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Basic Calculus and Real Analysis have shaped our intuition on what is the distance between two

real numbers and more generally elements of RN with N ∈ N∗. Let x, y ∈ R, then we instinctively

say that their distance is simply their absolute difference, |x− y|. Let x, y ∈ R2, then their distance

is given by applying the Pythagorean Theorem,
√
|x1 − y1|2 + |x2 − y2|2, where x = (x1, x2) and

y = (y1, y2).

The study of metric spaces has shown us that we can generalize the idea of the distance between

elements of R or RN . We realize that the above mentioned absolute distance or the Euclidean

distance are just specific metric functions that we can pair with the appropriate set. Furthermore,

we could have used other appropriate functions to define the notion of distance between their

elements. We also realize that we can define distance for different kinds of sets, possibly much

more “exotic” than subsets of the real numbers and their cartesian products, by pairing them with

appropriate metric functions which satisfy a list of desired properties on the set in question. We call

such pairings metric spaces and they are comprised of a non-empty carrier set and a well behaved

metric function.

General Topology abstracts away from the idea of a numerically quantifiable distance and

replaces metric functions with so called topologies on the carrier set. Such pairings are called

topological spaces.

Here we will first be introduced to d-openness and d-closedness in metric spaces. Next, we

will define topologies, τ , which are sets of subsets of the carrier set. A subset of the carrier set

is considered to be open with respect to τ , by merit of being an element of τ (not to be confused

with d-openness with respect to some metric, d). We will then return to metric spaces and talk

about sequential convergences and continuity and finally prove a lemma that shows that we can
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equivalently characterize the continuity of a function in terms of both metric spaces and topological

spaces of its domain and co-domain.

Openness (and closedness) in metric spaces

Definition

Let (X, d) be a metric space and A a subset of X (not necessarily non-empty). A is a d-open subset

of X (i.e. open with respect to the metric d) iff

∀x ∈ A, ∃ εx > 0 : Od(x, εx) ⊆ A

The x subscript on εx means that generally this radius may depend on the element in question.

For any metric space, (X, d), there is a number of examples of d-open subsets of the carrier set,

X. First, there is the carrier set, X, itself, because for every one of its elements we can find a radius

such that the constructed d-open ball is a subset of the carrier set (and in fact any radius will do).

For now, we will axiomatically say that the empty set, ∅, is also a d-open subset of the carrier set

of X, but we will also show why that is when we will talk about sequential d-convergence as a way

of showing d-closedness. Finally, it can be shown that d-open balls are also d-open subsets of their

carrier sets.

Lemma

Let (X, d) be a metric space. Any d-open ball in it is a d-open subset of X.

Proof

Choose an arbitrary x ∈ X and radius ε > 0 and define the d-open ball Od(x, ε).

For some y ∈ Od(x, ε) define δ := ε− d(x, y) > 0.

Then Od(y, δ) ⊆ Od(x, ε) (to see why see Problem Set 2 Exercise 3).

So Od(x, ε) is a d-open subset of X. Since x and ε were chosen arbitrarily, every d-open ball is a

d-open of subset of X. �

Furthermore, the following properties hold with respect to d-openness:

� Arbitrary unions of d-open sets are d-open.

It is easy to intuitively understand why. If for an element of a d-open set, x ∈ A, we can find

a radius, εx > 0, such that Od(x, εx) lies entirely in A, then this would hold for any arbitrary
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union of A with other sets. This holds for any x ∈ A and if all sets in the union are d-open,

then the union is d-open.

� Finite intersections of d-open sets are d-open.

To see why, consider this counter-example in R endowed with the usual metric, du (absolute

difference).

Let An be subsets of R such that

An =

(
− 1

n
,

1

n

)
, ∀ n ∈ N∗

With respect to the usual metric on R, all An are du-open subsets of R.

Now notice that there is an infinite number of such sets and their only common element is 0.

So their intersection (an infinite intersection of du-open sets) is {0}.

