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Open and Closed Balls, Boundness, and Total Boundness

Exercise 1

Show that open and closed balls can be defined for pseudo-metric spaces.

Let (X, d) be a pseudo-metric space (i.e d is a pseudo-metric on X 6= ∅). For x ∈ X and ε > 0 we

can try and define d-open balls with center x and radius ε as

Od(x, ε) = {y ∈ X : d(x, y) < ε}

and d-closed balls with center x and radius ε as

Od[x, ε] = {y ∈ X : d(x, y) ≤ ε}

To argue that Od(x, ε) and Od[x, ε] can be defined when d is a pseudo-metric, it suffices to show

that they are non-empty sets for any x and ε. Notice the following, for d pseudo-metric on X

∀x ∈ X, ε > 0 ∃ y ∈ X : d(x, y) = 0 < ε

one of which is x itself, but there can also be other such y ∈ X with y 6= x.

So ∃ y ∈ X : y ∈ Od(x, ε), so Od(x, ε) 6= ∅. Analogously, Od[x, ε] 6= ∅. So open and closed balls

can be defined for pseudo-metric spaces.

Exercise 2

For the following (X, d) pairs, show that they constitute (pseudo-)metric spaces and define the unit

open balls on them and visualize them:

∗Please report any typos, mistakes, or even suggestions at zaverdasd@aueb.gr.
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1. X = R and d : X ×X → R, such that

d(x, y) =

0, x = y

c, x 6= y

, ∀x, y ∈ X

with c > 0.

It can be easily shown that d is a metric on X (discrete metric). Now, the unit open ball in

(X, d) is

Od(0, 1) = {x ∈ X : d(x, 0) < 1}

= {x ∈ X : d(x, 0) =

0, x = 0

c, x 6= 0

< 1}

and we need to examine cases for the values c may take.

If 0 < c < 1, then any element in X has a distance from 0 that is smaller than 1. So

Od(0, 1) = R, and if one were to visualize it on a graph of the real line it would cover the

entire graph.

If c ≥ 1, then all elements in X except for 0 have a distance from 0 that is greater than or

equal to 1. So Od(0, 1) = {0}, and it were to be visualized on a real line it would be a single

point at 0.

2. X = R2 and d : X ×X → R, such that

d(x, y) =
√

(x− y)′A(x− y), ∀x, y ∈ X

with A =

 1 0

0 0

.

It can be shown that properties i, iii, and iv hold for d on X. Observe that for any arbitrary
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x, y ∈ X

d(x, y) =
√

(x− y)′A(x− y)

=

√√√√√[ x1 − y1 x2 − y2

] 1 0

0 0

 x1 − y1

x2 − y2



=

√√√√√[ 1 · (x1 − y1) + 0 · (x2 − y2) 0 · (x1 − y1) + 0 · (x2 − y2)
] x1 − y1

x2 − y2



=

√√√√√[ x1 − y1 0
] x1 − y1

x2 − y2


=
√

(x1 − y1)2

= |x1 − y1|

which means that d(x, x) = 0 always, but also for x 6= y : x1 = y1 ⇒ d(x, y) = 0. So d is a

pseudo-metric on X.

If
→
0 =

 0

0

, the unit open ball in this space is

Od(
→
0 , 1) = {y ∈ R2 : dA(

→
0 , y) < 1}

= {y ∈ R2 : |0− y1| < 1}

= {y ∈ R2 : |y1| < 1}

= {y ∈ R2 : −1 < y1 < 1, y2 ∈ R}

= (−1, 1)× R

If it were to be visualized on a 2-D graph, it would cover the entire area between the vertical

lines at x1 = −1 and x1 = 1 (but not the lines themselves).

