
Athens University of Economics and Business
Department of Economics

Postgraduate Program - MSc in Economic Theory
Course: Mathematical Economics (Mathematics II)
Prof: Stelios Arvanitis
TA: Dimitris Zaverdas∗

Semester: Spring 2019-2020
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Metric functions and metric spaces

Exercise 1

Is d(x, y) = |x− y| a metric?

Metric spaces are defined by pairs of non-empty sets and metric functions.

A function can only be a metric function over a specified non-empty carrier set. No function can be a metric on its

own merit. Here no such set is specified, so d is not a metric.

Furthermore, the formal way to define a function requires that its domain be specified. This is not the case here, so

d is not even a properly defined function, to begin with.

Exercise 2

Is the function d : X ×X → R such that d(x, y) = |x− y|, ∀x, y ∈ X a metric on the non-empty set X ⊆ R?

For d to be a suitable metric on the X, it needs to be a function such that d : X ×X → R with X non-empty, which

satisfies the following properties:

i) d(x, y) ≥ 0,∀x, y ∈ X (positivity)

ii) d(x, y) = 0 ⇐⇒ x = y,∀x, y ∈ X (separateness)

iii) d(x, y) = d(y, x),∀x, y ∈ X (symmetry)

iv) d(x, y) ≤ d(x, z) + d(z, y),∀x, y, z ∈ X (subadditivity/triangle inequality)

d is indeed a function such that d : X ×X → R with X non-empty. So we need to test whether every property (i-iv)

holds for all elements of X:

i) d(x, y) = |x− y| ≥ 0,∀x, y ∈ X

ii) d(x, y) = 0 ⇐⇒ |x− y| = 0 ⇐⇒ x = y,∀x, y ∈ X

iii) d(x, y) = |x− y| = |y − x| = d(y, x),∀x, y ∈ X

iv) d(x, y) = |x− y| = |x− z + z − y| ≤ |x− z|+ |z − y| = d(x, z) + d(z, y),∀x, y, z ∈ X

(iv holds because of the triangle inequality for the real numbers)

So d is a suitable metric function on X.
∗Please report any typos, mistakes, or even suggestions at zaverdasd@aueb.gr.

∗∗Some exercises were collected and compiled by Dr. Alexandros Papadopoulos.
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Exercise 3

Suppose that (Y, d) is a metric space. Let f : X → Y be an injection from X to Y . Define df : X ×X → R such

that df (x, y) = d(f(x), f(y)), ∀x, y ∈ X. Is (X, df ) a metric space?

Since (Y, d) is a metric space, d is a metric on Y and satisfies the properties i-iv for all elements of Y .

f being injective means that every element of X is mapped onto an element of Y through f uniquely. No two

elements of X have the same image on Y through f . Symbolically that means f(x) = f(y) ⇒ x = y, ∀x, y ∈ X.

Naturally, also x = y ⇒ f(x) = f(y), ∀x, y ∈ X. So f(x) = f(y) ⇐⇒ x = y, ∀x, y ∈ X.

For the properties i-iv for the pair (X, df ):

i) df (x, y) = d(f(x), f(y))
i
≥ 0, ∀f(x), f(y) ∈ X

ii) df (x, y) = 0 ⇐⇒ d(f(x), f(y)) = 0
ii⇐⇒ f(x) = f(y) ⇐⇒ x = y, ∀x, y ∈ X

iii) df (x, y) = d(f(x), f(y))
iii
= d(f(y), f(x)) = df (y, x), ∀x, y ∈ X

iv) df (x, y) = d(f(x), f(y))
iv
≤ d(f(x), f(z)) + d(f(z), f(y)) = df (x, z) + df (z, y), ∀x, y, z ∈ X

So df is a suitable metric on X and (X, df ) is a metric space.

Exercise 4

Study whether or not the following pairs of sets and functions constitute metric spaces:

1. X 6= ∅ and d(x, y) =

0, x = y

c, x 6= y

, ∀x, y ∈ X, with c > 0 (Discrete distance)

It can be shown that (X, d) is indeed a metric space.

