TECHNIQUES OF DYNAMIC OPTIMIZATION IN CONTINUOUS AND DISCRETE TIME MODELS (GENERAL SPECIFICATION)

References:

- [1] Kamien, M.I., and N.L. Schwartz (1991): "Dynamic Optimization". North Holland Elsevier. Second Edition. (Cited "K+S").
- [2] Sargent, Thomas J. (1987): "Macroeconomic Theory". Academic Press. (Cited "Sargent, 1987a").
- [3] Chapter 1 "Dynamic Programming", in Thomas J. Sargent (1987), Dynamic Macroeconomic Theory, 11-56. Cambridge: Harvard University Press. Second Edition. (Cited "Sargent, 1987b, Ch. 1").

Notation:

Let a function of two variables $\phi[u(t), v(t)].$

Its time derivative will be denoted ϕ' where $\phi' \equiv \frac{d\phi}{dt} \equiv \dot{\phi}$.

Its partial derivatives will be denoted ϕ_u, ϕ_v where $\phi_u \equiv \frac{\partial \phi}{\partial u}, \phi_v \equiv \frac{\partial \phi}{\partial v}$.

To simplify notation, time-varying variables $u(t)$, $v(t)$ will be denoted u, v in continuous-time and u_t, v_t in discrete-time problems.

CONTINUOUS-TIME PROBLEMS

Suppose (today at time zero) we want to choose paths $\{x, u\}^{\infty}$ so as to solve the following (infinitehorizon) optimization problem:

$$
\max \int_0^\infty e^{-rt} f(x, u) dt \tag{1}
$$

subject to

$$
x' = g(x, u) \tag{2}
$$

given the initial condition $x(0) = x_0$,

where,

r is the continuous-time discount rate, e^{-rt} is the continuous-time discount factor, x is the state variable, and u is the control variable.

(2) is the called the state or transition equation. Both x and u (and the associated functions f and g) are time-varying.

This problem may be solved in any of three ways:

- calculus of variations

- optimal control (the Hamiltonian equation)

- dynamic programming (the Bellman equation).

I. OPTIMAL CONTROL (THE HAMILTONIAN EQUATION)

Define the *present-value* Hamiltonian

$$
H \equiv e^{-rt} f(x, u) + \lambda g(x, u)
$$
\n(3)

or, the current-value Hamiltonian (see K+S, pp. 164-6)

$$
e^{rt}H \equiv \mathcal{H} = f(x, u) + e^{rt}\lambda g(x, u)
$$
\n(4)

letting $e^{rt}\lambda \equiv m$ so that (4) becomes

$$
\mathcal{H}(x, u, m) = f(x, u) + mg(x, u)
$$
\n(5)

where λ and m are *time-varying* multipliers associated with constraint (2).

Specifically, m_t is the marginal value of state variable x at time t while λ_t is the marginal value of state variable x at time t discounted back to time zero where the problem is being solved.

First-order conditions (FOCs):

$$
\mathcal{H}_u = f_u(x, u) + m g_u(x, u) = 0 \tag{6}
$$

$$
m' \left(\equiv \frac{dm}{dt} \equiv \dot{m} \right) = rm - \mathcal{H}_x = rm - f_x(x, u) - mg_x(x, u)
$$
\n(7)

$$
\mathcal{H}_m = g(x, u) = x' \left(\equiv \frac{dx}{dt} \equiv \dot{x} \right)
$$
\n(8)

Thus, the FOCs make up a system of three equations in three unknowns, namely (x, u, m) .

Condition (7) is derived as follows (see K+S, p. 165):

We defined $m \equiv e^{rt}\lambda$.

Taking the time derivative of this expression, we obtain $m' = re^{rt}\lambda + e^{rt}\lambda' = m\lambda + e^{rt}\lambda'.$ At the optimum $\lambda' + H_x = 0$ ie the change in the marginal value of the state variable, λ' , plus the marginal utility of the state variable, H_x , must equal zero (see K+S, pp. 136-141). Thus $\lambda' = -H_x$.

Using this, we may write:
$$
m' = rm - e^{rt} H_x^{\text{ since } \frac{H}{\Longleftrightarrow} e^{-rt} H_m'} m' = rm - e^{rt} e^{-rt} H_x \Leftrightarrow m' = rm - H_x
$$
. QED

II. DYNAMIC PROGRAMMING (THE BELLMAN EQUATION)

(See K+S, pp. 259-263).

