
Athens University of Economics and Business
Department of Economics

Postgraduate Program - MSc in Economic Theory
Course: Mathematical Economics (Mathematics II)
Prof: Stelios Arvanitis
TA: Dimitris Zaverdas∗

Semester: Spring 2023-2024

Bellman Equations, Banach’s Fixed Point Theorem, and Stationary Dynamic

Programming Problems

by Dimitris Zaverdas

Let (X, d) be a compact metric space, ϕ : X ×X → R an appropriately continuous function, and

δ ∈ (0, 1). The Bellman equation with respect to ϕ and δ is a functional equation, defined as

∀x ∈ X f(x) = max
y∈X

{ϕ(x, y) + δf(y)}, with f ∈ C(X,R)

where the function, f ∈ C(X,R), plays the role of the equation’s “variable”1.

It can be shown that this has a unique solution, f ∗, in C(X,R). A sketch of the proof is the

following. Consider a functional function Φ : C(X,R) → RX such that

∀x ∈ X (Φ(f))(x) = max
y∈X

{ϕ(x, y) + δf(y)}, with f ∈ C(X,R)

Observe that Φ is a self map. Show that it satisfies Blackwell’s conditions, and consequently

Banach’s conditions. Thus, the functional equation has a unique fixed point, f ∗, which can be

shown to coincide with the solution to the Bellman equation.

We have yet to establish some relationship between this result and Dynamic Programming Problems.

Here we will see that finding the optimal path to a Stationary Dynamic Programming Problem is

equivalent to finding a solution to a Bellman equation. For a more detailed walkthrough, study

section E4 in Ok’s textbook (see syllabus), pp. 233-248.

∗Please report any typos, mistakes, or even suggestions at zaverdasd@aueb.gr.
1Same as the real number, x ∈ R, plays the role of the variable in the following real equation with respect to α

and β
x = α+ βx

1



A standard dynamic programming problem

Consider a standard dynamic programming problem in a general metric space, (X, d), with initial

state x0 ∈ X, where the goal is to find an optimal sequence of future states in X, (x∗
n)n∈N∗ , which

maximizes some real valued objective function, U , under a set of feasibility constraints, of the

following form

max
(xn)n∈N∗ in X

{
U(x0, (xn)n∈N∗) = ϕ(x0, x1) +

∞∑
i=1

δiϕ(xi, xi+1), such that xn+1 ∈ Γ(xn),∀n ∈ N

}
(1)

where ϕ and δ are as above and Γ(xn) is the set of feasible xn+1 ∈ X given xn.

We will assume that the above objective function is calculatable (but is not necessarily bounded)

for all x0 and feasible (xn)n∈N∗ , i.e.

lim
N→∞

N∑
i=0

δiϕ(xi, xi+1) ∈ R = R ∪ {−∞,+∞} (2)

We also assume that ϕ is continuous and bounded on its domain. Thus, the objective is also

bounded (because δ ∈ (0, 1) and B(X,R) is closed under addition).

We further assume that Γ(x) is an appropriately compact subset of X for all x ∈ X.

2



Bellman’s Lemma(s)

Let us define the value function. For a dynamic programming problem such as (1), a value function,

V : X → R (which may have an unknown functional form), is defined as any function such that for

any x ∈ X its value is the maximum attainable value of the objective function across all feasible

sequences of future states given x as the initial state, i.e.,

V (x) := sup
(xn)n∈N∗ in X

{U(x, (xn)n∈N∗) such that x1 ∈ Γ(x) and xn+1 ∈ Γ(xn),∀n ∈ N∗} (3)

(If a solution to (1) exists, then we can replace the sup with a max.)

Observe that for a given initial state, x0, if (x
∗
n)n∈N∗ is an optimal path for (1), then (3) is equivalent

to

V (x0) = U(x0, (x
∗
n)n∈N∗) = ϕ(x0, x

∗
1) +

∞∑
i=1

δiϕ(x∗
i , x

∗
i+1) (4)

We now proceed to stating and proving Bellman’s lemmata.