2. X = R and d(x, y) = |ex − ey|, ∀x, y ∈ X [Sutherland Ex. 5.4 (b)]

It can be shown that (X, d) is indeed a metric space.

3. X = ∅ and d(x, y) = |x− y|, ∀x, y ∈ X

Metric spaces can be defined for non-empty carrier sets. However, X is empty, thus (X, d) cannot be a metric

space.

4. X = R and d(x, y) = ln(|ex − ey|), ∀x, y ∈ X

Since x, y ∈ R there exist x, y such that |x − y| < 1 ⇒ ln(|x − y|) < 0, so d does not satisfy property i on X

and (X, d) is not a metric space.

5. X = [−1, 1] and d(x, y) = |x2 − y2|, ∀x, y ∈ X

Observe that d(1,−1) = 0 but 1 6= −1. So d does not satisfy property ii on X and (X, d) is not a metric space.

6. X = R and d(x, y) = |x− y3|, ∀x, y ∈ X

Let, for example, x = 2 and y = 3. Then d(x, y) = 7 but d(y, x) = 1. So d does not satisfy property iii on X

and (X, d) is not a metric space.
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7. X = [0, 1] and d(x, y) = |x− y|2, ∀x, y ∈ X

Let x = 0, y = 1, and z = 1
2 . While for the usual metric on subsets of R (i.e. the absolute difference) the

triangle inequality is obviously satisfied, this is not necessarily the case when we take its square. d(x, y) = 1,

d(x, z) = 1
4 , and d(y, z) = 1

4 . So there exist x, y, z ∈ X such that d(x, y) > d(x, z) + d(y, z). So d does not

satisfy property iv on X and (X, d) is not a metric space.

8. X = RN and d(x, y) =
(∑N

i=1 |xi − yi|p
) 1
p

, ∀x, y ∈ X, with p,N ∈ N∗ (Minkowski distance)

The Minkowski metric is a metric that generalizes many other metrics in normed vector spaces (such as the

Manhattan metric for p = 1, the Euclidean metric for p = 2, and the Chebyshev metric as p→ +∞).

To prove that d is a metric on RN , we need to show that it satisfies the properties of metric functions, i-iv, on

RN .

i) For all x, y ∈ RN and xi, yi ∈ R the i-th elements of x and y, respectively, we have

|xi − yi| ≥ 0,∀i ∈ {1, 2, ..., N} ⇐⇒

|xi − yi|p ≥ 0,∀i ∈ {1, 2, ..., N} ⇐⇒
N∑
i=1

|xi − yi|p ≥ 0 ⇐⇒

(
N∑
i=1

|xi − yi|p
) 1
p

≥ 0 ⇐⇒

d(x, y) ≥ 0

ii) For all x, y ∈ RN

d(x, y) = 0 ⇐⇒(
N∑
i=1

|xi − yi|p
) 1
p

= 0 ⇐⇒

N∑
i=1

|xi − yi|p = 0 ⇐⇒

|xi − yi|p = 0,∀i ∈ {1, 2, ..., N} ⇐⇒ (sum of non-negative real numbers)

|xi − yi| = 0,∀i ∈ {1, 2, ..., N} ⇐⇒

xi = yi, ∀i ∈ {1, 2, ..., N} ⇐⇒

x = y

iii) d(x, y) =
(∑N

i=1 |xi − yi|p
) 1
p

=
(∑N

i=1 |yi − xi|p
) 1
p

= d(y, x), ∀x, y ∈ RN

iv) To show subadditivity we will employ Hölder’s inequality. Because of the restriction on α 6= 1 and β 6= 1

for Hölder’s inequality to hold, we need to consider the case of p = 1 separately.
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Case: p = 1

If p = 1, then d(x, y) =
∑N
i=1 |xi−yi|, ∀x, y ∈ RN and subadditivity can be shown easily using the triangle

inequality for the real numbers.