But also notice that ∀ε > 0 Odu(0, ε) ⊃ {0}. So @ ε > 0 : Odu(0, ε) ⊆ {0}.

Thus we have found an infinite intersection of du-open sets that is not du-open.

Definition

Let (X, d) be a metric space. Any subset, A, of X is termed a d-closed subset of X if its complement,

A′ (i.e. A′ = X \ A), is a d-open subset of X.

This definition has a few implications. First, the carrier set, X, is a d-closed subset of itself,

since the empty set is a d-open subset of X. Secondly, the empty set, ∅, is a d-closed subset of X,

since X is a d-open subset of itself. Finally, it can be shown that d-closed balls are also d-closed

subsets of X.

Lemma

Let (X, d) be a metric space. Any d-closed ball in it is a d-closed subset of X.

Proof

Consider an arbitrary d-closed ball in X, Od[x, ε]. It suffices to show that its complement, O′d[x, ε],

is a d-open subset of X.
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Let y ∈ O′d[x, ε] ⇐⇒ d(x, y) > ε. We want to find a radius, δ, such that

Od(y, δ) ⊆ O′d[x, ε]

Od(y, δ)
⋂
Od[x, ε] = ∅

d(x, z) > ε, ∀ z ∈ Od(y, δ)

Now, define δ := d(x, y)− ε > 0 and let z ∈ Od(y, δ). Naturally, the dual of the triangle inequality

holds between the chosen x, y, and z (see Problem Set 1 Exercise 5)

d(x, z) ≥ |d(x, y)− d(y, z)|

d(x, z) ≥ |ε+ δ − d(y, z)|

d(x, z) ≥ ε+ |δ − d(y, z)|

d(x, z) > ε

Since z was chosen arbitrarily, the above holds for all z ∈ Od(y, δ). So there exists a δ for y such

that d(x, z) > ε, ∀z ∈ Od(y, δ).

Since y was chosen arbitrarily, the above holds for all y ∈ O′d[x, ε]. So O′d[x, ε] is a d-open subset of

X and Od[x, ε] is d-closed.

Since Od[x, ε] was chosen arbitrarily, the above holds for every d-closed ball. �

Furthermore, the following properties hold with respect to d-closedness:

� Finite unions of d-closed sets are d-closed.

To see why, consider this counter-example in R endowed with the usual metric, du.

Let An be subsets of R such that

An =

[
1

n
, 1− 1

n

]
, ∀ n ∈ N∗

All An are du-closed subsets of R.

Now notice that there is an infinite number of such sets and that

∞⋃
n=2

An = (0, 1)
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So their union (an infinite union of du-closed sets) is B := (0, 1).

But also notice that B′ = (−∞, 0] ∪ [1,+∞) and that for its elements 0 and 1 there do not

exist a radii ε0 > 0 and ε1 > 0 such that Odu(0, ε0) ⊆ B′ and Odu(1, ε1) ⊆ B′, respectively.

So B′ is not an du-open subset of R and its complement B, an infinite union of du-closed sets,

is not du-closed.

� Arbitrary intersections of d-closed sets are d-closed.

To intuitively see why, first consider a d-closed subset of some carrier set. Then its complement

is d-open. Now notice that the complement of the intersection of two sets is the union of their

complements. The complement of an arbitrary intersection of d-closed sets is the union of

the arbitrary complements, which are d-open. So the union is d-open and the intersection is

d-closed.

It is important to realize that d-openness and d-closedness are not necessarily mutually

exclusive, nor are they opposites. A set can be d-open, d-closed, both d-open and d-closed, or

neither d-open or d-closed.

For example, consider the set of real numbers endowed with the usual metric, du. By our

intuition (but it can also be shown rigorously) (0, 1) is a du-open subset of R but not du-closed.