3. X = R3 and d : X ×X → R, such that

d(x, y) = max
{
|x1 − y1|,

√
(x2 − y2)2 + (x3 − y3)2

}
, ∀x, y ∈ X
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It can be shown that d is a metric on X. Observe that for any arbitrary x, y ∈ X

d(x, y) = max
{
|x1 − y1|,

√
(x2 − y2)2 + (x3 − y3)2

}
=

|x1 − y1|, |x1 − y1| ≥
√

(x2 − y2)2 + (x3 − y3)2√
(x2 − y2)2 + (x3 − y3)2, |x1 − y1| <

√
(x2 − y2)2 + (x3 − y3)2

If
→
0 =


0

0

0

, the unit open ball in this space is

Od(
→
0 , 1) = {x ∈ R3 : d(x,

→
0) < 1}

= {x ∈ R3 : max
{
|x1 − 0|,

√
(x2 − 0)2 + (x3 − 0)2

}
< 1}

= {x ∈ R3 :

|x1|,
√
x2

2 + x2
3 ≤ |x1|√

x2
2 + x2

3, |x1| <
√
x2

2 + x2
3

< 1}

= {x ∈ R3 : |x1| < 1 and
√
x2

2 + x2
3 < 1}

= (−1, 1)× {(κ, λ) ∈ R2 : κ <
√

1− λ2}

If it were to be visualized on a 3-D graph, it would look like the interior (without the borders)

of a cylinder centered at (0, 0, 0) with radius 1 and height 2. The circular faces would be

perpendicular to the first axis at x1 = −1 and x1 = 1.
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Exercise 3

Let (X, d) be a metric space and for some x, y ∈ X and ε > 0 let y ∈ Od(x, ε). Show that

∃ δ > 0 : Od(y, δ) ⊆ Od(x, ε).

Because y ∈ Od(x, ε) ⇐⇒ d(x, y) < ε ⇐⇒ 0 < ε− d(x, y). Choose δ := ε− d(x, y) > 0.

Then Od(y, δ) = {z ∈ X : d(y, z) < δ}. So

z ∈ Od(y, δ)

d(y, z) < δ

d(x, y) + d(y, z) < δ + d(x, y)

d(x, z) ≤ d(x, y) + d(y, z) < δ + d(x, y) = ε

d(x, z) < ε

z ∈ Od(x, ε)

i.e. z ∈ Od(y, δ)⇒ z ∈ Od(x, ε), which says that every element of Od(y, δ) also belongs to Od(x, ε),

so Od(y, δ) ⊆ Od(x, ε) for this choice of δ.

Exercise 4

Let (X, d) be a metric space and Y ⊆ X. Define d′ : Y ×Y → R such that d′ = d|Y×Y . Then (Y, d′)

is a metric subspace of (X, d). Show that Od′(x, ε) = Od(x, ε) ∩ Y and Od′ [x, ε] = Od[x, ε] ∩ Y .

Observe that arithmetically d′(x, y) = d(x, y), ∀x, y ∈ Y and that

Y ⊆ X ⇐⇒ (z ∈ Y ⇒ z ∈ X)

Furthermore

z ∈ Od(x, ε) ⇐⇒ z ∈ X and d(z, x) < ε

Thus

z ∈ O′d(y, ε) ⇐⇒ z ∈ Y and d′(z, x) < ε

⇒ z ∈ X and d(z, x) < ε

⇐⇒ z ∈ Od(x, ε)
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So z ∈ Od′(x, ε) ⇐⇒ (z ∈ Y and z ∈ Od(x, ε)) which means that Od′(x, ε) = Od(x, ε) ∩ Y .

Similarly, Od′ [x, ε] = Od[x, ε] ∩ Y .

Exercise 5

Is (0, 1) a bounded set?

Boundness is not a topological notion. A set can only be a bounded subset of some other set

with respect to a specified metric function. Furthermore, a set may be bounded or not bounded

depending on the chosen metric.

Exercise 6

Let d : R++ × R++ → R such that d(x, y) = |ln(x) − ln(y)|, ∀x, y ∈ R++ be a metric on R++. Is

(0, 1) a d-bounded subset of R++?

A set is a bounded subset in a metric space (i.e. with respect to a specific metric) if there exists an

open (closed) ball in the space that can cover it.

