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We consider a closed, pure exchange (no production) economy without a public 

sector that is comprised of 1,...,i N  economic agents. There exist 1,...,k L  goods, 

over which the agents have preferences. Each agent has an initial exogenously 

given finite endowment of goods  \ 0L

i L  (measured in physical units), 

 1 ,...,i i Li   . Goods are exchanged in competitive markets through a price 

mechanism that translates quantities into values. Agents want to maximize their 

utility from the consumption of goods, given their endowment and the prices of 

goods.  

An equilibrium of this economy is defined as a price vector  1,..., Lp p p , Lp   

(containing a single price for each good), and an allocation of quantities of goods 

over all consumers, such that 

1) Each agent maximizes its utility given their endowment and the equilibrium 

price vector, 

2) Total quantity demanded for each good equals the good's total supply (here 

total endowment), at the equilibrium price vector. 

A more compact verbal description of this definition of equilibrium is 

"At the equilibrium price vector, total quantity demanded for each good is the sum 

of optimally derived and feasible individual quantities demanded by each 

individual, and it equals the exogenous total supply/endowment". 
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Our only goal is to prove that an equilibrium exists. So we are not concerned at all 

with how this equilibrium could be reached. 

This is not a trivial exercise/assertion.  

a) We want from a price vector to be compatible with the solutions to N distinct 

and separate L-dimensional constrained maximization problems (which as we will 

see, are not identical) producing NL   demand functions (one per good per each 

individual), 

b) For these demand functions to be such that L sums of them (per good and over 

N) equal exactly the L total quantities supplied (per good), which are arbitrary and 

exogenously given. 

We start by formalizing the assumptions describing the model. 

 

1) Assumptions on market structure. Markets are "competitive", meaning 

 There is complete, perfect and symmetric information 

 There are no participation costs (like entry costs, or transactional costs like 

for example transportation costs) 

 Participants are "price takers", they solve their utility maximization 

problems taking prices as given (they don't have "market power", either 

monopolistic or monopsonistic). 

 

Note: the "no participation costs" could be relaxed if we assume that such 

costs exist but are fixed or proportional to the endowments (possibly 

different for each agent). Then we could net them out and ignore them, by 

accepting that these costs do not represent income for some other agent, 

because if this was the case, it would make the model one with production 

also. Namely, if they exist, they represent a "dead-burden" (we note that 

existence of Walrasian equilibrium can be proven in a model with 

production also). 

Price taking behavior is critical for the model we develop, and so is the 

"totally equitable availability of information". 
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2) Assumptions on goods. 

 The goods space , 1,...,L

iX i N   for each agent is assumed to be a 

convex and compact set. 

Note: this assumption is needed in order to obtain continuity of the 

individual optimal demand function, even when we consider price vectors 

where some of the elements are exactly zero (otherwise demand will be 

continuous only for strictly positive price vectors, see  Mas-Colell et al. 1995, 

ch. 3 Appendix A pp. 92-94). 

 There is a subtler way to guarantee continuity of the demand function, see 

Starr (2011) pp.131-136 and the discussion therein. 

From an economic point of view, convexity of the consumption set reflects 

unlimited divisibility of goods. While this may sound unrealistic, once we think of 

certain obviously imperfectly indivisible goods (like, say, a car, or even an item of 

clothing) in terms of the flow of services they provide, the potential issue becomes less 

severe. Convexity of the consumption set is, among other things, needed so that 

properties like the concavity of the utility function can even be considered. 

Regarding the restriction of the consumption space to a compact (closed and 

bounded) subset of L


, closedness does not appear to contradict any observed 

economic behavior. Boundedness can be considered a rather innocent assumption, 

if we assume very-very large bounds (after all we create these economic models to 

study real-world economies, which are finite and bounded at least at each time 

instance. And even if we were to consider subjective behavior no agent would 

realistically picture himself consuming an "infinite" quantity from a good). 

Explicitly, we make the following assumption: 

 For 0Lv   a strictly positive conformable vector, 
1

N

i ii
v X i


   . 

With this assumption we allow for the possibility that there may exist price 

vectors for which the demand for some good, even by a single individual, 

may exceed the total available supply/endowment, i.e. it allows for the 

existence of strictly positive excess demand, which if it persists, violates the 

utility maximization problem. 

