Athens University of Economics and Business Department of Economics

Postgraduate Program - MSc in Economic Theory Course: *Mathematical Economics (Mathematics II)* Prof: Stelios Arvanitis TA: Dimitris Zaverdas^{*}

Semester: Spring 2023-2024

Completeness and Function Spaces

by Dimitris Zaverdas

Lemma

Let (Y, d) be a complete metric space and $X \neq \emptyset$ a non-empty set, then the structured set $(\mathcal{B}(X, Y), d_{sup}^d)$ with $d_{sup}^d(f, g) = \sup_{x \in X} d(f(x), g(x)), \forall f, g \in \mathcal{B}(X, Y)$ is a complete metric space.

Proof

We need to show that:

- 1. $(\mathcal{B}(X,Y), d_{sup}^d)$ is a metric space, which requires that:
 - $\mathcal{B}(X, Y)$ be a non-empty set.
 - d_{sup}^d be a metric function on $\mathcal{B}(X, Y)$ (properties i-iv).
- 2. Every d_{sup}^d -Cauchy sequence on $\mathcal{B}(X, Y)$ has a d_{sup}^d -limit in $\mathcal{B}(X, Y)$, which requires that for all $(f_n)_{n \in \mathbb{N}} : f_n \in \mathcal{B}(X, Y), \forall n \in \mathbb{N}$ that are d_{sup}^d -Cauchy, there exists a function, f, such that:
 - $f = d_{sup}^d \lim f_n$

•
$$f \in \mathcal{B}(X,Y)$$

1. Since $X \neq \emptyset$ we can define at least one function (if not more) that maps elements of X to elements of Y (also non-empty). For example, the constant function $f_c : X \to Y$ such that $\forall x \in X, f_c(x) = y_c$ for some $y_c \in Y$.

Furthermore, observe that $f_c(X) = \{y_c\} \subseteq Y$, i.e. the image of X through f_c is a subset of Y (naturally) and it is also a singleton set (it has only one element). Thus f(X) is certainly a *d*-bounded subset of Y.

^{*}Please report any typos, mistakes, or even suggestions at zaverdasd@aueb.gr.

We have found at least one example of a bounded function from X to Y. So $\mathcal{B}(X, Y)$ is non-empty.

Also, d_{sup}^d is a metric function on $\mathcal{B}(X, Y)$ since:

i) $\forall f, g \in \mathcal{B}(X, Y), d^d_{sup}(f, g) = \sup_{x \in X} d(f(x), g(x)) \stackrel{!}{\geq} 0$ ii) $\forall f, g \in \mathcal{B}(X, Y),$

$$d^{d}_{sup}(f,g) = 0 \qquad \Longleftrightarrow$$

$$\sup_{x \in X} d(f(x),g(x)) = 0 \qquad \Longleftrightarrow$$

$$d(f(x),g(x)) = 0, \forall x \in X \qquad \Longleftrightarrow$$

$$f(x) = g(x), \forall x \in X \qquad \Longleftrightarrow$$

$$f = g$$

$$\begin{split} \text{iii)} \ \ \forall f,g \in \mathcal{B}(X,Y), \ d^d_{sup}(f,g) = \sup_{x \in X} d(f(x),g(x)) \stackrel{\text{iii}}{=} \sup_{x \in X} d(g(x),f(x)) = d^d_{sup}(g,f) \\ \text{iv)} \ \ \forall f,g,h \in \mathcal{B}(X,Y), \end{split}$$

$$\begin{aligned} d^d_{sup}(f,g) &= \sup_{x \in X} d(f(x),g(x)) \\ &\leq \sup_{x \in X} \left(d(f(x),h(x)) + d(h(x),g(x)) \right) \\ &\leq \sup_{x \in X} d(f(x),h(x)) + \sup_{x \in X} d(h(x),g(x)) \\ &= d^d_{sup}(f,h) + d^d_{sup}(h,g) \end{aligned}$$

So d_{sup}^d is a metric function on the non-empty $\mathcal{B}(X,Y)$ and $(\mathcal{B}(X,Y), d_{sup}^d)$ is a metric space.