Case: p > 1

For any x, y, z ∈ RN such that x = y we want to show that

d(x, y) ≤ d(x, z) + d(z, y)
ii⇐⇒ 0 ≤ d(x, z) + d(z, y)

i⇐⇒ d(x, z) ≥ 0 and d(z, y) ≥ 0

which trivially holds for all z ∈ RN .

For any x, y, z ∈ RN such that x 6= y, consider the value of d(x, y) raised to the power p

(d(x, y))
p

=

N∑
i=1

|xi − yi|p

=

N∑
i=1

|xi − zi + zi − yi|p

=

N∑
i=1

|xi − zi + zi − yi||xi − zi + zi − yi|p−1

≤
N∑
i=1

(|xi − zi|+ |zi − yi|)|xi − zi + zi − yi|p−1

=

N∑
i=1

|xi − zi||xi − zi + zi − yi|p−1 +

N∑
i=1

|zi − yi||xi − zi + zi − yi|p−1

=

N∑
i=1

|xi − zi||xi − yi|p−1 +

N∑
i=1

|zi − yi||xi − yi|p−1

We can apply Hölder’s inequality for each of the two sums above. Choose α = p and find β as

1

p
+

1

β
= 1 ⇐⇒ 1

β
= 1− 1

p
⇐⇒ β =

1

1− 1

p

⇐⇒ β =
p

p− 1

So now by Hölder’s inequality we have

(d(x, y))
p ≤

(
N∑
i=1

|xi − zi|p
) 1
p
(

N∑
i=1

(
|xi − yi|p−1

) p
p−1

) p−1
p

+

(
N∑
i=1

|zi − yi|p
) 1
p
(

N∑
i=1

(
|xi − yi|p−1

) p
p−1

) p−1
p

=

( N∑
i=1

|xi − zi|p
) 1
p

+

(
N∑
i=1

|zi − yi|p
) 1
p

( N∑
i=1

(
|xi − yi|p−1

) p
p−1

) p−1
p

=

( N∑
i=1

|xi − zi|p
) 1
p

+

(
N∑
i=1

|zi − yi|p
) 1
p

( N∑
i=1

|xi − yi|p
) p−1

p

= (d(x, z) + d(z, y)) (d(x, y))
p−1
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Because x 6= y ⇐⇒ d(x, y) 6= 0, by multiplying both sides by (d(x, y))
1−p

we get

d(x, y) ≤ d(x, z) + d(z, y)

as required.

So (X, d) constitutes a metric space.

Exercise 5

For any metric space (X, d) and ∀x, y, z, w ∈ X, show that:

1. |d(x, z)− d(z, y)| ≤ d(x, y) [O’Searcoid Theorem 1.1.2, Sutherland Ex. 5.1]

It holds for all x, y, z ∈ X that

|d(x, z)− d(z, y)|
iv
≤ |d(x, y) + d(y, z)− d(z, y)|
iii
= |d(x, y)|
i
= d(x, y)

2. |d(x, y)− d(z, w)| ≤ d(x, z) + d(y, w) [O’Searcoid Q 1.2, Sutherland Ex. 5.2]

For all x, y, z, w ∈ X it holds that

|d(x, y)− d(z, w)|
iv
≤ |d(x, z) + d(z, y)− d(z, w)|
i
≤ d(x, z) + |d(z, y)− d(z, w)|
iii,1

≤ d(x, z) + d(y, w)

Exercise 6

Let X be some non-empty set. Let d1, d2, and ds be distance functions on X such that ds = d1 + d2 Determine

whether the following statements always hold (or under which conditions they could hold):

1. If d1 and d2 are metrics on X, ds is a metric on X.

i) ds(x, y) = d1(x, y) + d2(x, y)
i
≥ 0, ∀x, y ∈ X as the sum of two non-negative values.

ii) ds(x, y) = 0 ⇐⇒ d1(x, y) + d2(x, y) = 0
i⇐⇒ d1(x, y) = 0 and d2(x, y) = 0

ii⇐⇒ x = y, ∀x, y ∈ X

iii) ds(x, y) = d1(x, y) + d2(x, y)
iii
= d1(y, x) + d2(y, x) = ds(y, x), ∀x, y ∈ X

iv) We have that for all x, y, z,∈ X

ds(x, y) = d1(x, y) + d2(x, y)

iv
≤ d1(x, z) + d1(z, y) + d2(x, z) + d2(z, y)

= d1(x, z) + d2(x, z) + d1(z, y) + d2(z, y)

= ds(x, z) + ds(z, y)
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So ds is a metric on X.