With this assumption we fully "neutralize" the boundedness assumption: 

nothing in this assumption as qualified above introduces any "bias" in favor 

of the existence of equilibrium. We will discuss how the boundedness 

assumption interacts with the utility maximization problem in a while. 
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A consumption bundle for individual i is denoted  1 ,...,i i Lix x x . A consumption 

Allocation, a set that includes one consumption bundle for each agent, is denoted 

by  1,..., Nx x x . 

 All goods are assumed desirable by all individuals.    

This is an important assumption. Together with local non-satiation of 

preferences that will be assumed in a while, it has the consequence that the 

equilibrium price vector, if it exists, will be strictly positive, as we will see.  

 

 

3) Assumptions on preferences. The preferences of each individual: 

 are rational (complete and transitive). So they can be represented by a utility 

function ( )i iu x . 

 are continuous. So the utility function is continuous. 

 are locally non-satiated and so the utility function exhibits also this 

property. 

 are strictly convex. Since also the domain is a convex set, this leads to ( )i iu x  

being strictly quasi-concave. 

(for the above see Mas-Collel et al. 1995, ch. 3). 

 

Note. We certainly assume a degree of "similar structure" in preferences, but 

we certainly do NOT assume that the corresponding utility functions are 

identical, or that they will have the same maximizer for the same 

endowment and price vectors. Note we do not assume that utility functions 

are differentiable. 

 

4) Behavior. Each agent solves   max ( ) s.t. ,
i

i i i i i i
x

u x p x p x X     

...where here the dot represents the inner product of two vectors. The above 

reflects the "price-taking" behavior, and also implies one more important aspect of 

the model:  

 That all endowments are offered to the corresponding markets as quantities 

supplied, even though goods are desirable and we expect that at least some 
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agents would want at the optimum to consume a good that the agents also 

possess as part of their endowment. This in principle raises the question 

"then why bringing it to the market, why not consuming it directly?" 

The reasoning here is that agents understand that their endowments have 

not only utility-enhancing value, but exchange value also, which will 

determine their consumption opportunities. So they participate in the 

market with their full endowment in order to maximize these opportunities. 

Strictly speaking, this reasoning breaks down if we want to consider a price 

that is exactly zero, since then the good in question will not have any 

exchange-value. But this won't create any problems in our model as we will 

see in a while.  

On the other hand, if we have opted for a supply function, i.e. a budget 

constraint like ( ), ( )i i i ip x p s p s p     , we would lose an important 

property of the demand function (again, see in a while). 

  

 

Then the general equilibrium is described as follows: 

A price vector *p  and a consumption Allocation *x  such that 

  * *

i ix x p  is the solution to  * *max ( ) . . , 1,...,i i i i i iu x s t p x p x X i N      

 

  *

1 1

1,...,
N N

ki ki

i i

x p k L
 

    (all markets "clear") 

 

There is nothing special about markets, we do not "wish" them to clear for "their 

own benefit". We only care about the utility of the agents. But this condition 

guarantees that the optimal demands will be actually realized and consumed, 

realizing thus the utility maximization solutions. 

  



Page 6 of 14 

 

 

A) The utility maximization problem: the Walrasian demand function. 

Let  ( ) argmax ( ) : ,i i i i i ix p u x x X p x p      , the vector-valued function of 

demands for each good from agent i that solves its utility maximization problem, 

given the price vector and the endowment. Note that we treat it here as depending 

on the price vector only and not on the endowment also, since we will not be 

conducting comparative statics related to changes in endowments (we treat them 

as fixed parameters). This is the Walrasian demand correspondence (in the context 

of partial equilibrium analysis, it is usually called the Marshallian demand 

correspondence).  

Note also that, due to the boundedness assumption on iX , we have an additional 

constraint to satisfy: it is conceivable that for some price vector, an individual will 

have optimal demand at the boundary of iX .  This certainly does not imply that 

the utility function, as a function, is bounded. It does imply that attained utility will 

be finite, but this is the case anyway, due to the existence of the budget constraint. 

We just impose an additional exogenous constraint on the individual (and not an 

unrealistic one, given that the bounds can be set to enormous levels and literarily 

outside human experience). Moreover, if demand is at the boundary, it is certain 

that it will exceed supply for some price vector p: but we don't care, as long as we 

can find an equilibrium price vector which by construction does not correspond to 

such a situation. 