Define the optimal value function $J(t_0, x_0)$ as the best value function that can be obtained starting at time t_0 in state x_0 where $0 \le t_0 \le \infty$:

$$
J(t_0, x_0) \equiv \max \int_{t_0}^{\infty} e^{-rt} f(t, x, u) dt
$$
 (9a)

subject to $x' = g(x, u)$ given the initial condition $x(0) = x_0$,

or, equivalently:

$$
J(t_0, x_0) \equiv \max \left\{ e^{-rt_0} \int_{t_0}^{\infty} e^{-r(t-t_0)} f(x, u) dt \right\}
$$
 (9b)

Defining

$$
V(x_0) \equiv \max \int_{t_0}^{\infty} e^{-r(t-t_0)} f(x, u) dt
$$
\n(10)

as the value of the integral, we may write the optimal value function $J(t_0, x_0)$, as follows:

$$
J(t_0, x_0) \equiv \max\left\{e^{-rt_0}V(x_0)\right\} \tag{11}
$$

Note that the value, $V(x_0)$, of the integral on the RHS of equation (9b), $\int_{t_0}^{\infty} e^{-r(t-t_0)} f(x, u) dt$, depends on the initial state, x_0 , but is independent of the initial time, t_0 , ie it only depends on elapsed time, $(t - t_0)$.

The partial derivatives of $J(t_0, x_0)$ are $J_{t_0}(t_0, x_0) = -re^{-rt_0}V(x_0)$ and $J_{x_0}(t_0, x_0) = e^{-rt_0}V'(x_0)$. Dropping the time subscripts, $J(t, x) = e^{-rt}V(x)$, $J_t(t, x) = -re^{-rt}V(x)$ and $J_x(t, x) = e^{-rt}V'(x)$.

We can prove (see K+S, p. 260) that

$$
-J_{t}(t,x) \simeq \max_{u} \left[e^{-rt} f(x,u) + J_{x}(t,x) g(x,u) \right]
$$
\n(12)

or, substituting for the partial derivatives

$$
re^{-rt}V(x) \simeq \max_{u} \left[e^{-rt}f\left(x, u\right) + e^{-rt}V'\left(x\right)g\left(x, u\right) \right] \tag{13}
$$

and multiplying both sides by e^{rt} , we obtain the Hamilton-Jacobi-Bellman equation

$$
rV\left(x\right) \simeq \max_{u} \left[f\left(x, u\right) + V'\left(x\right)g\left(x, u\right)\right] \tag{14}
$$

which is the fundamental partial differential equation obeyed by the optimal value function $J(t, x)$ (see K+S, p. 261).

FOCs:

The first order conditions of the Hamilton-Jacobi-Bellman equation are:

$$
0 = f_u(x, u) + V'(x) g_u(x, u)
$$
\n(15)

$$
rV'(x) = f_x(x, u) + V''(x) g(x, u) + V'(x) g_x(x, u)
$$
\n(16)

where $V'(x)$ is the derivative of $V(x)$ with respect to $x, V'(x) \equiv \frac{dV(x)}{dx}$.

Equation (15) is the marginal condition resulting from differentation of the Hamilton-Jacobi-Bellman equation with respect to control variable u, while equation (16) is the so-called envelope or Benveniste-Scheinkman condition resulting from taking the derivative of the Hamilton-Jacobi-Bellman equation with respect to state x , after substituting for the optimal solution of control variable u, which we obtain by solving equation (15) together with the constraint $x' = g(x, u)$ for u. The optimal solution for u thus obtained is a function of x.

The conditions given by equations $(15) - (16)$ are similar to those given by equations $(6) - (7)$ in the optimal control solution above. This becomes obvious if we set $\lambda = J_x(t, x)$ and, given the fact that $J_x(t,x) = e^{-rt}V'(x)$, substitute for λ in the definition of the current-value multiplier, $e^{rt}\lambda \equiv m$, which yields $m = V'(x)$ ie if the current-value multiplier equals the marginal value of the state variable, x. Moreover, if $m = V'(x)$, then $\dot{m} = V''(x) \dot{x}$, where $\dot{x} = g(x, u)$ ie the optimization constraint. Thus, the dynamic programming solution coincides with the optimal control solution.

