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Notation:
Let a function of two variables ¢[u(t), v(t)]. '

Its time derivative will be denoted ¢’ where ¢’ = ‘(ii—‘f = ¢.

Its partial derivatives will be denoted ¢,,, ¢,, where ¢, = 5=, ¢, = 5.
To simplify notation, time-varying variables u(t), v(¢t) will be denoted w, v in continuous-time

and ug, vy in discrete-time problems.
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[CONTINUOUS-TIME PROBLEMS |

Suppose (today at time zero) we want to choose paths {z,u};” so as to solve the following (infinite-

horizon) optimization problem:

o
maa:/ e " f(x,u)dt
0

subject to

' = g(x,u)

given the initial condition z(0) = zo,

where,

r is the continuous-time discount rate,

e~ " is the continuous-time discount factor,
x is the state variable, and

u is the control variable.

(2) is the called the state or transition equation.

Both z and u (and the associated functions f and g) are time-varying.

This problem may be solved in any of three ways:

- calculus of variations
- optimal control (the Hamiltonian equation)
- dynamic programming (the Bellman equation).



I. OPTIMAL CONTROL (THE HAMILTONIAN EQUATION)

Define the present-value Hamiltonian

H =" f(z,u) + Agle,w) 3)
or, the current-value Hamiltonian (see K+S, pp. 164-6)

e""H=H = f(z,u) + e \g(z,u) (4)

letting e"*\ = m so that (4) becomes

H<x7u7m) = f(x,u) + mg(az,u) (5)

where A and m are time-varying multipliers associated with constraint (2).

Specifically, m; is the marginal value of state variable x at time ¢ while \; is the marginal value of
state variable x at time t discounted back to time zero where the problem is being solved.

First-order conditions (FOCs):

H. :fu(xau)+mgu('rau) =0 (6)

yf_dm _ O\ o
m <_dt_m> =rm—H, =rm — fo(x,u) — mg,(z,u) (7)

Thus, the FOCs make up a system of three equations in three unknowns, namely (z,u, m).
Condition (7) is derived as follows (see K+S, p. 165):

We defined m = e™ ).

Taking the time derivative of this expression, we obtain m’ = re™*\ + e™* N\ = m\ + €™\

At the optimum )\ + H, = 0 ie the change in the marginal value of the state variable, X, plus
the marginal utility of the state variable, H,, must equal zero (see K4S, pp. 136-141).

Thus \ = —H,.

. . . since H=e ™ ""H
Using this, we may write: m' = rm —e" H, =

m' =rm—ete ™ H, & m' =rm—H,. QED



II. DYNAMIC PROGRAMMING (THE BELLMAN EQUATION)

(See K+S, pp. 259-263).

Define the optimal value function J (g, o) as the best value function that can be obtained starting
at time tg in state xo where 0 < ty < oo:

J (to, o) = max /C>O e "tz u)dt (9a)

to

subject to ' = g(z,u)
given the initial condition z(0) = xo,

or, equivalently:

J (to, z0) = max {e_”” /C>O e_r(t_t")f(x,u)dt} (9b)

to

Defining
V(z9) = max/ et f (2, w)dt (10)

to

as the value of the integral, we may write the optimal value function J (¢o, xq), as follows:

J (to, o) = mazx {e "V (z0) } (11)

Note that the value, V (), of the integral on the RHS of equation (9b), ftzo e m(t=t0) £z, u)dt,
depends on the initial state, zg, but is independent of the initial time, ¢, ie it only depends on
elapsed time, (t — o).

The partial derivatives of J (to,zo) are Jy, (to, o) = —re "0V (z9) and J,, (to, o) = e "V’ (z0).
Dropping the time subscripts, J (t,z) = e "'V (x), J; (t,2) = —re” "'V (z) and J, (t,z) = e "V’ ().

We can prove (see K4S, p. 260) that

—Je (t,x) ~ max e f (z,u) + Jy (t,2) g (z,u)] (12)

or, substituting for the partial derivatives

re”"V (z) ~ max [e7" f (z,u) + TV (2) g (x,u)] (13)

u

and multiplying both sides by €™, we obtain the Hamilton-Jacobi-Bellman equation

rV (z) =~ max [f (z,u) + V' (z) g (z, )] (14)

which is the fundamental partial differential equation obeyed by the optimal value function J (¢, )
(see K4S, p. 261).