Let x ∈ R++, y ∈ (0, 1), and ε > 0. Define the open ball Od(x, ε). Choose a y in (0, 1) such that

y < x ⇐⇒ ln(y) < ln(x) ⇐⇒ |ln(x)− ln(y)| = ln(x)− ln(y) ⇐⇒ d(x, y) = ln(x)− ln(y)

For y to belong to Od(x, ε) it must hold that

d(x, y) < ε
y<x⇐⇒ ln(x)−ln(y) < ε ⇐⇒ −ln(y) < ε−ln(x) ⇐⇒ ln(y) > ln(x)−ε ⇐⇒ y > eln(x)−ε > 0

Thus, for y to belong to Od(x, ε), it must be bounded strictly away from 0. So for any arbitrary

d-open ball in R++, Od(x, ε), there always exists a 0 < y′ < eln(x)−ε that does not belong to it. So

(0, 1) cannot be a d-bounded subset of R++.

Exercise 7

Let (Y, d) be a metric space and X 6= ∅. For dsup : B(X, Y )× B(X, Y )→ R such that

dsup(f, g) = sup
x∈X

d(f(x), g(x)), ∀f, g ∈ B(X, Y )

show that:

1. (B(X, Y ), dsup) is a metric space.

For (B(X, Y ), dsup) to be a metric space, B(X, Y ) needs to be a non-empty set and dsup needs

to satisfy properties i-iv on B(X, Y ).
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First, notice that X and Y are non-empty, so we can define some “constant” function fc :

X → Y such that fc(x) = yc, ∀x ∈ X for some yc ∈ Y . Furthermore, observe that fc(X) =

{yc} ⊆ Y , i.e. the image of X through fc is a subset of Y (naturally) and it is also a singleton

set (it has only one element). Thus f(X) is a bounded subset of Y . That is, we have found

at least one example of a bounded function from X to Y . So B(X, Y ) is non-empty.

Secondly, since (Y, d) is a metric space, the properties i-iv hold for d on Y . So

i) dsup(f, g) = supx∈X d(f(x), g(x)) ≥ 0, ∀f, g ∈ B(X, Y )

ii) d(x, y) = 0 ⇐⇒ x = y,∀x, y ∈ X, so for some arbitrary f, g ∈ B(X, Y )

d(f(x), g(x)) = 0 ⇐⇒ f(x) = g(x)

sup
x∈X

d(f(x), g(x)) = 0 ⇐⇒ f(x) = g(x), ∀x ∈ X

sup
x∈X

d(f(x), g(x)) = 0 ⇐⇒ f = g

dsup(f, g) = 0 ⇐⇒ f = g

And since f and g were chosen arbitrarily, dsup(f, g) = 0 ⇐⇒ f = g, ∀f, g ∈ B(X, Y ).

iii) dsup(f, g) = supx∈X d(f(x), g(x)) = supx∈X d(g(x), f(x)) = dsup(g, f), ∀f, g ∈ B(X, Y )

iv) dsup(f, g) = supx∈X d(f(x), g(x)) ≤ supx∈X

(
d(f(x), h(x)) + d(h(x), g(x))

)
≤ supx∈X d(f(x), h(x))+supx∈X d(h(x), g(x)) = dsup(f, h)+dsup(h, g), ∀f, g, h ∈ B(X, Y )

So (B(X, Y ), dsup) is a metric space.

2. If (Y, d) is bounded, then (B(X, Y ), dsup) is also bounded.

(Y, d) being bounded means that there exist an x′ ∈ Y and an ε > 0 such that Y ⊆ Od(x′, ε),

which by definition means that d(x′, y) < ε, ∀y ∈ Y . Define the function fc ∈ B(X, Y ) such

that fc(x) = x′,∀x ∈ X. Also don’t forget that

f ∈ B(X, Y )⇒ f : X → Y ⇒ f(x) ∈ Y, ∀x ∈ X

So ∀f ∈ B(X, Y )

dsup(fc, f) = sup
x∈X

d(fc(x), f(x)) = sup
x∈X

d(x′, f(x)) ≤ sup
x∈X

ε = ε

So dsup(fc, f) < ε, ∀f ∈ B(X, Y ) ⇐⇒ f ∈ Odsup(fc, ε), ∀f ∈ B(X, Y ) and B(X, Y ) ⊆
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Odsup(fc, ε) so B(X, Y ) is dsup-bounded.