Given the above FOCs, we then work as usually by linearizing and studying the long-run and the transition (dynamic stability) (see K+S, pp. 175-7).

DISCRETE-TIME PROBLEMS

We will consider three solutions:

- dynamic programming (the Bellman equation)
- optimal control (the Hamiltonian equation)
- the Lagrangean equation.

I. DYNAMIC PROGRAMMING

(See Sargent, 1987b, Ch. 1).

The Bellman equation is:

$$
V(x_t) = \max_{\{u_t, x_{t+1}\}} [f(x_t, u_t) + \delta V(x_{t+1})]
$$
\n(1)

subject to

$$
x_{t+1} - x_t = g(x_t, u_t) \tag{2}
$$

or, equivalently:

$$
V(x_t) = \max_{u_t} \{ f(x_t, u_t) + \delta V[x_t + g(x_t, u_t)] \}
$$
\n(3)

where δ is the one-period discrete-time *discount factor*.

FOCs:

$$
0 = f_u(t) + \delta V'(x_{t+1}) g_u(t)
$$
\n(4)

$$
V'(x_t) = f_x(t) + \delta V'(x_{t+1}) [1 + g_x(t)] \tag{5}
$$

where equation (5) is the envelope condition for the state variable at time t, x_t .

We can use equation (4) to substitute out $V'(x_t)$ or $V'(x_{t+1})$, so that equations (5) and (2) are a system of two equations in two unknowns, namely x_t, u_t .

Application

In the basic optimal growth model, we have:

$$
f(x_t, u_t) = v(c_t)^1
$$

$$
g(x_t, u_t) = f(k_t) - c_t \text{ or } k_{t+1} - k_t = f(k_t) - c_t
$$

The Bellman equation is:

 $V(k_t) = \max_{\{c_t, k_{t+1}\}}[v(c_t) + \delta V(k_{t+1})] \text{ s.t. } k_{t+1} - k_t = f(k_t) - c_t$ or, equivalently $V(k_t) = \max_{k_{t+1}} \{v[f(k_t) - k_{t+1} + k_t] + \delta V(k_{t+1})\}.$

Then, equation (4) becomes $0 = \nu'[f(k_t) - k_{t+1}](-1) + \delta V'(k_{t+1}) \Leftrightarrow \nu'(c_t) = \delta V'(k_{t+1}),$ and equation (5) becomes $V_l(k_t) = v_l(c_t) [f_l(k_t) + 1] \stackrel{v_l(c_t) = \delta V_l(k_{t+1})}{\Leftrightarrow} V_l(k_t) = \delta V_l(k_{t+1}) [1 + f_l(k_t)]$ which is the envelope condition for k_t .

Now, using these two conditions we obtain the usual Euler equation:

$$
\left[\frac{\nu\prime(c_{t-1})}{\delta}\right] = \delta \left[\frac{\nu\prime(c_t)}{\delta}\right] \left[1 + ft(k_t)\right] \Leftrightarrow \nu\prime(c_t) = \delta \nu\prime(c_{t+1}) \left[1 + ft(k_t)\right]
$$

where

 $VI(k_{t+1}) = \frac{v/(c_t)}{\delta} = v/(c_{t+1}) \Rightarrow V/(k_t) = \frac{v/(c_{t-1})}{\delta} = v/(c_t).$

¹We use v instead of u to denote the utility function in order to avoid confusion with the notation used for the control variable, u.

II. OPTIMAL CONTROL

Define the current-value Hamiltonian:

$$
\mathcal{H}_t(x_t, u_t, m_t) \equiv f(x_t, u_t) + m_t g(x_t, u_t)
$$
\n
$$
(6)
$$

FOCs:

$$
\mathcal{H}_u = 0 \Leftrightarrow f_u(t) + m_t g_u(t) = 0 \tag{7}
$$

$$
m_t - \delta \left(\frac{\partial \mathcal{H}_{t+1}}{\partial x_{t+1}} \right) = \delta m_{t+1} \tag{8a}
$$

Since $\frac{\partial \mathcal{H}_{t+1}}{\partial x_{t+1}} = f_x(t+1) + m_{t+1}g_x(t+1)$, equation (8*a*) becomes

$$
m_t = \delta \{ f_x \left(.t + 1 \right) + m_{t+1} \left[1 + g_x \left(.t + 1 \right) \right] \} \tag{8b}
$$

$$
\mathcal{H}_m = g\left(x_t, u_t\right) = x_{t+1} - x_t \tag{9}
$$

The conditions given by equations $(7), (8b)$ and (9) are a system of three equations in three unknowns, namely x, u, m .