Bellman’s Lemma 1

For a dynamic programming problem such as (1), consider a value function V : X → R such that

(3) holds. For any initial state x0, if (x
∗
n)n∈N∗ is a solution to (1) for this given state, then

V (x0) = ϕ(x0, x
∗
1) + δV (x∗

1) (5)

and

V (x∗
n) = ϕ(x∗

n, x
∗
n+1) + δV (x∗

n+1), ∀n ∈ N∗ (6)

If ϕ is continuous and bounded, the converse is also true, i.e. if a pair (x0, (x
∗
n)n∈N∗) satisfies (5)

and (6), the sequence (x∗
n)n∈N∗ is a solution to (1) with initial state x0.

Proof

We will prove the direct statement of the lemma via mathematical induction and its converse via

substitution.

3



For n = 0, if (x∗
n)n∈N∗ is the optimal path among all feasible paths given x0, then observe that

V (x0) = ϕ(x0, x
∗
1) +

∞∑
i=1

δiϕ(x∗
i , x

∗
i+1)

= ϕ(x0, x
∗
1) + δϕ(x∗

1, x
∗
2) +

∞∑
i=2

δiϕ(x∗
i , x

∗
i+1)

⩾ ϕ(x0, x
∗
1) + δϕ(x∗

1, x2) +
∞∑
i=2

δiϕ(xi, xi+1)

for all feasible (xn)n∈N∗ given x0. Consider the last inequality and see that

ϕ(x0, x
∗
1) + δϕ(x∗

1, x
∗
2) +

∞∑
i=2

δiϕ(x∗
i , x

∗
i+1) ⩾ ϕ(x0, x

∗
1) + δϕ(x∗

1, x2) +
∞∑
i=2

δiϕ(xi, xi+1)

δϕ(x∗
1, x

∗
2) +

∞∑
i=2

δiϕ(x∗
i , x

∗
i+1) ⩾ δϕ(x∗

1, x2) +
∞∑
i=2

δiϕ(xi, xi+1)

ϕ(x∗
1, x

∗
2) +

∞∑
i=2

δi−1ϕ(x∗
i , x

∗
i+1) ⩾ ϕ(x∗

1, x2) +
∞∑
i=2

δi−1ϕ(xi, xi+1)

then set j = i− 1 to get

ϕ(x∗
1, x

∗
2) +

∞∑
j=1

δjϕ(x∗
j+1, x

∗
j+2) ⩾ ϕ(x∗

1, x2) +
∞∑
j=1

δjϕ(xj+1, xj+2)

But the left hand side can be seen as the value of the objective function of a dynamic programming

problem with initial state x∗
1 calculated at an optimal sequence (x∗

n+1)n∈N∗ . The value function of

this “sub-problem” is identical to the starting problem. So at the solution

V (x∗
1) = ϕ(x∗

1, x
∗
2) +

∞∑
j=1

δjϕ(x∗
j+1, x

∗
j+2)

4



Thus,

V (x0) = ϕ(x0, x
∗
1) +

∞∑
i=1

δiϕ(x∗
i , x

∗
i+1)

= ϕ(x0, x
∗
1) + δϕ(x∗

1, x
∗
2) +

∞∑
i=2

δiϕ(x∗
i , x

∗
i+1)

= ϕ(x0, x
∗
1) + δ

(
ϕ(x∗

1, x
∗
2) +

∞∑
i=2

δi−1ϕ(x∗
i , x

∗
i+1)

)

= ϕ(x0, x
∗
1) + δ

(
ϕ(x∗

1, x
∗
2) +

∞∑
j=1

δjϕ(x∗
j+1, x

∗
j+2)

)

= ϕ(x0, x
∗
1) + δV (x∗

1)

and we have arrived at equation (5).

