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Notation:
Let a function of two variables �[u(t); v(t)].
Its time derivative will be denoted �0 where �0 � d�

dt � _�.
Its partial derivatives will be denoted �u; �v where �u � @�

@u ; �v �
@�
@v .

To simplify notation, time-varying variables u(t); v(t) will be denoted u; v in continuous-time
and ut; vt in discrete-time problems.
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CONTINUOUS-TIME PROBLEMS

Suppose (today at time zero) we want to choose paths fx; ug10 so as to solve the following (in�nite-
horizon) optimization problem:

max

Z 1

0

e�rtf(x; u)dt (1)

subject to
x0 = g(x; u) (2)

given the initial condition x(0) = x0,

where,
r is the continuous-time discount rate,
e�rt is the continuous-time discount factor,
x is the state variable, and
u is the control variable.

(2) is the called the state or transition equation.
Both x and u (and the associated functions f and g) are time-varying.

This problem may be solved in any of three ways:

- calculus of variations
- optimal control (the Hamiltonian equation)
- dynamic programming (the Bellman equation).
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I. OPTIMAL CONTROL (THE HAMILTONIAN EQUATION)

De�ne the present-value Hamiltonian

H � e�rtf(x; u) + �g(x; u) (3)

or, the current-value Hamiltonian (see K+S, pp. 164-6)

ertH � H = f(x; u) + ert�g(x; u) (4)

letting ert� � m so that (4) becomes

H(x; u;m) = f(x; u) +mg(x; u) (5)

where � and m are time-varying multipliers associated with constraint (2).

Speci�cally, mt is the marginal value of state variable x at time t while �t is the marginal value of
state variable x at time t discounted back to time zero where the problem is being solved.

First-order conditions (FOCs):

Hu = fu(x; u) +mgu(x; u) = 0 (6)

m0
�
� dm

dt
� _m

�
= rm�Hx = rm� fx(x; u)�mgx(x; u) (7)

Hm = g(x; u) = x
0
�
� dx

dt
� _x

�
(8)

Thus, the FOCs make up a system of three equations in three unknowns, namely (x; u;m).

Condition (7) is derived as follows (see K+S, p. 165):

We de�ned m � ert�.
Taking the time derivative of this expression, we obtain m0 = rert�+ ert�0 = m�+ ert�0.
At the optimum �0 +Hx = 0 ie the change in the marginal value of the state variable, �

0, plus
the marginal utility of the state variable, Hx, must equal zero (see K+S, pp. 136-141).
Thus �0 = �Hx.
Using this, we may write: m0 = rm�ertHx

since H�e�rtH, m0 = rm�erte�rtHx , m0 = rm�Hx. QED
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II. DYNAMIC PROGRAMMING (THE BELLMAN EQUATION)

(See K+S, pp. 259-263).

De�ne the optimal value function J (t0; x0) as the best value function that can be obtained starting
at time t0 in state x0 where 0 � t0 � 1:

J (t0; x0) � max
Z 1

t0

e�rtf(t; x; u)dt (9a)

subject to x0 = g(x; u)
given the initial condition x(0) = x0,

or, equivalently:

J (t0; x0) � max
�
e�rt0

Z 1

t0

e�r(t�t0)f(x; u)dt

�
(9b)

De�ning

V (x0) � max
Z 1

t0

e�r(t�t0)f(x; u)dt (10)

as the value of the integral, we may write the optimal value function J (t0; x0), as follows:

J (t0; x0) � max
�
e�rt0V (x0)

	
(11)

Note that the value, V (x0), of the integral on the RHS of equation (9b),
R1
t0
e�r(t�t0)f(x; u)dt,

depends on the initial state, x0, but is independent of the initial time, t0, ie it only depends on
elapsed time, (t� t0).

The partial derivatives of J (t0; x0) are Jt0 (t0; x0) = �re�rt0V (x0) and Jx0 (t0; x0) = e�rt0V 0 (x0).
Dropping the time subscripts, J (t; x) = e�rtV (x), Jt (t; x) = �re�rtV (x) and Jx (t; x) = e�rtV 0 (x).

We can prove (see K+S, p. 260) that

�Jt (t; x) ' max
u

�
e�rtf (x; u) + Jx (t; x) g (x; u)

�
(12)

or, substituting for the partial derivatives

re�rtV (x) ' max
u

�
e�rtf (x; u) + e�rtV 0 (x) g (x; u)

�
(13)

and multiplying both sides by ert, we obtain the Hamilton-Jacobi-Bellman equation

rV (x) ' max
u
[f (x; u) + V 0 (x) g (x; u)] (14)

which is the fundamental partial di¤erential equation obeyed by the optimal value function J (t; x)
(see K+S, p. 261).

FOCs:
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The �rst order conditions of the Hamilton-Jacobi-Bellman equation are:

0 = fu (x; u) + V
0 (x) gu (x; u) (15)

rV 0 (x) = fx (x; u) + V
00 (x) g (x; u) + V 0 (x) gx (x; u) (16)

where V 0 (x) is the derivative of V (x) with respect to x, V 0 (x) � dV (x)
dx .

