β+γ
a )L + L2

]Xt = (
θ1

1 − λ1L +
θ2

1 − λ2L)Xt

where constants θ1 and θ2 are obtained by solving for the partial
fractions of the rational polynomial above:

θ1 =
λ1

λ1 − λ2
, θ2 =

−λ2
λ1 − λ2

,
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Since |λ1| < 1 and |λ2| > 1, the backward expansion should be
used for λ1 and the forward expansion for λ2. In this way, the
particular solution will have a form of two-sided distributed lag, i.e.
of a weighted sum of past, present, and future values of Xt :

p̄t = (
θ1

1 − λ1L +
θ2

1 − λ2L)Xt

p̄t = θ1

∞∑
i=0

λi
1Xt−i − θ2

∞∑
i=1

(
1
λ2

)iXt+i

Moreover, since 1
λ2

= λ1:

p̄t = θ1

∞∑
i=0

λi
1Xt−i − θ2

∞∑
i=1

λi
1Xt+i
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Thus the general solution equals:

pt = A1λ
t
1 + A2λ

t
2 + p̄t

pt = A1λ
t
1 + A2λ

−t
1 + p̄t

where |λ1| < 1 and |λ2| > 1
In order to determine the constants A1 and A2 we will impose
boundary conditions on the entire path of pt for all bounded
sequences of the exogenous shock, {Xt}. Observe that:

lim
t→∞

λt
1 = 0 ∧ lim

t→∞
λt

2 = lim
t→∞

λ−t
1 = +∞ ⇒ A2 = 0

lim
t→−∞

λt
1 = +∞∧ lim

t→−∞
λt

2 = lim
t→−∞

λ−t
1 = 0 ⇒ A1 = 0

Thus, the entire path will be bounded as long as A1 = A2 = 0:

lim
t→±∞

|pt | < +∞ ⇔ A1 = A2 = 0



Higher-order Difference equation (lags)
Express the following linear difference equation as a linear
first-order difference system:

yt − 4yt−1 + 4.8yt−2 − 1.6yt−3 = 100

Since the polynomial order is p = 3, define p − 1 = 2 new
variables, say xt and zt :

xt ≡ yt−1

zt ≡ yt−2 ≡ xt−1

zt−1 = yt−3

Substituting in the original and solving for yt yields:

yt = 4xt − 4.8zt + 1.6zt−1 + 100

yt = 4yt−1 − 4.8xt−1 + 1.6zt−1 + 100



Ηigher-order Difference equation (lags)

 yt
xt
zt

 =

 4 −4.8 1.6
1 0 0
0 1 0

 yt−1
xt−1
zt−1

+

 100
0
0


Stacking yields a linear first-orderp × p difference system:

Yt
p×1

= A
p×p

Yt−1
p×1

+ C
p×1



Higher-order Difference equation (leads)

Express the following linear difference equation as a linear
first-order difference system:

yt+3 − yt+2 − 2yt+1 + 2yt = 0

Since the polynomial order is p = 3, define p − 1 = 2 new
variables, say xt and zt :

xt ≡ yt+1

zt ≡ yt+2 ≡ xt+1

zt+1 = yt+3

Substituting in the original yields:

zt+1 = zt + 2xt − 2yt



Higher-order Difference equation (leads)

 zt+1
xt+1
yt+1

 =

 1 2 −2
1 0 0
0 1 0

 zt
xt
yt


Stacking yields a linear first-orderp × p difference system:

Yt+1
p×1

= A
p×p

Yt
p×1

+ C
p×1



Real distinct roots (Δ>0)

Solve the following FODS:{
xt+1 = xt + 2yt + 2
yt+1 = 4xt + 3yt + 1

}
This is a linear 2 × 2 system in xt and yt , already in normal form.
Defining:

Xt+1 :=

[
xt+1
yt+1

]
, Xt :=

[
xt
yt

]
, A :=

[
1 2
4 3

]

G :=

[
2
1

]
, X0 :=

[
1
1

]
We may equivalently write the system in vector form:

Xt+1 = AXt + G



Real distinct roots (Δ>0)
Apply the direct method and find the characteristic polynomial of
square matrix A:∣∣∣∣ 1 − λ 2

4 3 − λ

∣∣∣∣ = 0 ⇒ (1−λ)(3−λ)− 8 = 0 ⇒ λ2 − 4λ− 5 = 0

Since ∆ = 36 > 0 the polynomial has a pair of real distinct roots
(eigenvalues), λ1 = 5, λ2 = −1. Since the eigenvalues are distinct,
the eigenvector v1 = (v11, v12), v2 = (v21, v22) will be linear
independent:[

1 − 5 2
4 3 − 5

] [
v11
v12

]
=

[
0
0

]
⇒ −4v11 + 2v12 = 0

4v11 − 2v12 = 0
So, we have that v11 = 0.5v12.Therefore

v1 =

[
v11
v12

]
=

[
0.5v12

v12

]
= v12

[
0.5
1

]
So, an eigenvector corresponding to λ1 = 5 is

v1 =

[
0.5
1

]
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while the eigenvector corresponding to λ2 = −1 is

[
1 − (−1) 2

4 3 − (−1)

