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Lemma

Let (Y,d) be a complete metric space and X # @ a non-empty set, then the structured set (B(X,Y),d?, ) with

s Ysup

sup

d, (f,g) = sup d(f(z),g(x)), Vf,g € B(X,Y) is a complete metric space.
reX

Proof
We need to show that:

1. (B(X,Y),dd, ) is a metric space, which requires that:

» Ysup
¢ B(X,Y) be a non-empty set.

e d?,, be a metric function on B(X,Y) (properties i-iv).

2. Every d?,,-Cauchy sequence on B(X,Y) has a d?, -limit in B(X,Y’), which requires that for all (f,)nen : fn €

sup

B(X,Y), ¥n € N, there exists a function, f, such that:

o f=dl —limf,

sup
o fc B(X s Y)
1. Since X # @ we can define at least one function (if not more) that maps elements of X to elements of Y (also
non-empty). For example, the constant function f. : X — Y such that Vz € X, f.(z) = y. for some y. € Y.

Furthermore, observe that f.(X) = {y.} C Y, i.e. the image of X through f. is a subset of Y (naturally) and

it is also a singleton set (it has only one element). Thus f(X) is certainly a d-bounded subset of Y.
We have found at least one example of a bounded function from X to Y. So B(X,Y) is non-empty.

Also, d¢,, is a metric function on B(X,Y’) since:

) Vf.g € BX.Y). df,,(f.9) = sup d({(z).9(x) 20
ii) Vf,g € B(X,Y),

d,,(f,9) =0 .

sup d(f(z), g(x)) =0 R
d(f(z),g(z)) =0,Vr € X R
flx) = g(x), Ve e X —

=g

*Please report any typos, mistakes, or even suggestions at zaverdasd@aueb.gr.



i) V.9 € BX.Y), di,,(f.9) = sup d(f(2), g(a)) = sup d(g(a), f(z)) = 2, (9, /)

iv) Vf.9,h € B(X,Y),

., (f.9) = sup d(f(z),g(x))

zeX
< sup (d(f(2), h(z)) + d(h(z), g(x)))
< sup d(f(x), h(x)) + sup d(h(z), g(x))
zeX reX

= dgup(f, 1) + iy (b, 9)

So d?,, is a metric function on the non-empty B(X,Y) and (B(X,Y),d?, ) is a metric space.

sup sup

2. Consider an arbitrary d?, -Cauchy sequence on B(X,Y), (fu)nen : fn € B(X,Y)Vn € N. Then Ve > 0 3 n(e)

sup

such that

A2 (frs fm) < &, ¥n,m > n(e)
sup d(fn(2), fn(z)) < &, Yn,m > n(e)
z€X

Ve € X, d(fn(z), fm(z)) <&, Vn,m > n(e)

so that (f,(z))nen is a d-Cauchy sequence on Y, Vz € X.

d

Here is an informal breakdown to facilitate your intuition. From one dg,,,

-Cauchy sequence in the set of bounded
Y-valued functions, B(X,Y’), we can get multiple sequences, (y»)nen, in Y that are d-Cauchy, one for every
x € X. For each such starting sequence, (f,,)nen, there are as many such (y,)nen sequences as elements in the

domain of those f,, X, and their n-th element is given by y, = f.(x).

Furthermore, because (Y, d) is complete, (f,,(z))nen converges to a d-limit in Y, say ¢, € Y, for all z € X.

d

So starting from a dg,,,,

-Cauchy sequence on B(X,Y’) we can generate a collection of d-convergent sequences on

Y (one sequence for each x € X). That is, we have that

v (fn)nEN :(fn)nGN d(siup'caUChy on B(X7 Y)

F{(Yn)neN Yn = fu(x)Vn € N, (yn)nen d-convergent on Y, Vo € X}

Now, for any such starting sequence (fy,(z))nen using the corresponding ¢, of each z € X, define the function

f: X — Y such that f(z) == ¢,, Vo € X. To show that (B(X,Y),d?,) is complete, it suffices to show that

s Ysup

dgup —lim f,, = f and that f € B(X,Y) (since we have taken (f,(z))nen to be d-Cauchy).

Firstly, notice that

e (fur ) = sup d(fu(), f(x))

zeX
= sup d(fn(x)a d— lim fm(m))
z€X m—+00

—oup i (404 o)

z€X m—r—+00



This last equality follows by the fact that metrics are continuous functions (needs proof).

Now consider d(f,(z), fm(z)) for some x € X (notice that it is a real number). Choose an arbitrary fixed
n € N and think of the real valued sequence (2, )men € R, such that z,, = d(fn(x), fm(z)) for any given n € N

and r € X.

d .
dsup(fna f) = Sup lim Zm

reX m——+00

< sup sup zm
rzeX m>n

This holds because we are considering more z,, than just those that “tend to infinity”. Keep in mind that, if we
denote z as the limit here, even if z,,, < z, Vm € N it still holds that sup,,cy #2m = 2. This can be generalized
to cases where a finite number of z,, are greater than the limit (if they were infinite, then it wouldn’t be a
limit).

So we have that

dgup(fnaf) S Sup sup d(fn(x)7fm(x))

rzeX m>n

< sup sup sup d(fn(z), fm(z))
rzeX m>nzxeX

= sup sup d(fn (), fm(x))

m>nx€X

= Sl;p dcslup(fna fm)

So we showed that d¢

sup

(frs [) < 8UDp sy A2y (fry fm). Now consider the following

(fn)nEN is dfup—Cauchy

Ve >0, 3n(e) : diyy(fo, fm) <€ Vn,m > n(e)

Ve >0, 3n(e): sup d,(fu, fm) <e Vn > n(e)
m>n

Ve >0, In(e): dgup(fn,f) <e Yn > n(e)

thus as n = +o0, f, — f with respect to dgup.

And because (f,(z))nen was arbitrarily chosen, any d?,,-Cauchy sequence in B(X,Y) is d,,-convergent. It
still remains to show that its dgup—limit (say f)isin B(X,Y).



So, for any two points f(x), f(y) € Y and some n € N we have that

sup d(f(x%f(y)) < sup d(fn(s)(‘r)?f(w)) + sup d(fn(s)(‘r)7f(y>)

z,yeX z,yeX z,yeX
< sup d(fn(e) (1‘), f($)) + sup d(fn(a) (y)7 f(y)) + sup d(fn(a)(m)v fn(a)(y))
z,yeX z,yeX z,yeX
< sup d(fn(e) <$)7 f(x)) + sup d(fn(s) (y)v f(y)) + sup d(fn(s) (LC), fn(s) (y))
reX yeX z,yeX
=2 sup d(fn(e) (1‘), f(l‘)) + sup d(fn(e) (33), fn(e) (y))
reX z,yeX
= ngup(fn(t‘)? f) + sup d(fn(s)(x), fn(s)(y))
z,yeX
where n(e) is such that d?,,(fu(), f) < e. This n(e) exists since f, — f with respect to d?,,. Thus, the

first additive term is bounded by 2¢. The second additive term is the maximum distance between all values of
fne) on Y. Since f, ) € B(X,Y) this number is also bounded. Thus, sup, ,cx d(f(z), f(y)) < +oo, which
establishes that f € B(X,Y), i.e. f is a bounded Y-valued function.

So for (Y,d) complete metric space, every d¢, ,-Cauchy sequence on B(X,Y) is dZ, -convergent in B(X,Y).

Thus, if (Y, d) is a complete metric space, then (B(X,Y), dgup) is also a complete metric space.