Equation (15) is the marginal condition resulting from di¤erentation of the
Hamilton-Jacobi-Bellman equation with respect to control variable u, while equation (16) is
the so-called envelope or Benveniste-Scheinkman condition resulting from taking the
derivative of the Hamilton-Jacobi-Bellman equation with respect to state x, after substituting for
the optimal solution of control variable u, which we obtain by solving equation (15) together with
the constraint x0 = g(x; u) for u. The optimal solution for u thus obtained is a function of x.

The conditions given by equations (15)� (16) are similar to those given by equations (6)� (7)
in the optimal control solution above. This becomes obvious if we set � = Jx (t; x) and, given the
fact that Jx (t; x) = e�rtV 0 (x), substitute for � in the de�nition of the current-value multiplier, ert� � m,
which yields m = V 0 (x) ie if the current-value multiplier equals the marginal value of the
state variable, x. Moreover, if m = V 0 (x), then _m = V 00 (x) _x, where _x = g (x; u) ie the optimization
constraint. Thus, the dynamic programming solution coincides with the optimal control solution.

Given the above FOCs, we then work as usually by linearizing and studying the long-run and
the transition (dynamic stability) (see K+S, pp. 175-7).
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DISCRETE-TIME PROBLEMS

We will consider three solutions:

- dynamic programming (the Bellman equation)
- optimal control (the Hamiltonian equation)
- the Lagrangean equation.
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I. DYNAMIC PROGRAMMING

(See Sargent, 1987b, Ch. 1).

The Bellman equation is:

V (xt) = max
fut;xt+1g

[f (xt; ut) + �V (xt+1)] (1)

subject to
xt+1 � xt = g (xt; ut) (2)

or, equivalently:

V (xt) = max
ut
ff (xt; ut) + �V [xt + g (xt; ut)]g (3)

where � is the one-period discrete-time discount factor.

FOCs:

0 = fu(:t) + �V
0 (xt+1) gu(:t) (4)

V 0 (xt) = fx(:t) + �V
0 (xt+1) [1 + gx(:t)] (5)

where equation (5) is the envelope condition for the state variable at time t, xt.

We can use equation (4) to substitute out V 0 (xt) or V 0 (xt+1), so that equations (5) and (2) are a
system of two equations in two unknowns, namely xt; ut.

Application

In the basic optimal growth model, we have:

f (xt; ut) = � (ct)
1

g (xt; ut) = f (kt)� ct or kt+1 � kt = f (kt)� ct

The Bellman equation is:
V (kt) = max fct;kt+1g[�(ct) + �V (kt+1)] s.t. kt+1 � kt = f (kt)� ct
or, equivalently V (kt) = maxkt+1f�[f(kt)� kt+1 + kt] + �V (kt+1)].

Then, equation (4) becomes 0 = �0[f(kt)� kt+1](�1) + �V 0(kt+1), �0(ct) = �V 0(kt+1), and
equation (5) becomes V 0(kt) = �0(ct) [f 0(kt) + 1]

�0(ct)=�V 0(kt+1), V 0(kt) = �V 0(kt+1) [1 + f 0(kt)]
which is the envelope condition for kt.

Now, using these two conditions we obtain the usual Euler equation:h
�0(ct�1)

�

i
= �

h
�0(ct)
�

i
[1 + f 0(kt)], �0(ct) = ��0(ct+1) [1 + f 0(kt)]

where
V 0(kt+1) = �0(ct)

� = �0(ct+1)) V 0(kt) = �0(ct�1)
� = �0(ct).

1We use � instead of u to denote the utility function in order to avoid confusion with the notation used for the control
variable, u.
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II. OPTIMAL CONTROL

De�ne the current-value Hamiltonian:

Ht (xt; ut;mt) � f (xt; ut) +mtg (xt; ut) (6)

FOCs:

Hu = 0, fu (:t) +mtgu (:t) = 0 (7)

mt � �
�
@Ht+1

@xt+1

�
= �mt+1 (8a)

Since @Ht+1

@xt+1
= fx (:t+ 1) +mt+1gx (:t+ 1), equation (8a) becomes

mt = � ffx (:t+ 1) +mt+1 [1 + gx (:t+ 1)]g (8b)

Hm = g (xt; ut) = xt+1 � xt (9)

The conditions given by equations (7); (8b) and (9) are a system of three equations in three
unknowns, namely x; u;m.

Equation (8a) may be derived as follows:2

Since we are solving a discrete time problem, �t = �
tmt and �t+1 = �

t+1mt+1

(one period ahead) where �t = 1
(1+r)t

is the t-period discount factor (starting at time 0).

Taking di¤erences, �t+1 � �t = �t+1mt+1 � �tmt , �t+1 � �t = �t (�mt+1 �mt).
Similar to continuous time optimization, �t+1 � �t = �@Ht+1

@xt+1
= � @

@xt+1

�
�t+1Ht+1

�
.