Equation $(8a)$ may be derived as follows:²

Since we are solving a discrete time problem, $\lambda_t = \delta^t m_t$ and $\lambda_{t+1} = \delta^{t+1} m_{t+1}$ (one period ahead) where $\delta^t = \frac{1}{(1+r)^t}$ is the t-period discount factor (starting at time 0). Taking differences, $\lambda_{t+1} - \lambda_t = \delta^{t+1} m_{t+1} - \delta^t m_t \Leftrightarrow \lambda_{t+1} - \lambda_t = \delta^t (\delta m_{t+1} - m_t).$ Similar to continuous time optimization, $\lambda_{t+1} - \lambda_t = -\frac{\partial H_{t+1}}{\partial x_{t+1}}$ $\frac{\partial H_{t+1}}{\partial x_{t+1}} = -\frac{\partial}{\partial x_{t+1}}\left(\delta^{t+1}\mathcal{H}_{t+1}\right).$ Therefore, $\lambda_{t+1} - \lambda_t = -\frac{\partial}{\partial x_{t+1}} \left(\delta^{t+1} \mathcal{H}_{t+1} \right) = \delta^t \left(\delta m_{t+1} - m_t \right) \Leftrightarrow -\delta^t \delta \left(\frac{\partial \mathcal{H}_{t+1}}{\partial x_{t+1}} \right) = \delta^t \left(\delta m_{t+1} - m_t \right) \Leftrightarrow$ $\Leftrightarrow -\delta\left(\frac{\partial \mathcal{H}_{t+1}}{\partial x_{t+1}}\right) = \delta m_{t+1} - m_t \Leftrightarrow m_t - \delta\left(\frac{\partial \mathcal{H}_{t+1}}{\partial x_{t+1}}\right) = \delta m_{t+1}.\text{ QED}$

The optimal control solution coincides with the dynamic programming solution, if we let $m_t = \delta V' (x_{t+1}).$

 2 See also the derivation offered on page 10.

III. THE LAGRANGEAN EQUATION

"Sargent, 1987a" uses this method a lot.

Define the Lagrangean equation:

$$
\mathcal{L} \equiv \max_{\{u_t, x_{t+1}\}} \sum_{t=0}^{\infty} \delta^t \left\{ f(x_t, u_t) + \mu_t \left[-x_{t+1} + x_t + g(x_t, u_t) \right] \right\}
$$

where μ_t is the Lagrangean multiplier.

FOCs:

 $f_u(t) + \mu_t g_u(t) = 0$

 $\delta f_x(t+1) - \mu_t + \delta \mu_{t+1} + \delta \mu_{t+1} g_x(t+1) = 0 \Longleftrightarrow \mu_t = \delta \left[f_x(t+1) + \mu_{t+1} + \mu_{t+1} g_x(t+1) \right] \Longleftrightarrow$ $\Longleftrightarrow \mu_t = \delta \left\{ f_x \left(.t+1 \right) + \mu_{t+1} \left[1 + g_x \left(.t+1 \right) \right] \right\}$

We conclude that this solution coincides with the optimal control and dynamic programming ones.

COMPARISON OF THE DYNAMIC EQUATIONS IN DISCRETE AND CONTINUOUS TIME

If δ is the discrete-time discount factor and r is the continuous-time discount factor, then $r = \frac{1-\delta}{\delta}$ given $\delta = \frac{1}{1+r}$, namely $\frac{1-\delta}{\delta} = \frac{1-\frac{1}{1+r}}{\frac{1}{1+r}} = r$. Hence equation (7) in the continuous-time model implies $\frac{1-\delta}{\delta}m - \frac{\partial \mathcal{H}}{\partial x} = m'$ or, in discrete-time, $\frac{1-\delta}{\delta}m_t - \frac{\partial \mathcal{H}_{t+1}}{\partial x_{t+1}} = m_{t+1} \Leftrightarrow \frac{m_t}{\delta} - \frac{\partial \mathcal{H}_{t+1}}{\partial x_{t+1}} = m_{t+1} \Leftrightarrow$ $\iff m_t - \delta \frac{\partial \mathcal{H}_{t+1}}{\partial x_{t+1}} = \delta m_{t+1}$ which is equation (8a) in the discrete-time model.