Important properties of ( )ix p  are: 

 ( )ix p  is homogeneous of degree zero in its argument. This is immediate 

from the fact that  

   , , 0i i i i i i i ix X ap x ap x X p x p a             

Namely, multiplying the price vector by any scalar, leaves the feasible set 

unchanged, and so the maximizer will be the same. Note that this property 

has nothing to do with the utility function (except perhaps for the universal 

assumption that prices do not enter the utility function). It reflects that in 

our model, only relative/normalized prices matter. This is the property that 

we would lose if we had attempted to use a supply function in place of the 

endowment. 
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 ( )ix p  satisfies Walras' law: ( )i ip x p p    . 

This is a consequence of local non-satiation: if ( )i ip x p p    there exists a 

bundle that is feasible to purchase and is preferred over ( )ix p . But this 

contradicts ( )ix p  being the maximizer. 

 

 Since ( )iu x  is strictly quasi-concave, ( )ix p  is a vector-valued function: the 

solution vector, and so the optimal quantity demanded per good, will be 

unique per individual. 

Proof: Ad absurdum, assume that ( )ix p is a correspondence and includes 

say two bundles, ( ) ( )i ix p x p  . Then we must have that 

( ( )) ( ( ))i i i iu x p u x p u   (since they are both admissible solutions to the 

maximization problem). Consider the bundle ( ) ( ) (1 ) ( )i i ix p ax p a x p     . It 

is feasible because 

 

 ( ) ( ) (1 ) ( ) ( ) (1 ) ( )

(1 )

i i i i i

i i i

p x p p ax p a x p ap x p a px p

ap a p p  

           

      

 

 

...where we have also used the fact that solutions satisfy Walras' law. 

 

Now, strict quasi-concavity means, for any value and so also for u  that 

 

        ( ) ( ), ( ) , ( ) ( ) (1 ) ( ) , 0,1i i i i i ix p x p u x p u u x p u u ax p a x p u a            

  

But then we have      u x u u x u x     , which contradicts the 

assumption that x  and x  belong to ( )ix p (if  u x  offers higher utility and 

is feasible it should be a member of the correspondence ( )ix p  while ( )ix p  

and ( )ix p  should not) . Therefore we conclude that under strict quasi-

concavity, ( )ix p  consists of a single vector, and so it is a function. 

 

 ( )ix p  is continuous by the Theorem of the Maximum (read about it). The 

compactness assumption we made on the consumption space, is needed to 

apply the Theorem of the Maximum here. 
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B) The Walrasian excess demand function and the condition for equilibrium. 

The "excess demand function" of agent i is defined as 

( ) : ( )i i iz p x p    

It express agent's  i  net demand for each good (positive or negative), above or 

below the quantities that the agent possesses in its endowment vector.  The 

aggregate excess demand function is 

 
1 1

( ) ( ) ( )
N N

i i i

i i

z p z p x p 
 

     

Important properties: 

 ( )z p  is homogeneous of degree zero, since each ( )ix p  has this property: 

( ) ( ), 0z ap z p a   

 ( )z p  is continuous because each ( )ix p  is so, and sums of continuous 

functions (together with shifts represented by the endowments) are 

themselves continuous.  

 ( ) 0p z p p    (Walras' law). Immediate from  

   
1 1

( ) ( ) ( ) 0 0 ...0 0 0
N N

i i i i

i i

p z p p x p p x p p 
 

              

 

PROPOSITION. *p  is an equilibrium price vector for the above economy, if and 

only if   * 0Lz p  .  

 

That this condition incorporates the two expressions that define the equilibrium, 

and so it is equivalent with them should be obvious: first it is expressed using the 

Walrasian demand functions, which solve the maximization problem of the agents 

so it already incorporates the first aspect of equilibrium. Second, it states that each 

single element of the vector  *z p  should be equal to the zero vector. But each 

element of this vector represents the excess demand at market-level for each good. 

So it requires that excess demand in each market is zero, which is the second 

aspect of the Walrasian equilibrium as defined here (which validates that the 

utility maximization solutions are indeed realized). 
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C) Existence of Walrasian Equilibrium. 

To prove existence of the equilibrium, we need to prove that there exists a price 

vector *p  such that  * 0Lz p  . 

We start by exploiting the fact that the aggregate excess demand is homogeneous 

of degree zero in prices, ( ) ( ), 0z p z ap a  . We could then set  
1

1

L

kk
a p




   

which would lead to the elements of the transformed price vector summing up to 

unity. 

We define the unit simplex in L


,  1

: 1
LL

kk
p p 

     and due to 

homogeneity of degree zero, we can restrict our search for an equilibrium price 

vector among price vectors in this set (note: we use the same simple p-notation for 

the transformed prices to avoid clutter). 