] [
v21
v22

]
=

[
0
0

]
⇒ 2v21 + 2v22 = 0

4v21 + 4v22 = 0

So, we have that v21 = −v22.Therefore

v2 =

[
v21
v22

]
=

[
−v22
v22

]
= v22

[
−1
1

]
So, an eigenvector corresponding to λ2 = −1 is

v2 =

[
−1
1

]
The general solution of the homogeneous system is:

xt = c1v11λ
t
1 + c2v21λ

t
2 = c10.5λt

1 + c2(−1)λt
2

yt = c1v12λ
t
1 + c2v22λ

t
2 = c11λt

1 + c21λt
2

where c1 and c2 are arbitrary constants



Real distinct roots (Δ>0)
We can now turn to the problem of finding a particular solution of
the non-homogeneous system. The method of undetermined

coefficients can be applied here too. Since G =

[
2
1

]
let us try

X̄ =

[
x̄1
x̄2

]
, where x̄1 and x̄2 are undetermined constants.

X̄ = AX̄ + G

(I − A)X̄ = G

X̄ = (I − A)−1G

[
x̄1
x̄2

]
=

[
1 − 1 −2
−4 1 − 3

]−1 [ 2
1

]
=

[
0 −2
−4 −2

]−1 [ 2
1

]

=
1
−8

[
−2 2
4 0

] [
2
1

]
=

[
0.25 −0.25
−0.5 0

] [
2
1

]
=

[
0.25
−1

]



Real distinct roots (Δ>0)

Use the the initial condition vector in order to determine the vector
of arbitrary constants in the general solution:

t = 0 :

{
x0 = c10.5λ0

1 + c2(−1)λ0
2 + 0.25

y0 = c11λ0
1 + c21λ0

2 − 1

}
⇒{

1 = 0.5c1 − c2 + 0.25
1 = c1 + c2 − 1

}

C =

[
c1
c2

]
=

[
0.5
−0.5

]



Real repeated root (Δ=0)

Solve the following FODS{
y1t+1 = −3y1t − 2y2t − 2at

y2t+1 = 2y1t + y2t + at

}
This is a linear 2 × 2 system in y1t and y2t , in normal form, where

A :=

[
−3 −2
2 1

]
, G(t) := Gat =

[
−2
1

]
at , Y0 :=

[
y10
y20

]
We may equivalently write the system in vector form:

Yt+1 = AYt + G(t)



Real repeated root (Δ=0)
Apply the direct method and find the characteristic polynomial of
square matrix A:∣∣∣∣ −3 − λ −2

2 1 − λ

∣∣∣∣ = 0 ⇒ (−3−λ)(1−λ)+4 = 0 ⇒ λ2+2λ+1 = 0

Since ∆ = 0 the polynomial has a real repeated root (eigenvalue),
λ = λ1 = λ2 = −1. Because λ ≮ 1 the system is unstable. The
independent eigenvector v1 is:[
−3 − (−1) −2

2 1 − (−1)

] [
v11
v12

]
=

[
0
0

]
⇒ −2v11 − 2v12 = 0

2v11 + 2v12 = 0

So, we have that v11 = −v12.Therefore

v1 =

[
v11
v12

]
=

[
−v12
v12

]
= v12

[
−1
1

]
So, the independent eigenvector corresponding to λ1 = −1 is

v1 =

[
−1
1

]



Real repeated root (Δ=0)

while the generalized eigenvector v2 is

(A − λΙ)v2 = v1

where v1 is the independent eigenvector. So we have that:[
−2 −2
2 2

] [
v21
v22

]
=

[
−1
1

]
−2v21 − 2v22 = −1

2v21 + 2v22 = 1 → v21 = 0.5 − v22

Therefore, the generalized eigenvector is:

v2 =

[
v21
v22

]
=

[
0.5 − v22

v22

]
v22=1
=

[
−0.5

1

]



Real repeated root (Δ=0)
The general solution of the homogeneous system is:

y1t = c1v11λ
t + c2tv11λ

t−1 + c2v21λ
t = [−c1 + c2(t − 0.5)](−1)t

y2t = c1v12λ
t + c2tv12λ

t−1 + c2v22λ
t = [c1 − c2(t − 1)](−1)t

where c1 and c2 are arbitrary constants.
The non-homogeneous part, G(t), is a known functional form. Try
the exponential guess function:

Y t = Kat , Y t+1 = Kat+1

Y t+1 = AY t + G(t)

Kat+1 = AKat + Gat

Ka = AK + G



Real repeated root (Δ=0)

K = AKa−1 + Ga−1

K − AKa−1 = Ga−1

K = (I − Aa−1)−1Ga−1

K =

[
K1
K2

]
= (

[
1 0
0 1

]
−
[
−3

a −2
a

2
a

1
a

]
)−1

[
−2
1

]
1
a =

[
−2a

(a+1)2
a−1

(a+1)2

]
Therefore:

GS = CF + PS

y1t = [−c1 + c2(t − 0.5)](−1)t − 2a
(a + 1)2 at

y2t = [c1 − c2(t − 1)](−1)t +
a − 1

(a + 1)2 at