FOCs:



The first order conditions of the Hamilton-Jacobi-Bellman equation are:

0= fu(z,u)+V'(2)gu (z,u) (15)
V' (@) = fo (2,u) + V" (2) g (2, 0) + V' (2) go (2, u) (16)
. . . . _ dV(x
where V' (z) is the derivative of V (z) with respect to x, V' (z) = d(z ).

Equation (15) is the marginal condition resulting from differentation of the
Hamilton-Jacobi-Bellman equation with respect to control variable u, while equation (16) is

the so-called envelope or Benveniste-Scheinkman condition resulting from taking the

derivative of the Hamilton-Jacobi-Bellman equation with respect to state x, after substituting for
the optimal solution of control variable u, which we obtain by solving equation (15) together with
the constraint 2’ = g(x,u) for u. The optimal solution for u thus obtained is a function of x.

The conditions given by equations (15) — (16) are similar to those given by equations (6) — (7)

in the optimal control solution above. This becomes obvious if we set A = J,, (¢, x) and, given the

fact that J, (t,z) = e~ "V’ (z), substitute for X in the definition of the current-value multiplier, e"*\ = m,
which yields m = V() ie if the current-value multiplier equals the marginal value of the

state variable, z. Moreover, if m = V' (z), then m = V" (z) &, where & = g (x,u) ie the optimization
constraint. Thus, the dynamic programming solution coincides with the optimal control solution.

Given the above FOCs, we then work as usually by linearizing and studying the long-run and
the transition (dynamic stability) (see K4S, pp. 175-7).



We will consider three solutions:

- dynamic programming (the Bellman equation)
- optimal control (the Hamiltonian equation)
- the Lagrangean equation.



I. DYNAMIC PROGRAMMING

(See Sargent, 1987b, Ch. 1).

The Bellman equation is:

V (24) = Jax }[f (T4, ut) + OV (z41)] (1)
Ut T41
subject to
T4l — Tt =49 (ﬁUn Ut) (2)
or, equivalently:
Vi(xt) = max {f (@, ue) + 6V [z + g (24, ue)]} (3)

where § is the one-period discrete-time discount factor.

FOCs:

0= fu(t) + V" (x111) gu(-t) (4)

V(@) = folt) + 0V (zeg1) [1 + g2(1)] ()

where equation (5) is the envelope condition for the state variable at time ¢, ;.

We can use equation (4) to substitute out V' (z;) or V' (z¢41), so that equations (5) and (2) are a
system of two equations in two unknowns, namely ¢, u;.

Application
In the basic optimal growth model, we have:

[ @ ue) = v (e)!
g(xt,ut) = f (/{Jt) — Ct Or kt+1 — kt = f (kt) — Ct

The Bellman equation is:
V(kt) = max {ct,kt+1}[v(ct) + 6V(kt+1)] s.t. kt+1 — kt = f (kt) — Ct
or, equivalently V' (k;) = maxy,, {v[f (ki) — kip1 + k] + 0V (kig1)]-

Then, equation (4) becomes 0 = v/[f(kt) — key1](=1) + 6V 1(kig1) < vI(ct) = 6VI(keq1), and

equation (5) becomes V/(k;) = vi(ct) [f1(kt) + 1] vilen)=gy ki) Vi(ks) = 6Vi(ker1) [1 + fr(ke))
which is the envelope condition for k.

Now, using these two conditions we obtain the usual Fuler equation:
(2] = 5 [ [+ frlh)] < vi(er) = dur(ersa) [L+ fr(k)

where
Viki) = 252 = vi(erpn) = Vilk) = 2922 = vr(cy).

IWe use v instead of u to denote the utility function in order to avoid confusion with the notation used for the control
variable, u.



II. OPTIMAL CONTROL

Define the current-value Hamiltonian:

Hy (24, ue,me) = f (e, ue) +meg (24, ue) (6)
FOCs:
Hy =0 fu (t) + MmiGu (t) =0 (7)
OHit1
—6| =) =4 8
my (5$t+1 ) Myt (8a)
Since %%t:ll = fo (t4+ 1)+ mip19: (£ + 1), equation (8a) becomes

Hn=g9g (33t7 Ut) = Tt41 — Tt (9)

The conditions given by equations (7), (80) and (9) are a system of three equations in three
unknowns, namely z, u, m.

Equation (8a) may be derived as follows:?

Since we are solving a discrete time problem, A\, = §'m; and Apr1 = 6t+1mt+1
(one period ahead) where §° = )t is the t-period discount factor (starting at time 0).