Note that both $0 < \delta < 1$ and $0 < r < 1$. Moreover, δ is a *discount factor* while r is a *discount rate*.

THE BASIC OPTIMAL GROWTH MODEL IN DISCRETE TIME

Suppose we want to choose paths of ${c_t, k_t}_{t=0}^{\infty}$ so as to solve the following optimization problem:

 $\max \sum_{t=0}^{\infty} \delta^t u(c_t)$ s.t. $k_t - k_{t-1} = f(k_{t-1}) - c_t$ given k_{-1} where $0 < \delta < 1$.³

We will solve the problem in two ways:

- dynamic programming

- optimal control.

³Alternatively, we could have used constraint $k_{t+1}-k_t = f (k_t)-c_{t+1}$ given k_0 . This is the constraint used in the application on page 7.

I. DYNAMIC PROGRAMMING

Write the Bellman equation:

$$
V(k_{t-1}) = \max_{\{c_t, k_t\}} [u(c_t) + \delta V(k_t)]
$$
\n(1a)

or, equivalently:

$$
V(k_{t-1}) = \max_{k_t} \{ u \left[f \left(k_{t-1} \right) + k_{t-1} - k_t \right] + \delta V \left(k_t \right) \} \tag{1b}
$$

FOC (wrt k_t):

$$
0 = u'(c_t)(-1) + \delta V'(k_t) \Longleftrightarrow u'(c_t) = \delta V'(k_t)
$$
\n
$$
(2)
$$

Envelope condition (wrt state k_{t-1}):

$$
V'(k_{t-1}) = u'(c_t) \left[f'(k_{t-1}) + 1 - \left(\frac{\partial k_t}{\partial k_{t-1}} \right) \right] + \delta V'(k_t) \left(\frac{\partial k_t}{\partial k_{t-1}} \right) \Leftrightarrow
$$

\n
$$
\Leftrightarrow V'(k_{t-1}) = u'(c_t) \left[1 + f'(k_{t-1}) \right] - \left[u'(c_t) - \delta V'(k_t) \right] \left(\frac{\partial k_t}{\partial k_{t-1}} \right).
$$

\nBut $\left[u'(c_t) - \delta V'(k_t) \right] = 0$ by the FOC. Hence: $V'(k_{t-1}) = u'(c_t) \left[1 + f'(k_{t-1}) \right].$
\nor, shifted one period forward:

$$
V'(k_t) = u'(c_{t+1})[1 + f'(k_t)]
$$
\n(3)

Plugging (3) into (2), we obtain the Euler equation:

$$
u'(c_t) = \delta u'(c_{t+1}) [1 + f'(k_t)] \tag{4}
$$

II. OPTIMAL CONTROL

Define the *current-value* Hamiltonian:

$$
\mathcal{H}_{t} \equiv u\left(c_{t}\right) + m_{t}\left[f\left(k_{t-1}\right) - c_{t}\right] \tag{5}
$$

where $k_t - k_{t-1} = f (k_{t-1}) - c_t$.

FOCs:

$$
\frac{\partial \mathcal{H}_t}{\partial c_t} = 0 \Leftrightarrow u'(c_t) = m_t \tag{6}
$$

$$
m_t - \delta \left(\frac{\partial \mathcal{H}_{t+1}}{\partial k_t} \right) = \delta m_{t+1} \tag{7a}
$$

Since
$$
\frac{\partial \mathcal{H}_{t+1}}{\partial k_t} = m_{t+1} f'(k_t)
$$
, equation (7*a*) becomes $m_t - \delta [m_{t+1} f'(k_t)] = \delta m_{t+1}$, or:

$$
m_t = \delta m_{t+1} \left[1 + f'(k_t) \right] \tag{7b}
$$

$$
\frac{\partial \mathcal{H}_t}{\partial m_t} = f(k_{t-1}) - c_t = k_t - k_{t-1}
$$

Plugging equations (6) into equation $(7b)$, we obtain the Euler equation:

$$
u'(c_t) = \delta u'(c_{t+1}) [1 + f'(k_t)] \tag{8}
$$

which is the same as dynamic programming equation (4).