[0, 1] is a du-closed subset of R but not du-open. [0, 1) is neither a du-open nor a du-closed subset

of R. Finally, endow R with the discrete metric, dδ : R× R→ R such that

dδ(x, y) =

 0, x = y

1, x 6= y

then {0} is a dδ-open subset of R, because Odδ
(

0,
1

2

)
⊆ {0} and it is also dδ-closed because

{0}′ = R∗ is a dδ-open subset of R (because Odδ
(
x,

1

2

)
⊆ R∗, ∀x ∈ R∗).

5



Topologies

Definition

A topology, τ , on a set, X, is a collection of subsets of X that satisfy the following properties:

1. ∅ and X belong to τ (∅, X ∈ τ)

2. any arbitrary union of elements of τ is also an element of τ (τ is closed with respect to

arbitrary unions) (Ai ∈ τ, ∀ i ∈ I ⇒
⋃
i∈I Ai ∈ τ)

3. any finite intersection of elements of τ is also an element of τ (τ is closed with respect to

finite intersections) (Ai ∈ τ, ∀ i ∈ I finite ⇒
⋂
i∈I Ai ∈ τ)

The pair (X, τ) is termed topological space.

In a topological space, (X, τ), any subset of X, A ⊆ X, that also belongs to the chosen topology,

τ , (A ⊆ τ) is by definition an open subset of X (and A′, its complement in X, is closed). A more

vague definition of a topology could be that it is a collection of “open” subsets of X. Notice that

we are no longer talking about d-openness, because openness is no longer determined by a metric

function, but by the chosen topology, τ .

Additionally, a metric, d, on X can be also used to generate a topology, τd, on X.

Lemma

For every metric function, d, that a non-empty set, X, is endowable with, there exists an implied

topology, τd, where

τd = {A ⊆ X : A is d-open}

Proof

For τd to be a valid topology on X, it has to satisfy the properties 1-3 of topologies. The definition

of τd basically says that every d-open subset of X belongs to it. So

1. ∅ and X belong to τd because they are d-open subsets of X.

2. Since all elements of τd are d-open subsets of X and arbitrary unions of d-open sets are d-open,

then arbitrary unions of elements of τd also belong to τd.

3. Since all elements of τd are d-open subsets of X and finite intersections of d-open sets are

d-open, then finite intersections of elements of τd also belong to τd.
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Thus, τd is a topology on X. �

An example of a topology generated by a metric is the discrete topology, τδ, which is generated

by the discrete metric, dδ.

Let (X, dδ) be a metric space and A an arbitrary subset of X. Then for any element, x, in A

there exists a positive radius that is less than one, 0 < ε < 1, such that Odδ(x, ε) = {x} ⊆ A. So A

is dδ-open and since it was chosen arbitrarily, every subset of X is open with respect to the discrete

metric.

So the discrete topology of a set is its powerset, τδ = P (X).

However, not all topologies can be generated by a metric. One such example can be the

indiscrete topology, τI = {∅, X}, on a non singleton set. Let X = {a, b} with a 6= b, and assume

that there exists a metric d that we can endow X with and that it can produce the indiscrete

topology, τI . So we want ∃ d | τI ≡ {x ∈ X : x is d-open}.

Define ε := d(a, b) and the d-open ball Od(a, ε).

Notice that Od(a, ε) ∈ τI , since it is a d-open subset of X and τI is the collection of d-open

subsets of X (since it is generated by d).

Also, Od(a, ε) 6= ∅ since open balls always contain their center.

Finally, Od(a, ε) 6= X since it does not include b.

Thus, Od(a, ε) ∈ τI = {∅, X} and Od(a, ε) 6= ∅ and Od(a, ε) 6= X. Contradiction!

So τI cannot always be generated by a metric. We can, thus, say that not all topological spaces

are metrizable.

Finally, not all collections of subsets constitute topologies. To see this, let X = {a, b, c} and a

collection of subsets, τ = {∅, {a, b}, {b, c}, X}. Then the intersection between {a, b} and {b, c} is

{b} /∈ τ . So τ violates property 3 and is not a topology on X.

We can also dually define a topology, τ ∗d , such that τ ∗d = {A ⊆ X,A is d-closed} and it contains

the same informational context as τd. Contrary to τd, we want τ ∗d to be closed under finite unions

and arbitrary intersections of its elements.