Exercise 8

Let X ⊆ RN with N ∈ N∗ and d : X ×X → R such that d(x, y) =
(∑N

i=1 |xi − yi|2
) 1

2
, ∀x, y ∈ X

be the Euclidean metric on X. Show that d-boundeness in X is sufficient for d-total boundeness in

X.

(Hint: Consider a d-bounded set in X and show that the ball that covers it is d-totally bounded.)

For A to be d-totally bounded subset of X, there must exist for any ε > 0 a finite number of

d-open (d-closed) balls in X that collectively include every element of A. This is called a finite

cover of A.

Let A be a d-bounded subset of X. Then ∃ x0 ∈ RN , δ > 0 : A ⊆ Od[x0, δ].

We will prove that Od[x0, δ] is d-totally bounded, thus A is also d-totally bounded as a subset of

Od[x0, δ].

For all ε ≥ δ > 0 all of Od[x0, δ] can be covered by one d-closed ball, Od[x0, ε].

For any 0 < ε < δ. Notice that every dimension of Od[x0, δ] is a subset of [x0i − δ, x0i + δ], where

x0i is the i-th element of x0, i.e.

Od[x0, δ] ⊆ [x01 − δ, x01 + δ]× [x02 − δ, x02 + δ]× ...× [x0N − δ, x0N + δ]

Let m ∈ N∗ be such that m >
2Nδ

ε
, then each of those supersets can be divided into exactly m

subintervals like so

[x0i − δ, x0i + δ] =

[
x0i − δ, x0i − δ +

2δ

m

]⋃
[
x0i − δ +

2δ

m
, x0i − δ + 2

2δ

m

]⋃
...[
x0i + δ − 2

2δ

m
, x0i + δ − 2δ

m

]⋃
[
x0i + δ − 2δ

m
, x0i + δ

]

for all i ∈ {1, 2, ..., N}.

By restricting each dimension to one of those subintervals we can construct up to mN distinct

subsets of X (because we have m choices for each of the N dimensions). Those constructs are
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analogous to N -dimensional cubes with centers xj such that

xji =

(x0i + sji) +

(
x0i + sji +

2δ

m

)
2

= x0i + sji +
δ

m

with sji ∈
{
−δ,−δ +

2δ

m
, ..., δ − 2

2δ

m
, δ − 2δ

m

}
the appropriate step to give the selected interval for

the i-th dimension of xj.

It can be shown that between all elements of those such cubes their ”corner” elements have the

maximum d-distance from their centers xj and that is equal to
δ
√
N

m
(proof at the end of these

notes). Furthermore, observe that

0 <
δ
√
N

m
≤ δN

m
≤ 2δN

m
< ε

So each of those cube sets can be “inscribed” into a d-closed ball, Od[xj, ε]. Remember that there

are exactly mN such cube sets, i.e. there is a finite number of them and they all collectively cover

Od[x0, δ]. Thus the finitely many balls that cover the collection of the cube sets also cover Od[x0, δ].

Remember that ε > 0 was arbitrarily chosen, so there exists a finite cover of Od[x0, δ] for all ε. So

Od[x0, δ] is a d-totally bounded subset of X and because A ⊆ Od[x0, δ] it is also d-totally bounded.

So d-boundness in X ⊆ RN is sufficient for d-total boundness in X.

We can generalize this result and say that boundness in finite Euclidean spaces is equivalent to

total boundness.

It is worth noticing that mN =
(

2Nδ
ε

)N
gives the upper bound of the covering number of the chosen

d-bounded set, A, and that it is decreasing in ε and increasing in N .

Exercise 9

Let X = {(xn)n∈N∗ : xn ∈ R,
∑∞

i=1 x
2
i < +∞} (i.e. X is the set of square summable real sequences)

and d : X ×X → R such that d(x, y) = (
∑∞

i=1 |xi − yi|2)
1
2 , ∀x, y ∈ X be a metric on X. Show that

d-boundeness in X is not sufficient for d-total boundeness in X.