2. Consider an arbitrary d_{sup}^d -Cauchy sequence on $\mathcal{B}(X,Y)$, $(f_n)_{n\in\mathbb{N}}$: $f_n \in \mathcal{B}(X,Y) \,\forall n \in \mathbb{N}$. Then $\forall \varepsilon > 0 \exists n(\varepsilon)$ such that

$$d_{sup}^{d}(f_{n}, f_{m}) < \varepsilon, \, \forall n, m > n(\varepsilon)$$
$$\sup_{x \in X} d(f_{n}(x), f_{m}(x)) < \varepsilon, \, \forall n, m > n(\varepsilon)$$
$$\forall x \in X, \, d(f_{n}(x), f_{m}(x)) < \varepsilon, \, \forall n, m > n(\varepsilon)$$

so that $(f_n(x))_{n \in \mathbb{N}}$ is a *d*-Cauchy sequence on $Y, \forall x \in X$.

Here is an informal breakdown to facilitate your intuition. From one d_{sup}^d -Cauchy sequence

in the set of bounded Y-valued functions, $\mathcal{B}(X, Y)$, we can get multiple sequences, $(y_n)_{n \in \mathbb{N}}$, in Y that are d-Cauchy, one for every $x \in X$. For each such starting sequence, $(f_n)_{n \in \mathbb{N}}$, there are as many such $(y_n)_{n \in \mathbb{N}}$ sequences as elements in the domain of those f_n , X, and their n-th element is given by $y_n = f_n(x)$.

Furthermore, because (Y, d) is complete, $(f_n(x))_{n \in \mathbb{N}}$ converges to a *d*-limit in *Y*, say $\phi_x \in Y$, for all $x \in X$.

So starting from a d^d_{sup} -Cauchy sequence on $\mathcal{B}(X, Y)$ we can generate a collection of *d*-convergent sequences on Y (one sequence for each $x \in X$). That is, we have that

$$\forall (f_n)_{n \in \mathbb{N}} : (f_n)_{n \in \mathbb{N}} d^d_{sup} \text{-Cauchy on } \mathcal{B}(X, Y)$$
$$\exists \{ (y_n)_{n \in \mathbb{N}} : y_n = f_n(x) \,\forall n \in \mathbb{N}, (y_n)_{n \in \mathbb{N}} \text{ } d\text{-convergent on } Y, \,\forall x \in X \}$$

Now, for any such starting sequence $(f_n(x))_{n\in\mathbb{N}}$ using the corresponding ϕ_x of each $x \in X$, define the function $f: X \to Y$ such that $f(x) \coloneqq \phi_x, \forall x \in X$. To show that $(\mathcal{B}(X,Y), d_{sup}^d)$ is complete, it suffices to show that $d_{sup}^d - \lim f_n = f$ and that $f \in \mathcal{B}(X,Y)$ (since we have taken $(f_n(x))_{n\in\mathbb{N}}$ to be d-Cauchy).

Firstly, notice that

$$d_{sup}^{d}(f_{n}, f) = \sup_{x \in X} d(f_{n}(x), f(x))$$
$$= \sup_{x \in X} d(f_{n}(x), d - \lim_{m \to +\infty} f_{m}(x))$$
$$= \sup_{x \in X} \lim_{m \to +\infty} \left(d(f_{n}(x), f_{m}(x)) \right)$$

This last equality follows by the fact that metrics are continuous functions (needs proof).

Now consider $d(f_n(x), f_m(x))$ for some $x \in X$ (notice that it is a real number). Choose an arbitrary fixed $n \in \mathbb{N}$ and think of the real valued sequence $(z_m)_{m \in \mathbb{N}} \in \mathbb{R}$, such that $z_m = d(f_n(x), f_m(x))$ for any given $n \in \mathbb{N}$ and $x \in X$.

$$d_{sup}^{d}(f_{n}, f) = \sup_{x \in X} \lim_{m \to +\infty} z_{m}$$
$$\leq \sup_{x \in X} \sup_{m > n} z_{m}$$

This holds because we are considering more z_m than just those that "tend to infinity". Keep in mind that, if we denote z as the limit here, even if $z_m < z, \forall m \in \mathbb{N}$ it still holds that $\sup_{m \in \mathbb{N}} z_m = z$. This can be generalized to cases where a finite number of z_m are greater than the limit (if they were infinite, then it wouldn't be a limit).