Definition

Let (X, τ) be a topological space and x ∈ X, then

τ(x) = {A ∈ τ, x ∈ A}

is called a neighbouring system of x.
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Convergence and Continuity in Metric Spaces

Definition

Let (X, d) be a metric space and (xn)n∈N a sequence in X. Then we say that x ∈ X is a d-limit of

(xn)n∈N iff

∀ ε > 0, ∃ nε ∈ N : ∀n ≥ nε xn ∈ Od(x, ε)

and can denote x = d− lim(xn) and equivalently write xn → x (xn tends to x).

Lemma

Let (X, d) be a metric space, (xn)n∈N a sequence in X, and x ∈ X. Consider τd as the topology on

X generated by d. Then xn → x iff ∀A ∈ τd(x) almost every element of (xn)n∈N belongs to A.

Proof

Suppose that x is the d-limit of (xn)n∈N.

Choose an arbitrary A ∈ τd(x) ⊆ τd. By definition A is a d-open subset of X and x ∈ A. So

∃ εx > 0 : Od(x, εx) ⊆ A

But because xn → x

∃ nεx ∈ N : ∀ n ≥ nεx xn ∈ Od(x, εx)

i.e. almost every element of (xn)n∈N belongs to Od(x, εx) and since Od(x, εx) ⊆ A almost every

element of (xn)n∈N belongs to A. Since A was chosen arbitrarily, this holds for all such A ⊆ τd(x).

For the converse, suppose that ∀A ∈ τd(x) almost every element of (xn)n∈N belongs to A.

Since Od(x, ε) is a d-open subset of X for all ε > 0 and it includes x, it follows that Od(x, ε) ∈ τd(x),

which drives the result. �

Lemma

Let (X, d) be a metric space. Every d-convergent sequence in X has a unique d-limit.

Proof

Let (xn)n∈N be a d-convergent sequence in X with x = d− lim(xn), y = d− lim(xn), and x 6= y.

By separateness we know that d(x, y) > 0 so there exist 0 < εx < d(x, y) and 0 < εy < d(x, y) such

that

Od(x, εx)
⋂
Od(y, εy) = ∅
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Since xn → x for this particular εx

∃ nεx : ∀ n ≥ nεx xn ∈ Od(x, εx)

thus only a finite number of elements of the sequence may lie outside of Od(x, εx).

Analogously, since xn → y only a finite number of elements of the sequence may lie outside of

Od(y, εy).

But Od(x, εx) and Od(y, εy) are disjoint sets. Contradiction! �

Observe that we need the separateness property to prove the uniqueness of d-limits. Thus,

d-limits are not necessarily unique in pseudometric spaces.

Furthermore, the uniqueness of limits cannot necessarily be generalized in topological spaces

that are not generated by a metric. Consider the example of the indiscrete topological space where

the carrier set is not a singleton, e.g. (X, τI) with X = {a, b}, a 6= b, and τI = {∅, X}. Consider

any sequence, (xn)n∈N, in X. Here, a is a limit of (xn)n∈N because the neighbouring system of a

with respect to τI comprises only of X itself

τI(a) = {X}

and the entire sequence is in X.

Similarly, τI(b) = {X} and b is a limit. So in indescrete spaces limits may not be unique.

Lemma

Let (X, d) be a metric space. A ⊆ X is a d-closed subset of X iff ∀(xn)n∈N, with xn ∈ A, ∀n ∈ N

and xn → x with respect to d, then x ∈ A.

Proof

Let A ⊆ X be such that for all sequences, (xn)n∈N, in A with d − limxn = x it holds that x ∈ A.

Also assume that A is not d-closed. Thus,

A is not d-closed ⇐⇒

A′ is not d-open ⇐⇒

∃ x ∈ A′ : ∀ε > 0,Od(x, ε)
⋂

A 6= ∅
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For every n ∈ N choose an xn such that

xn ∈ Od
(
x,

1

n+ 1

)⋂
A

and hence construct a sequence in A.