Now assume that the equation in condition (6) holds for some n = k > 0

V (x∗
k) = ϕ(x∗

k, x
∗
k+1) + δV (x∗

k+1)

ϕ(x∗
k, x

∗
k+1) +

∞∑
i=1

δiϕ(x∗
i+k+1, x

∗
i+k+2) = ϕ(x∗

k, x
∗
k+1) + δV (x∗

k+1)

∞∑
i=1

δiϕ(x∗
i+k+1, x

∗
i+k+2) = δV (x∗

k+1)

δϕ(x∗
k+1, x

∗
k+2) +

∞∑
i=2

δiϕ(x∗
i+k+1, x

∗
i+k+2) = δV (x∗

k+1)

ϕ(x∗
k+1, x

∗
k+2) +

∞∑
i=2

δi−1ϕ(x∗
i+k+1, x

∗
i+k+2) = V (x∗

k+1)

ϕ(x∗
k+1, x

∗
k+2) +

∞∑
j=1

δjϕ(x∗
j+k+2, x

∗
j+k+3) = V (x∗

k+1)

which means that the equation also holds for n = k+1, and by induction the condition in (6) holds

for all n ∈ N∗.

Thus, solutions for the dynamic programming problem satisfy (5) and (6).

5



For the converse, consider a pair (x0, (x
∗
n)n∈N∗) such that (5) and (6) hold. Then

V (x0) = ϕ(x0, x
∗
1) + δV (x∗

1)

= ϕ(x0, x
∗
1) + δϕ(x∗

1, x
∗
2) + δ2V (x∗

2)

= . . .

= ϕ(x0, x
∗
1) +

k∑
i=1

δiϕ(x∗
i , x

∗
i+1) + δkV (x∗

k)

By our assumptions above (ϕ is continuous and bounded) V is bounded, so

lim
k→∞

δkV (x∗
k) = 0

and by letting k approach infinity we get

V (x0) = ϕ(x0, x
∗
1) +

∞∑
i=1

δiϕ(x∗
i , x

∗
i+1)

implying that (x∗
n)n∈N∗ is a solution to the dynamic programming problem with initial state x0.

Bellman’s Lemma 2 (The Principle of Optimality)

For any dynamic programming problem such as (1) and a function V ∈ B(X,R), which satisfies the

following Bellman equation

V (x) = max
y∈Γ(x)

{ϕ(x, y) + δV (y)}, ∀x ∈ X (7)

it holds that V is a value function of (1) and

V (x) = max
(xn)n∈N∗ in X with xn+1∈Γ(xn)

{U(x, (xn)n∈N∗)}, ∀x ∈ X (8)

Proof

To show this, consider a bounded real function on X, V , that satisfies (7). For any x ∈ X and any

6



feasible sequence (xn)n∈N, observe that

V (x) = max
x1∈Γ(x)

{ϕ(x, x1) + δV (x1)}

⩾ ϕ(x, x1) + δV (x1)

⩾ ϕ(x, x1) + δϕ(x1, x2) + δ2V (x2)

⩾ . . .

⩾ ϕ(x, x1) +
k∑

i=1

δiϕ(xi, xi+1) + δk+1V (xk+1)

by the definition of (7).

Since by our assumptions V is bounded, by letting k approach infinity, we get

V (x) ⩾ ϕ(x, x1) +
∞∑
i=1

δiϕ(xi, xi+1) = U(x, (xn)n∈N)

over all x ∈ X and feasible sequences.

Now for any x ∈ X consider a feasible sequence, (x∗
n)n∈N, such that

V (x) = ϕ(x, x∗
1) + δV (x∗

1)

and

V (x∗
n) = ϕ(x∗

n, x
∗
n+1) + δV (x∗

n+1), ∀n ∈ N∗

Such a sequence exists for all x, as maximizers of the right hand side of (7) with the appropriate x.

By iterative substitution

V (x) = ϕ(x, x1) +
k∑

i=1

δiϕ(xk, xk+1) + δk+1V (xk+1)

and because V is bounded

V (x) = ϕ(x, x1) +
∞∑
i=1

δiϕ(xi, xi+1) = U(x, (x∗
n)n∈N∗)

Thus, for all x ∈ X, V (x) is the maximum value attainable for U(x, (xn)n∈N∗) at that x across all

feasible consequent sequences.