(1+
Taking differences, Aey1 — A = 6" T myqq — 8"y < Apyr — A = 0 ((5mt+1 me).
. . . e  8Hi41 t+1
Similar to continuous time optlrmzatlon A1 — A = *WTE = m (5 Ht+1)
1 OH
Therefore, A1 — At = = g2 (6" Hyy1) = 8" (misn =) & —0'6 (52 ) = 5" (Gmisy —my)

PR (8Ht+1) — Mgt — My & My — 8 (%) — §mipr. QED

6It+1 893t+1

The optimal control solution coincides with the dynamic programming solution, if we let
my = (SV/ ($t+1).

2See also the derivation offered on page 10.



ITI. THE LAGRANGEAN EQUATION

"Sargent, 1987a" uses this method a lot.

Define the Lagrangean equation:

L =max{y, 2,1} 2ieo 8 (@, we) + gy [—og1 + @+ g (20, up)]}

where p, is the Lagrangean multiplier.

FOCs:

fu (1) + prgu (1) = 0

Ofue (4 +1) = py + Optppy + 04190 (E+1) =0 = py = 6 [fuo (2 +1) + pppq + peg190 (2 +1)] =
= =0 {fo (t+1) + oy [T+ g (E+1)]}

We conclude that this solution coincides with the optimal control and dynamic programming
ones.



MPARISON OF THE DYNAMIC EQUATIONS IN DISCRETE AND NTINUOUS TIME

If § is the discrete-time discount factor and 7 is the continuous-time discount factor, then

5 _ -5 . . . .

r= 1T5 given § = ﬁlr, namely 15—5 = —++= =r. Hence equation (7) in the continuous-time model
1+r

. s 128, OH 7 : e : 1-6 _ OHiyr _ _ my _ OHigr

implies 5 M — 37 =m or,in discrete-time, 5 MMt Dz = MU+l — T < 5 Dria, = 1 =

<~ my — 5%?::; = dmyy1 which is equation (8a) in the discrete-time model.

Note that both 0 <d <1 and 0 < r < 1.
Moreover, § is a discount factor while r is a discount rate.
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Suppose we want to choose paths of {ct, kt};ﬁ o S0 as to solve the following optimization problem:
max > oo, 0'u (cr) s.t. ke — ki1 = f (ky—1) — ¢¢ given k_1 where 0 < § < 1.3
We will solve the problem in two ways:

- dynamic programming
- optimal control.

3 Alternatively, we could have used constraint kit1—ke = f (kt)—ci+1 given ko. This is the constraint used in the application
on page 7.
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I. DYNAMIC PROGRAMMING

Write the Bellman equation:

V (ki—1) = max [u(c) + 0V (k)]

ct ki }

or, equivalently:

1% (ktfl) = max {’LL [f (kt71) + k’t,1 — kt] + 1% (kt)}

kt

FOC (wrt ky):

0= ’LL/ (Ct) (—1) + (5V/ (kt) = ’U/ (Ct) = (SVI (kt)

Envelope condition (wrt state k;—1):

V' (ki) = o () [ £ (ko) + 1= (52 ) | + 0V (k) (25) &
& V! (ko) = (e) [1+ 1 (b)) = [of (e0) — 6V ()] (522,

But [u' (¢;) — 0V’ (kt)] = 0 by the FOC. Hence: V' (ki—1) = (¢r) [1+ [/ (ki—1)]-

or, shifted one period forward:

V' (kt) = v (coqr) [L+ f' (ke)]

Plugging (3) into (2), we obtain the Euler equation:

u' (cr) = 0u' (co1) [1 4 f (k)]

12
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II. OPTIMAL CONTROL

Define the current-value Hamiltonian:

He =u(er) +me[f (ki—1) — i (5)
where ky — ki1 = f (ki—1) — .
FOCs:
oH
a—C::O(:)u’(ct):mt (6)
OH
me — 1) < ali:_l> = 5mt+1 (7&)
Since 87(;;:1 = myy1f’ (ki), equation (7a) becomes m; — 8 [myy1f’ (k)] = dmyiq, or:
my = 5mt+1 [1 + f/ (kt)] (7b)
OH,

= f (ktfl) —ct =k — ki

omy

Plugging equations (6) into equation (7b), we obtain the Euler equation:

u' (er) = ou' (err) [1+ f' (k)] (8)

which is the same as dynamic programming equation (4).
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