Now consider a δ > 0 such that for some nδ

δ >
1

nδ + 1
⇐⇒ 1

δ
< nδ + 1 ⇐⇒ nδ <

1− δ
δ

< +∞

so that

∀δ > 0 ∃ nδ ∈ N : ∀n ≥ nδ, xn ∈ Od
(
x,

1

n+ 1

)
⊆ Od(x, δ)

Thus xn → x, but x 6∈ A, which leads to a contradiction. So, for a set A ⊆ X such that for all

sequences, (xn)n∈N, in A with d − limxn = x it holds that x ∈ A, it also has to hold that A is a

d-closed subset of X.

For the converse suppose that some A ∈ X is d-closed and that ∃ (xn)n∈N in A with xn → x and

x 6∈ A. Then

A is d-closed ⇐⇒

A′ is d-open ⇐⇒

∃ ε > 0 : Od(x, ε)
⋂

A = ∅

Since xn → x almost every element of (xn)n∈N is in Od(x, ε). But since this is a sequence in A and

A and Od(x, ε) are disjoint, this cannot hold. Contradiction! �

So, we have found a way of characterizing d-closedness in metric spaces that is not in terms of

d-openness (at least this is how it appears to be at a superficial level). One thing that we can do

with this is “prove” that the empty set, ∅, is d-open and the carrier set, X, is d-closed. Consider

a metric space, (X, d), and all d-convergent sequences in it. Inevitably, all of the limits of these

sequences will lie in X. Thus, by the above lemma, X is a d-closed subset of itself. Consequently,

∅ is a d-open subset of X.
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Definition

Let (X, dX) and (Y, dY ) be metric spaces and f a function from X to Y , f : X → Y . f is

dY /dX-continuous at x ∈ X iff

∀(xn)n∈N in X with x = dX − lim(xn)⇒ f(x) = dY − lim(f(xn))

Lemma

Let f : X → Y be some function with (X, dX) and (Y, dY ) metric spaces. Then the following

statements are all equivalent to one another (i.e. when any one of them holds, all them concurrently

hold) for any point x ∈ X:

1. f is dY /dX-continuous at x ∈ X

2. ∀δ > 0,∃εδ : f (OdX (x, εδ)) ⊆ OdY (f(x), δ)

3. If A ∈ τdY (f(x)) then ∃B ∈ τdX (x) : B ⊆ f−1(A)

Proof

We want to show that each of the above conditions is a necessary and sufficient condition for

all of the others.

First, we show that 2. is a necessary and sufficient condition for 1.

Assume that 2. holds. Then ∀δ > 0,∃ εδ : f (OdX (x, εδ)) ⊆ OdY (f(x), δ).

For (xn)n∈N such that xn → x and xn, x ∈ X consider (f(xn))n∈N. Then for some δ > 0, choose

a εδ that satisfies 2. Because xn → x

∀n ≥ n∗(εδ), xn ∈ OdX (x, εδ)⇒

∀n ≥ n∗(εδ), f(xn) ∈ f (OdX (x, εδ))

and because we assumed that f (OdX (x, εδ)) ⊆ OdY (f(x), δ)

∀n ≥ n∗(εδ), f(xn) ∈ OdY (f(x), δ)

and since δ is arbitrary f(xn) → f(x). Because (xn)n∈N is arbitrary f is dY /dX-continuous at

x ∈ X.