7



Discussion

Let us examine what we have so far.

The converse of Bellman’s first lemma tells us that if we have the functional forms of the value

functions of a dynamic programming problem such as (1), and ϕ is continuous and bounded, then

the value functions are also bounded and for each value function and initial state, x0, we can find

optimal sequences of future states that maximize the objective by leveraging (5) and (6).

Bellman’s second lemma (the principle of optimality) says that bounded solutions to Bellman

equations are value functions of the associated dynamic programming problem.

We have seen that Bellman equations always have a unique continuous function as a solution, when

the domain of the function space is appropriately compact.

Thus, for any dynamic programming problem such as (1) with a continuous and bounded ϕ and

X and Γ(X) compact, there exists a unique continuous value function, V , which is related to the

solutions of the problem through (5) and (6).

An interesting question that remains regards the uniqueness of the optimal. For this, it would

suffice that V be a strictly concave function on X. Then, there exists a unique maximizer, x∗
1, of

(5) given x0, and a unique maximizer of (6) given x∗
n.

To have a strictly concave value function, the following assumptions are sufficient:

• the graph of Γ (which is a subset of X×Γ(X)) is a convex set, i.e. ∀λ ∈ (0, 1) and ∀x, x′ ∈ X,

for any y ∈ Γ(x) and y′ ∈ Γ(x′)

λ · y + (1− λ) · y′ ∈ Γ(λ · x+ (1− λ) · x′)

• ϕ is concave on the graph of Γ, i.e. ∀λ ∈ (0, 1) and ∀x, x′ ∈ X, for any y ∈ Γ(x) and y′ ∈ Γ(x′)

ϕ(λ · (x, y) + (1− λ) · (x′, y′)) > λ · ϕ(x, y) + (1− λ) · ϕ(x′, y′)

(We need the graph of Γ to be convex so that we can talk about the concavity of ϕ without worrying

about missing points.)

We will not show here how the above assumptions give a strictly concave value function, but you

probably have some general intuition as to why that is. For the derivation, see section E4.3 in Ok’s

textbook.

8



An Optimal Growth Problem

The following is an applied example of an optimal growth problem (based on example 5 in Ok’s

section E4.2).

Consider a dynamic economy with a representative agent.

In each period, t, the agent has the output from last period’s production, yt = f(kt) =
√
kt, and

decides how much of it will be saved as an input for next period’s production, kt+1, and the rest

of it is consumed yielding utility u(ct) = ln(ct). The starting capital, k0, and resulting output,

y0 = f(k0), are given endowments with k0 ∈ [0, 1].

Naturally, the amount of capital saved cannot exceed the available output, 0 ⩽ kt+1 ⩽ yt and we

have that ∀t ∈ N yt ⩾ ct+ kt+1. Of course, the agent being rational, they consume all of the output

that is not saved for future production and ∀t ∈ N ct = yt − kt+1 = f(kt)− kt+1.

The agent’s discount factor is
1

2
and their objective is to maximize their intertemporal utility subject

to the constraint discussed above

max
{kt}∞t=1

∞∑
t=0

(
1

2

)t

u(ct) such that 0 ⩽ kt+1 ⩽ yt ∀t ∈ N (9)

To reduce notation, we can rewrite the above as

max
{kt}∞t=1

∞∑
t=0

(
1

2

)t

ln(
√

kt − kt+1) such that kt+1 ∈ [0,
√
kt]∀t ∈ N (10)

We can draw parallels to the discussion that preceded and see that this is a standard dynamic

programming problem. The initial state is k0 and the sequence over which we maximize is (kt)t∈N∗ .

ϕ(kt, kt+1) = ln(
√
kt − kt+1) and δ =

1

2
. Finally, X = [0, 1] and Γ(kt) = [0,

√
kt].