So we have that

$$d_{sup}^{d}(f_{n}, f) \leq \sup_{x \in X} \sup_{m \geq n} d(f_{n}(x), f_{m}(x))$$
$$\leq \sup_{x \in X} \sup_{m \geq n} \sup_{x \in X} d(f_{n}(x), f_{m}(x))$$
$$= \sup_{m \geq n} \sup_{x \in X} d(f_{n}(x), f_{m}(x))$$
$$= \sup_{m \geq n} d_{sup}^{d}(f_{n}, f_{m})$$

So we showed that $d_{sup}^d(f_n, f) \leq \sup_{m \geq n} d_{sup}^d(f_n, f_m)$. Now consider the following

$$\begin{split} &(f_n)_{n\in\mathbb{N}} \text{ is } d^d_{sup}\text{-}\text{Cauchy} \\ &\forall \varepsilon > 0, \ \exists \ n(\varepsilon) : d^d_{sup}(f_n, f_m) < \varepsilon & \forall n, m \ge n(\varepsilon) \\ &\forall \varepsilon > 0, \ \exists \ n(\varepsilon) : \sup_{m \ge n} d^d_{sup}(f_n, f_m) < \varepsilon & \forall n \ge n(\varepsilon) \\ &\forall \varepsilon > 0, \ \exists \ n(\varepsilon) : d^d_{sup}(f_n, f) < \varepsilon & \forall n \ge n(\varepsilon) \end{split}$$

thus as $n \to +\infty$, $f_n \to f$ with respect to d_{sup}^d .

And because $(f_n(x))_{n \in \mathbb{N}}$ was arbitrarily chosen, any d^d_{sup} -Cauchy sequence in $\mathcal{B}(X, Y)$ is d^d_{sup} convergent. It still remains to show that its d^d_{sup} -limit (say f) is in $\mathcal{B}(X, Y)$.

So, for any two points $f(x), f(y) \in Y$ and some $n \in \mathbb{N}$ we have that

$$\begin{split} \sup_{x,y\in X} d(f(x), f(y)) &\leq \sup_{x,y\in X} d(f_{n(\varepsilon)}(x), f(x)) + \sup_{x,y\in X} d(f_{n(\varepsilon)}(x), f(y)) \\ &\leq \sup_{x,y\in X} d(f_{n(\varepsilon)}(x), f(x)) + \sup_{x,y\in X} d(f_{n(\varepsilon)}(y), f(y)) + \sup_{x,y\in X} d(f_{n(\varepsilon)}(x), f_{n(\varepsilon)}(y)) \\ &\leq \sup_{x\in X} d(f_{n(\varepsilon)}(x), f(x)) + \sup_{y\in X} d(f_{n(\varepsilon)}(y), f(y)) + \sup_{x,y\in X} d(f_{n(\varepsilon)}(x), f_{n(\varepsilon)}(y)) \\ &= 2\sup_{x\in X} d(f_{n(\varepsilon)}(x), f(x)) + \sup_{x,y\in X} d(f_{n(\varepsilon)}(x), f_{n(\varepsilon)}(y)) \\ &= 2d_{\sup}^d(f_{n(\varepsilon)}, f) + \sup_{x,y\in X} d(f_{n(\varepsilon)}(x), f_{n(\varepsilon)}(y)) \end{split}$$

where $n(\varepsilon)$ is such that $d_{sup}^d(f_{n(\varepsilon)}, f) < \varepsilon$. This $n(\varepsilon)$ exists since $f_n \to f$ with respect to d_{sup}^d . Thus, the first additive term is bounded by 2ε . The second additive term is the maximum distance between all values of $f_{n(\varepsilon)}$ on Y. Since $f_{n(\varepsilon)} \in \mathcal{B}(X, Y)$ this number is also bounded. Thus, $\sup_{x,y\in X} d(f(x), f(y)) < +\infty$, which establishes that $f \in \mathcal{B}(X, Y)$, i.e. f is a bounded Y-valued function.

So for (Y, d) complete metric space, every d_{sup}^d -Cauchy sequence on $\mathcal{B}(X, Y)$ is d_{sup}^d -convergent in $\mathcal{B}(X, Y)$.

Thus, if (Y, d) is a complete metric space, then $(\mathcal{B}(X, Y), d^d_{sup})$ is also a complete metric space.