(Hint: Consider the sequence 0 = {0}n∈N∗ ∈ X and the d-closed unit ball centered at it. Use Riesz’s

Lemma and the Pigeonhole Principle.)

We can get an intuitive understanding of why in an infini-dimensional space (Hilbert space) there

can be no finite cover of any of its bounded subsets by studying the behaviour as N → ∞ of the

upper bound of the covering number of such a set as it is given by the solution of exercise 8 for
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ε < δ.

lim
N→∞

mN = lim
N→∞

(
2Nδ

ε

)N
= lim

N→∞
e
N ·ln

2Nδ

ε


= lim

N→∞
eN ·ln(N)+N ·ln(2)+N ·(ln(δ)−ln(ε)) ε<δ= ∞

In a way, this is total boundness getting “lost in the limit”.

However, the above is not a complete proof. We will prove that d-boundness in X does not

necessarily imply d-total boundness by proving that we can construct a counter-example (and we

will briefly see a counter-example after the proof).

Denote by 0 = {0}n∈N∗ the sequence with elements all equal to zero and consider the d-closed

unit ball, Od[0, 1], which has an infinite number of elements. Since Od[0, 1] is a d-closed ball, it is

d-bounded (by itself).

For any ε ≥ 1 obviously Od[0, 1] can be covered by one d-closed ball, Od[0, ε].

For any 0 < ε < 1 we will prove that we can construct a counter-example (and one such counter-

example is given after the proof). We will use Riesz’s Lemma to progressively construct an infinite

set of sequences in Od[0, 1] such that for each sequence, say xn, it is d(xn, xm) > ε, ∀m < n. For a

proof of Riesz’s Lemma see Ch. 12 p. 221 of O’Searcoid’s textbook.

Choose a sequence x1 ∈ Od[0, 1] and without loss of generality, let d(0, x1) = 1. Denote by X1 the

set of all elements of X that fall on the line defined by 0 and x1. (X1, d) is a linear subspace of

(X, d) because all linear combinations of elements of X1 also belong in X1. X1 6⊂ Od[0, 1], but since

(X1, d) is linear, by Riesz’s Lemma

∃ x2 ∈ X : d(0, x2) = 1|d(x2, x) > ε, ∀x ∈ X1

for the chosen ε. This x2 is not on the line given by X1, but is an element of Od[0, 1] (because by

Riesz’s Lemma it is of unit norm). Furthermore, it is such that d(x2, x1) > ε.

Now denote by X2 the set of all elements of X that fall on the 2D surface defined by 0, x1, and x2.

(X2, d) is also a linear subspace of (X, d), and by Riesz’s Lemma

∃ x3 ∈ X : d(0, x3) = 1|d(x3, x) > ε, ∀x ∈ X2

for the chosen ε, and this x3 is not on the 2D surface given by X2. Now x3 ∈ Od[0, 1] and

d(x3, x1) > ε and d(x3, x2) > ε.

We can then denote by X3 the 3D space defined by 0, x1, x2, and x3, which again defines a linear

subspace of (X, d), and find a x4 whose d-distance from all the previous sequences is greater than
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ε.

And so on...

Generally, in the n-th step we can denote by (Xn, d) some linear subspace of (X, d) that is defined

by all the previous sequences and 0 and find a sequence xn+1 ∈ Od[0, 1] such that its distance from

all of them is greater than ε. Since X has an infinite number of dimensions, we can find an infinite

number of such sequences in X.

So, for 0 < ε < 1, consider the set of all these sequences

A = {xn ∈ Od[0, 1] : n ∈ N∗, d(xm, xn) > ε ∀m 6= n ∈ N}

Suppose that all other elements of Od[0, 1] can collectively be covered by a finite number of balls.

For Od[0, 1] to be d-totally bounded, A must also be covered by a finite number of balls.

Let n be the number of elements in A and 0 < m < ∞ a finite number of balls of radius ε with

which we wish to cover A. By the Pigeonhole Principle at least one ball must include at least k

elements, where it holds for n, m, and k that

n = km+ 1 ⇐⇒ k =
n− 1

m

But because n = ∞ ⇒ k = ∞ > 1 (i.e. at least one ball must contain an infinte number of

elements). However, all elements of A are such that the d-distance between them is greater than

ε which is the radius of the balls we are using. So no ball can cover more than one element.