Therefore, �t+1 � �t = � @
@xt+1

�
�t+1Ht+1

�
= �t (�mt+1 �mt), ��t�

�
@Ht+1

@xt+1

�
= �t (�mt+1 �mt),

, ��
�
@Ht+1

@xt+1

�
= �mt+1 �mt , mt � �

�
@Ht+1

@xt+1

�
= �mt+1. QED

The optimal control solution coincides with the dynamic programming solution, if we let
mt = �V

0 (xt+1).

2See also the derivation o¤ered on page 10.
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III. THE LAGRANGEAN EQUATION

"Sargent, 1987a" uses this method a lot.

De�ne the Lagrangean equation:

L � maxfut;xt+1g
P1

t=0 �
t ff (xt; ut) + �t [�xt+1 + xt + g (xt; ut)]g

where �t is the Lagrangean multiplier.

FOCs:

fu (:t) + �tgu (:t) = 0

�fx (:t+ 1)� �t + ��t+1 + ��t+1gx (:t+ 1) = 0() �t = �
�
fx (:t+ 1) + �t+1 + �t+1gx (:t+ 1)

�
()

() �t = �
�
fx (:t+ 1) + �t+1 [1 + gx (:t+ 1)]

	
We conclude that this solution coincides with the optimal control and dynamic programming
ones.
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COMPARISON OF THE DYNAMIC EQUATIONS IN DISCRETE AND CONTINUOUS TIME

If � is the discrete-time discount factor and r is the continuous-time discount factor, then

r = 1��
� given � = 1

1+r , namely
1��
� =

1� 1
1+r
1

1+r

= r. Hence equation (7) in the continuous-time model

implies 1��
� m�

@H
@x = m

0 or, in discrete-time, 1��� mt � @Ht+1

@xt+1
= mt+1 �mt , mt

� �
@Ht+1

@xt+1
= mt+1 ,

() mt � � @Ht+1

@xt+1
= �mt+1 which is equation (8a) in the discrete-time model.

Note that both 0 < � < 1 and 0 < r < 1.
Moreover, � is a discount factor while r is a discount rate.
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THE BASIC OPTIMAL GROWTH MODEL IN DISCRETE TIME

Suppose we want to choose paths of fct; ktg1t=0 so as to solve the following optimization problem:

max
P1

t=0 �
tu (ct) s.t. kt � kt�1 = f (kt�1)� ct given k�1 where 0 < � < 1.3

We will solve the problem in two ways:

- dynamic programming
- optimal control.

3Alternatively, we could have used constraint kt+1�kt = f (kt)�ct+1 given k0. This is the constraint used in the application
on page 7.
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I. DYNAMIC PROGRAMMING

Write the Bellman equation:

V (kt�1) = max
fct;ktg

[u (ct) + �V (kt)] (1a)

or, equivalently:

V (kt�1) = max
kt
fu [f (kt�1) + kt�1 � kt] + �V (kt)g (1b)

FOC (wrt kt):

0 = u0 (ct) (�1) + �V 0 (kt)() u0 (ct) = �V
0 (kt) (2)

Envelope condition (wrt state kt�1):

V 0 (kt�1) = u
0 (ct)

h
f 0 (kt�1) + 1�

�
@kt
@kt�1

�i
+ �V 0 (kt)

�
@kt
@kt�1

�
,

, V 0 (kt�1) = u
0 (ct) [1 + f

0 (kt�1)]� [u0 (ct)� �V 0 (kt)]
�

@kt
@kt�1

�
.

But [u0 (ct)� �V 0 (kt)] = 0 by the FOC. Hence: V 0 (kt�1) = u0 (ct) [1 + f 0 (kt�1)].
or, shifted one period forward:

V 0 (kt) = u
0 (ct+1) [1 + f

0 (kt)] (3)

Plugging (3) into (2), we obtain the Euler equation:

u0 (ct) = �u
0 (ct+1) [1 + f

0 (kt)] (4)
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II. OPTIMAL CONTROL

De�ne the current-value Hamiltonian:

Ht � u (ct) +mt [f (kt�1)� ct] (5)

where kt � kt�1 = f (kt�1)� ct.

FOCs:

@Ht

@ct
= 0, u0 (ct) = mt (6)

mt � �
�
@Ht+1

@kt

�
= �mt+1 (7a)

Since @Ht+1

@kt
= mt+1f

0 (kt), equation (7a) becomes mt � � [mt+1f
0 (kt)] = �mt+1, or:

mt = �mt+1 [1 + f
0 (kt)] (7b)

@Ht

@mt
= f (kt�1)� ct = kt � kt�1

Plugging equations (6) into equation (7b), we obtain the Euler equation:

u0 (ct) = �u
0 (ct+1) [1 + f

0 (kt)] (8)

which is the same as dynamic programming equation (4).
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