For the remainder of this solution, to simplify notation, define x := kt and y := kt+1.

By the Principle of Optimality, it suffices to find the solutions, V , to the following functional

equation

g(x) = max
y∈Γ(x)

{ln(
√
x− y) +

1

2
g(y)}, ∀x ∈ [0, 1] (11)

Because u is continuous and bounded on the graph of Γ and Γ(x) is compact for all x, we have seen

that by Banach’s Fixed Point Theorem, V is the unique fixed point of the following function, Φ,

defined by

(Φ(g))(x) = max
y∈Γ(x)

{ln(
√
x− y) +

1

2
g(y)}, ∀x ∈ [0, 1] (12)

9



with g ∈ B(Γ(x),R) and can be found as

V = lim
n→∞

Φ(n)(g) (13)

for any starting g ∈ B(Γ(x),R).

Start with g : [0,
√
x] → [0,

√
x] such that ∀x, g(y) = 0 ∀y ∈ [0,

√
x]. Thus,

(Φ(g))(x) = max
y∈[0,

√
x]

{
ln(

√
x− y) +

1

2
· 0
}
, ∀x ∈ [0, 1]

= max
y∈[0,

√
x]
{ln(

√
x− y)}, ∀x ∈ [0, 1]

= ln(
√
x), ∀x ∈ [0, 1]

=
1

2
ln(x), ∀x ∈ [0, 1]

Then use Φ(g) to get

(Φ(Φ(g)))(x) = (Φ(2)(g))(x) = max
y∈[0,

√
x]

{
ln(

√
x− y) +

1

2
· 1
2
ln(y)

}
, ∀x ∈ [0, 1]

= . . .

=
5

8
ln(x) +

(
2ln(2)− 5

4
ln(5)

)
, ∀x ∈ [0, 1]

Continuing indefinitely we can see that as n increases it has the following form

(Φ(n)(g))(x) = αln(x) + β, ∀x ∈ [0, 1] (14)

A “wise” guess (though not certain) would be that the limit of Φ(n)(g) as n approaches infinity –

which is the fixed point of the functional equation and the value function of the dynamic

programming problem – is also of the same form. So we substitute to get

V (x) = max
y∈[0,

√
x]

{
ln(

√
x− y) +

1

2
· V (y)

}
, ∀x ∈ [0, 1]

αln(x) + β = max
y∈[0,

√
x]

{
ln(

√
x− y) +

1

2
· (αln(y) + β)

}
, ∀x ∈ [0, 1]

It can be found that, given x ∈ [0, 1], the right hand side is maximized at y∗ =
α

2 + α

√
x. By

10



substituting and rearranging we get

αln(x) + β =

(
1

2
+

α

4

)
ln(x) + ln

(
1− α

2 + α

)
+

α

2
ln

(
α

2 + α

)
+

β

2
, ∀x ∈ [0, 1] (15)

which implies the system of equations on α and β


α =

1

2
+

α

4

β = ln

(
1− α

2 + α

)
+

α

2
ln

(
α

2 + α

)
+

β

2

 (16)

If a solution to this system exists, then we were right to assume that the limit is of this form and we

will have found the value function in question. A solution does exist and it is unique. It is α =
2

3

and β = ln(9)− 8

3
ln(4), and the value function is

V (x) =
2

3
ln(x) + ln(9)− 8

3
ln(4), ∀x ∈ [0, 1] (17)

and as already seen, given x, the optimal y ∈ Γ(x) is

y∗ =
α

2 + α

√
x =

1

4

√
x

Thus, we have also found the optimal policy function.

So the optimal path for the representative agent, given k0, is

(k∗
t )t∈N∗ =

1

4

√
k0,

1

4

√
1

4

√
k0,

1

4

√
1

4

√
1

4

√
k0, . . .

 (18)

e.g. if k0 = 1, then

(k∗
t )t∈N∗ =

(
1

4
,

1

8
,

1

8

√
1

2
, . . .

)

11