Contradiction!

Thus A is not d-totally bounded and Od[0, 1] is not d-totally bounded and d-boundeness in X is

not sufficient for d-total boundness in X.

An example of an infinite set of sequences in Od[0, 1] that are “bounded away” from each other is

the following set of “basis sequences” in X

{bn : bni =

 0 i 6= n

1 i = n
, ∀n ∈ N∗}

Additionally, ponder on why the approach taken for this proof would fail to show that d-bounded

subsets of X are not d-totally bounded when N <∞ (i.e. in Euclidean spaces).

Exercise 10
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Let X = {f : [0, 1] → R|
∫ 1

0
f 2(x)dx < +∞} be the set of square integrable functions from [0, 1]

to R. Consider the metric function d(f, g) :=
(∫ 1

0
(f(x)− g(x))2dx

) 1
2

on X. If 0 : [0, 1] → R is a

function in X such that 0(x) := 0 ∀x ∈ [0, 1], consider Od[0, 1] and show that it is not d-totally

bounded.

Sketch of proof...

Take the general intuition behind the proof in Exercise 9, which involves a countably infinite carrier

set. Loosely speaking, because there is an infinite number of dimensions in the set that is being

examined, we can always “escape” away from any proposed finite set of covers by moving towards

other dimensions. We can work similarly for an uncountably infinite carrier set and see that a

counter-example can be constructed.

Exercise 11

Let (Xi, di) be metric spaces ∀i ∈ I with I a finite index set. For the cartesian productX :=
∏

i∈I Xi

there can be defined the following structured sets (X, dΠ) with dΠ ∈ {dΠmax , dΠI , dΠ| |} and dΠ are

defined as

dΠmax = max
i∈I

di

dΠI =

(∑
i∈I

d2
i

) 1
2

dΠ| | =
∑
i∈I

di

and are appropriate metric functions on X. Let Ai ⊆ Xi,∀i ∈ I and A :=
∏

i∈I Ai, which implies

that A ⊆ X. Show that A is a dΠ-totally bounded subset of X iff Ai are di-totally bounded subsets

of Xi ∀i ∈ I, for each of the three dΠ defined above.

Because dΠmax ≤ dΠI ≤ dΠ| | ≤ ndΠmax it suffices to show that

A is dΠmax-totally bounded subset of X ⇐⇒ Ai is di-totally bounded subset of Xi ∀i ∈ I

where n ∈ N∗ is the number of elements in I, and the total boundeness property for a specific set

(say A) is inherited by dΠI and dΠ| | from dΠmax , and by dΠmax from the other two.

A compact illustration of the proof is the following (statements above the ⇐⇒ sign describe how
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to move forward, while statements below show the way back)

∀i ∈ I, Ai is di-totally bounded subset of Xi ⇐⇒

∀i ∈ I, ∀εi > 0 ∃CAi,εi := {Odi(xij, εi), xij ∈ Xi, j ∈ Ii finite} : Ai ⊆
⋃
j∈Ii

Odi(xij, εi) ⇐⇒

∀i ∈ I,∀εi > 0 ∃xij ∈ Xi, j ∈ Ii finite : ∀yi ∈ Ai, yi ∈ Odi(xij, εi) ⇐⇒

∀i ∈ I,∀εi > 0 ∃xij ∈ Xi, j ∈ Ii finite : ∀yi ∈ Ai, di(xij, yi) < εi ⇐⇒
Choose εi=ε

∀i ∈ I,∀εi > 0 ∃xij ∈ Xi, j ∈ Ii finite : ∀yi ∈ Ai,max
i∈I

di(xij, yi) < max
i∈I

εi
ε:=maxi∈I εi,I=

⋃
i∈I Ii⇐⇒

Choose Ii=I

∀ε > 0 ∃xj ∈ X, j ∈ I finite : ∀y ∈ A, dΠmax(xj, y) < ε ⇐⇒

∀ε > 0 ∃xj ∈ X, j ∈ I finite : ∀y ∈ A, y ∈ OdΠmax
(xj, ε) ⇐⇒

∀ε > 0 ∃CA,ε := {OdΠmax
(xj, ε), xj ∈ X, j ∈ I finite} : A ⊆

⋃
j∈I

OdΠmax
(xj, ε) ⇐⇒

A is dΠmax-totally bounded subset of X

More verbosely, if Ai are di-totally bounded subsets of Xi for all i ∈ I, then there exist ∀i finite

di-open covers for any εi > 0 (we choose a different εi for each Ai).