Note. We do not do this for convenience.   is a convex and compact subset of L


 

(while L


 is not compact). So the ability to consider normalized prices is crucial 

in order to use the Brouwer FPT. And we were able to consider   only because 

the aggregate excess demand is homogeneous of degree zero in prices, a property 

which in turn depends on the fact that the individual demand functions are also 

homogeneous of degree zero in prices, which in turn, depends on the assumption 

that all endowments are brought to the market, and on the convexity of the budget 

set  ,i i i ix X p x p      which in turn depends on the convexity of the 

consumption set. This is a second important service that the convexity assumption 

provides. 

The steps to prove that an equilibrium price vector exists are the following: 

 We construct a certain function of the price vector which is a self-map in  .   

 We verify that this function satisfies the assumptions of Brouwer's Fixed 

Point Theorem and conclude that it has a fixed point in  . 

 We prove that this fixed point must be a strictly positive price vector, given 

the assumptions on goods and on preferences. 

 We then show that this strictly positive fixed point satisfies the conditions to 

be a Walrasian equilibrium price vector, as defined. 
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Note. Contemplating the above, it should be clear that the critical step is the 

finding and the construction of the function, so that it both satisfies the conditions 

of the Brouwer Fixed Point Theorem and its fixed point satisfies the equilibrium 

condition.  Guiding principles to construct such a function and related intuition are 

discussed later. 

 

Constructing the function. Let 
1 1

( ) : ( ) , 1,...,
N N

k ki kii i
z p x p k L

 
     be the 

excess demand function in the market for good k. ( )kz p  is also a continuous 

function. So is the function  ( ) : max ( ),0k kz p z p   (note that here we do not 

maximize over p, we only compare ( )kz p  with zero and select the larger of the 

two). Denote by ( )z p  the vector-valued function that contains as elements all 

( ), 1,...,kz p k L  . Consider now the vector-valued function 

 
1 1

( ) ( )
( )

( ) 1 ( )
L L

k k k

k k

p z p p z p
f p

p z p z p

 

 

 

 
 

  
 

... the second equality because normalized prices satisfy 
1

1
L

kk
p


 . Note that the 

numerator is an L-dimensional vector, whose elements are each divided by the 

scalar in the denominator. The division operation is permissible, since obviously, 

the denominator will never be zero.  The only reason that the denominator appears 

is to make  1( ) ( ),..., ( )Lf p f p f p  a self-map, i.e. to return vectors whose sum of 

their elements satisfy  
1

1
L

kk
f p


 . Apart from that, the denominator plays no 

role in the proof of existence of equilibrium. 

The denominator sums the elements of the vector appearing in the numerator, so 

 
     

1 1 2 2

1

1 1 1

( ) ( ) ( )
... 1

( ) ( ) ( )

L
L L

k L L L
k

k k k k k k

k k k

p z p p z p p z p
f p

p z p p z p p z p

  

  

  

  
    

  


  
 

So ( )f p  is a self-map in  , which is a convex and compact subset of L


. 

Moreover, ( )f p  is a continuous function given the continuity of its components 

and how they are combined.  
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Brouwer Fixed Point Theorem. We see that the function ( )f p  satisfies the 

conditions of Brouwer's FPT. So it has a fixed point  * * *:p f p p   . 

Note. The application of Brouwer's FPT ends here. But it offers an indispensable 

service, by asserting the existence of a fixed point. This permits us to substitute *p  

for  *f p , and we will use this equality in order to prove the existence of 

equilibrium. 

 

The fixed point is a strictly positive price vector. Assume that *p contains a single 

zero element, say * 0Lp   . Since *p  is the fixed-point vector, the corresponding 

element of  *f p must then satisfy 

 
 

 

  

 

** *

* *

* *

1 1

0 max ,0
0

1 1

LL L

L LL L

k k

k k

z pp z p
f p p

z p z p



 

 


   

  
 

       * * *

1

max ,0 0 0 0
N

L L Li Li

i

z p z p x p 


        

 *

1 1

N N

Li Li

i i

x p 
 

    

In words, to have a zero price in the fixed-point price vector, quantity demanded 

of the associated good should be lower or equal than the endowment/supply at the 

zero price. But this contradicts the assumptions we have made on goods and 

preferences: all goods are desirable, and so is good L. At zero price, consumers, 

due to local non-satiation, would require the maximum possible amount of the 

good given their consumption set, 

 * *

1 1 1

0 max
N N N

L iL Li Li

i i i

p x p x 
  

       

...the last inequality due to the assumption we made on the consumption sets. 