So 2. is a sufficient condition for 1. at x.
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Now, suppose that 1. holds (f is dY /dX-continuous at x ∈ X), but for some δ > 0 no εδ exists

that satisfies 2. and ∀ε > 0, f (OdX (x, ε)) 6⊆ OdY (f(x), δ). This can be equivalently expressed as

∃δ > 0 : ∀ε > 0, f(OdX (x, ε))
⋂
O′dY (f(x), δ) 6= ∅

This implies that

∃δ > 0 : ∀n ∈ N, f(OdX (x,
1

n+ 1
))
⋂
O′dY (f(x), δ) 6= ∅

(since all n ∈ N give suitable ε). Consider the images of these sets through f−1 (which are also

non-empty)?

f−1
(
f

(
OdX

(
x,

1

n+ 1

))⋂
O′dY (f(x), δ)

)
= OdX

(
x,

1

n+ 1

)⋂
f−1(O′dY (f(x), δ)) 6= ∅,∀n ∈ N

and a sequence, (xn)n∈N, such that the n-th element of the sequence belongs to the n-th such set

xn ∈ OdX
(
x,

1

n+ 1

)⋂
f−1(O′dY (f(x), δ))⇒

xn ∈ OdX
(
x,

1

n+ 1

)

which can be shown to imply a convergence of the sequence (xn)n∈N to x. Thus, x = dX − lim(xn).

By the assumed dY /dX-continuity of f at x, we get f(x) = dY − lim(f(xn)), but

xn ∈ OdX
(
x,

1

n+ 1

)⋂
f−1(O′dY (f(x), δ))⇒

xn ∈ f−1(O′dY (f(x), δ)) ⇐⇒

f(xn) ∈ f(f−1(O′dY (f(x), δ))) = O′dY (f(x), δ) ⇐⇒

f(xn) 6∈ OdY (f(x), δ)

which can be shown to make convergence of (f(xn))n∈N at f(x) ∈ Y impossible. Hence we have a

contradiction.

So 2. is a necessary condition for 1. at x.

Now, we show that 2. and 3. imply one another.

Let 3. hold.

?Even if f is not one-to-one, we can think of f−1 as a function f−1 : Y → P (X) that maps elements of Y to the
subsets of X whose elements are mapped to the given value, i.e. f−1(y) = {x ∈ X|f(x) = y}. Furthermore, we can
think of f and f−1 as mappings between subsets of X and Y , not just single elements, which is how we are using
them here. In this case, the reverse image we are taking is not empty, because f is used to produce the set we are
passing to f−1.
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For δ > 0 choose A = OdY (f(x), δ). By our assumption ∃ B in the neighbourhood system

τdX (x) such that B ⊆ f−1(A). Since B ∈ τdX (x) there always exists a ε > 0 such that B is a subset

of a dX-open ball with center x and radius ε. All this implies that

OdX (x, ε) ⊆ B ⊆ f−1(A)⇒

OdX (x, ε) ⊆ f−1(OdY (f(x), δ))⇒

f(OdX (x, ε)) ⊆ f(f−1(OdY (f(x), δ)))⇒

f(OdX (x, ε)) ⊆ OdY (f(x), δ)

So 3. implies 2.

Now, let 2. hold.

Suppose that ∃A ∈ τdY (f(x)) such that ∀B ∈ τdX (x), B is not a subset of f−1(A), i.e.

B
⋂(

f−1(A)
)′ 6= ∅ ∀B ∈ τdX (x)

Because all dX-open balls with center x belong to τdX (x)

OdX (x, ε)
⋂(

f−1(A)
)′ 6= ∅ ∀ε > 0⇒

OdX (x, ε)
⋂

f−1(A′) 6= ∅ ∀ε > 0⇒

f (OdX (x, ε)
⋂

f−1(A′)
)
6= ∅ ∀ε > 0⇒

f (OdX (x, ε))
⋂

f
(
f−1(A′)

)
6= ∅ ∀ε > 0⇒

f (OdX (x, ε))
⋂

A′ 6= ∅ ∀ε > 0

But A ∈ τdY (f(x)) so there always exists δ > 0 : OdY (f(x), δ) ⊆ A. This implies that

(OdY (f(x), δ))′ ⊇ A′ and thus

f (OdX (x, ε))
⋂

(OdY (f(x), δ))′ 6= ∅ ∀ε > 0

which is equivalent to f (OdX (x, ε)) 6⊆ OdY (f(x), δ) and contradicts 2.

So 2. implies 3. �
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