That means that each element, yi, of each Ai belongs to some di-open ball with radius εi and the

number of these balls (as well as their centres, xij) is finite for all i.

We construct elements of X and A using the above xij and yi. If we consider the dΠmax metric on

X, we can see that the distance of each y = (yn)n∈I in A from each xj = (xnj)n∈I in X, given by

dΠmax , is equal to the greatest distance between their elements, given by the corresponding di, i.e.

∀xj, y

dΠmax(xj, y) = max
i∈I

di(xij, yi)

So we can construct dΠmax-open balls using the xj-s as centres and setting ε := maxi∈I as their radii

and cover all of A with them. Their number is finite.

Thus, we have constructed a finite dΠmax-open cover of A for all ε > 0 using the fact that Ai are

di-totally bounded subsets of Xi for all i ∈ I. So A is a dΠmax-totally bounded subset of X.

Conversely, if A is a dΠmax- totally bounded subset of X, then for all ε > 0 there exists a finite cover

of dΠmax-open balls with radius ε, such that ∀y ∈ A, y belongs to one of these (finitely many) balls.

By definition of dΠmax , the above means that each element of y, yi, will belong to a di-open ball

of radius ε. For all i the union of these balls covers each Ai and their number is the same as the

number of balls used to cover A, which is finite.
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Thus we have constructed finite di-open covers of Ai and Ai are di-totally bounded subsets of Xi

for all i.

A few remarks:

� For a subset in a metric space to be totally bounded, a finite cover must exist for all radii.

Make sure you see that this is the case here.

� Pay attention to the possibility that the index sets of each cover for the various i may not

include the same indices. Thus, when constructing the index set for the cartesian product,

we use their union (I =
⋃
i∈I Ii). This means that we may need to use some xij that are not

necessary to cover Ai, but are needed to construct the xj that define the balls that cover A.

E.g. I = {1, 2} and for some ε1, ε2 > 0 the index sets of the finite covers of A1 and A2

are I1 = {1, 2} and I2 = {1, 2, 3}. Then we need I = {1, 2, 3} to construct the cover of

A = A1 × A2 of radius ε = max{ε1, ε2}.

� The minimum effective size of a finite cover’s index set depends on the size of the radius (and

will typically converge to infinity as a radius approaches zero). But for all strictly positive

radii, these index sets are finite.

Exercise 12

Let d1 and d2 be both metrics on a non empty set X such that d1 ≤ cd2 with c > 0. Show that:

1. for x ∈ X and 0 < ε then Od2(x, ε) ⊆ Od1(x, c · ε).

Let y ∈ Od2(x, ε), then

d2(x, y) < ε

c · d2(x, y) < c · ε

d1(x, y) ≤ c · d2(x, y) < c · ε

d1(x, y) < c · ε

which means that y ∈ Od1(x, c · ε). So Od2(x, ε) ⊆ Od1(x, c · ε).

2. if A ⊆ X is d2-bounded, then it is d1-bounded.

14



Since A is d2-bounded, ∃ x ∈ X, ε > 0 : A ⊆ Od2(x, ε). Set δ := c · ε⇒ δ > 0. So

A ⊆ Od2(x, ε)

A ⊆ Od2(x, ε) ⊆ Od1(x, c · ε)

A ⊆ Od1(x, c · ε)

A ⊆ Od1(x, δ)

So there ∃ x ∈ X, δ > 0 : A ⊆ Od1(x, δ) and A is d1-bounded.

3. if there exists c′ > 0 such that c′d2 ≤ d1 ≤ cd2, then A ⊆ X is d1-bounded iff it is d2-bounded.