(note: a zero price raises the issue of whether any quantity of the good will be 

supplied to the market, but we do not need to examine this issue). 



Page 12 of 14 

 

So a price vector with even a single zero element in it cannot satisfy the conditions 

required to be a fixed point of ( )f p . Therefore, we conclude that the fixed point 

vector can only be strictly positive. 

 

The fixed point is a Walrasian equilibrium price vector. Since the aggregate 

demand function satisfies Walras's law for every price vector, it satisfies it also for 
*p . So we know (and this is the second time we use the fixed point property 

 * *f p p ), that it holds 

     
 

 
 

* *

* * * * *

*

1

0 0

1
L

k

k

p z p
p z p f p z p z p

z p








      


 

         * * * * * *0 0p z p z p z p z p z p          

...the first component being zero by Walras' law. The remaining term is an inner 

product of two vectors, and it is decomposed in  

           * * * * * *

1 1 2 2 ... 0L Lz p z p z p z p z p z p         . 

Consider the typical element of the above sum-product:  

        * * * *max ,0k k k kz p z p z p z p    . 

Assume that  * 0kz p  . Then the typical element will be positive.  

Assume that  * 0kz p  . Then the typical element will be zero. 

Assume that  * 0kz p  . Then we will have   *max ,0 0kz p   and the typical 

element will again be zero. 

In no case do we obtain that the typical element will be negative. It follows that if, 

even one of these products is positive, the whole product sum    * *z p z p   

cannot be zero. So we conclude that in all markets, 

   * *1,..., 0 0k Lk L z p z p      
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In a more general setting, this would already prove that *p  is a Walrasian 

equilibrium price vector. But in our variant we want  * 0Lz p  . For this we need 

to use the result that *p  is strictly positive. 

Assume that we have  * 0kz p    namely that in the market for good k we have 

excess supply for this price vector. The aggregate excess demand function satisfies 

Walras' law for every price vector, so we have  

       * * * * * * * *

1 1 2 20 ... 0L Lp z p p z p p z p p z p           

If, even one  * 0kz p  , then since * *0 0L kp p   , we will have a strictly negative 

element in  * *p z p . It follows that then, for  * *p z p  to be able to equal zero, we 

must have for some other good, say m,  * 0mz p  , i.e. strictly positive excess 

demand at a non-zero price * 0mp  . But we have already obtained 

   * *0 0 1,...,L kz p z p k L     . So assuming  * 0kz p   for even one good 

leads to a contradiction, and so we conclude that  * 0, 1,...,kz p k L   which 

implies that  * 0Lz p  .  

But then the price vector *p , except of being a fixed point for function ( )f p , is a 

Walrasian equilibrium price vector also. And thus, we have proven that a 

Walrasian equilibrium price vector exists for this economy. 

 

Meta-notes 

A more general detailed exposition for the existence of Walrasian equilibrium can 

be found in Mas-Colell et al. (1995), ch. 17.A, 17.B, 17.C. In there the authors allow 

for the possibility of some prices being zero in equilibrium (so they allow for the 

existence of goods which may be "bads" which are then "costlessly disposed" in 

equilibrium), and they also treat the case of the demand being a correspondence 

and not necessarily a function (allowing for weaker assumptions on preferences). 

As a consequence, they use the Kakutani Fixed Point Theorem for the proof. They 

then present summarily the framework into which Brouwer's FPT is applicable. 

Moreover they attempt to provide some intuition as to how the function ( )f p  

could pop up in the mind of someone who is trying to prove the existence of a 

Walrasian equilibrium price vector. 
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More directly spelled intuition on the construction of the ( )f p  function can be 

found in Starr (2011) ch. 5, where it becomes clear that it is a "price adjustment 

towards equilibrium" device, (although this is just notional: as we have said we 

make no assumptions whatsoever about how, or even if, the equilibrium may be 

reached). 

Another derivation that uses Brouwer's Fixed Point Theorem (a much more brief 

one, that also appears to include some rather confusing typographical mistakes), 

can be found in Corbae et al. 2008 "An Introduction to Mathematical Analysis for 

Economic Theory and Econometrics", pp.161-163. The different assumption there is 

that they assume monotonic preferences and so a monotonic utility function, and 

they use this property in their proof.  

Note: in different expositions the ( )f p  function can be seen to differ as regards its 

exact functional form (or be a correspondence and not just a function), but the 

rationale is the same and it accomplishes the same purpose. 
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