Let A be d2-bounded. Since ∃ c > 0 : d1 ≤ c · d2, it follows that A is d1-bounded. For this

reason, if A is not d1-bounded, it cannot be d2-bounded.

Let A be d1-bounded. Since ∃ c′ > 0 : d2 ≤
1

c
· d2, it follows that A is d2-bounded. For this

reason, if A is not d2-bounded, it cannot be d1-bounded.

So if ∃ c > 0, c′ > 0 : c′d2 ≤ d1 ≤ cd2, A is d1-bounded iff it is d2-bounded.

4. if A ⊆ X is d2-totally bounded, then it is d1-totally bounded.

Since A is d2-totally bounded, there must exist for any given radius a finite collection of d-open

(d-closed) balls in X that collectively cover A (i.e. include all of its elements). That is called

a finite cover of A of said radius.

Let ε > 0 be an arbitrary positive real number, then

∃ CA, ε
c

:=
{
Od2

(
xi,

ε

c

)
, xi ∈ X, i ∈ I finite

}
: A ⊆

⋃
i∈I

Od2

(
xi,

ε

c

)

where CA, ε
c

is one such finite cover of A of radius
ε

c
(and it is not necessarily unique).

Since d1 ≤ c · d2 ⇒ Od2

(
xi,

ε

c

)
⊆ Od1 (xi, ε) , ∀i ∈ I. So this collection of d1-open balls of

radius ε covers the corresponding collection of d2-open balls of radius
ε

c
, which also covers A.

Notice that we defined as many d1-open balls as d2-open balls, which is as many xi are defined

by I, which is finite. So for some ε > 0 there exists a number of d1-open balls of radius ε that

cover A. Since ε is arbitrary, this holds for any ε > 0. So A is d1-totally bounded.

5. if there exists c′ > 0 such that c′d2 ≤ d1 ≤ cd2, then A ⊆ X is d1-totally bounded iff it is

d2-totally bounded.
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Let A be d2-totally bounded. Since ∃ c > 0 : d1 ≤ c·d2, it follows that A is d1-totally bounded.

For this reason, if A is not d1-totally bounded, it cannot be d2-totally bounded.

Let A be d1-totally bounded. Since ∃ c′ > 0 : d2 ≤
1

c
· d2, it follows that A is d2-totally

bounded. For this reason, if A is not d2-totally bounded, it cannot be d1-totally bounded.

So if ∃ c > 0, c′ > 0 : c′d2 ≤ d1 ≤ cd2, A is d1-totally bounded iff it is d2-totally bounded.
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Useful Theorems and Results

Diagonal of a Euclidean N-cube

Let C be a “cube” in a Euclidean space with side length α > 0. That is, if x ∈ RN is the “center”

of C, then

C =
[
x1 −

α

2
, x1 +

α

2

]
×
[
x2 −

α

2
, x2 +

α

2

]
× ...×

[
xN −

α

2
, xN +

α

2

]
Then the maximum distance from this center x is equal to

max
y∈C

d(x, y) = max
y∈C

√√√√ N∑
i=1

|xi − yi|2

= max
{yi∈[xi−α2 ,xi+α

2 ]}N
i=1

√√√√ N∑
i=1

|xi − yi|2

=

√√√√ N∑
i=1

∣∣∣xi − xi ± α

2

∣∣∣2

=

√√√√ N∑
i=1

∣∣∣±α
2

∣∣∣2

=
α

2

√√√√ N∑
i=1

1

=
α

2

√
N

and corresponds to all the “corners” of this N -cube.

Riesz’s Lemma

For (X, d) normed vector space (i.e. the metric d is a p-norm), (S, d|S×S) non-dense linear subspace

of (X, d), and 0 < ε < 1, there exists x ∈ X of unit norm (i.e. d(0, x) = ||x||p = 1) such that

d(x, s) ≥ 1− ε, ∀s ∈ S.

Pigeonhole Principle

For n,m, k ∈ N with n = km + 1, if we distribute n elements across m sets then at least one set

will contain at least k + 1 elements.
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