2. If d1 is a metric and d2 a pseudo-metric on X, ds is a metric on X.

For i, iii, and iv see 1. For ii:

Let x, y ∈ X such that x = y. Then

ds(x, y) = d1(x, y) + d2(x, y) = 0 + 0 = 0

Let x, y ∈ X such that x 6= y. Then d1(x, y) > 0 and d2(x, y) ≥ 0 thus

ds(x, y) = d1(x, y) + d2(x, y) > 0

So ds is a metric on X.

3. If d1 and d2 are pseudo-metrics on X, ds is a metric on X.

For i, iii, iv, see 1. For ii:

For x, y ∈ X such that x = y, the same logic as in 2. holds.

For x, y ∈ X such that x 6= y, if d1 and d2 are never simultaneously zero, then ds is a metric on X. If not, then

ds is a pseudo-metric on X.

Exercise 7

Consider a finite index set I = {1, 2, ..., n} with n ∈ N∗ and for each of its elements, i, the functional metric spaces

(B(Xi,R), disup) with

disup(fi, gi) = sup
x∈Xi

|fi(x)− gi(x)|, ∀fi, gi ∈ B(Xi,R)

Consider the product set BΠ :=
∏
i∈I B(Xi,R) with f := (fi)i∈I ∈ BΠ and the function dΠ : BΠ×BΠ → R such that

dΠ(f, g) = max
i∈I

sup
x∈Xi

|fi(x)− gi(x)|, ∀f, g ∈ BΠ

Is (BΠ, dΠ) a metric space?

Since all (B(Xi,R), disup), ∀i ∈ I are metric spaces, all disup satisfy properties i-iv on B(Xi,R) for all i.

Notice that dΠ(f, g) = maxi∈I supx∈Xi |fi(x)− gi(x)| = maxi∈I d
i
sup(fi, gi). We will prove that this generalized case

is a metric on BΠ irrespective of the functional form of the disup and thus drive the result.

Note that if f ∈ BΠ then fi ∈ f ⇒ fi ∈ B(Xi,R), ∀i ∈ I (i.e. the i-th element of f always belongs to B(Xi,R)).

This guaranties that results that hold for elements of B(Xi,R) also hold for elements of f . So

i) Notice that for all elements of f, g ∈ BΠ ⇒ fi, gi ∈ B(Xi,R), ∀i ∈ I it holds that

disup(fi, gi) ≥ 0, ∀i ∈ I

max
i∈I

disup(fi, gi) ≥ 0

dΠ(f, g) ≥ 0

6



ii) f = g ⇐⇒ fi = gi, ∀i ∈ I ⇐⇒ disup(fi, gi) = 0, ∀i ∈ I ⇐⇒ maxi∈I d
i
sup(fi, gi) = 0 ⇐⇒

dΠ(f, g) = 0, ∀f, g ∈ BΠ

iii) dΠ(f, g) = maxi∈I d
i
sup(fi, gi) = maxi∈I d

i
sup(gi, fi) = dΠ(g, f), ∀f, g ∈ BΠ

iv) Let f, g, h ∈ BΠ ⇒ fi, gi, hi ∈ B(Xi,R), ∀i ∈ I, then

dΠ(f, g) = max
i∈I

disup(fi, gi)

≤ max
i∈I
{disup(fi, hi) + disup(hi, gi)}

≤ max
i∈I

disup(fi, hi) + max
i∈I

disup(hi, gi)

≤ dΠ(f, h) + dΠ(h, g)

Exercise 8 [O’Searcoid Q 1.8]

Let P (S) be the power set of a non empty set, S. Let the function d : P (S)× P (S)→ R such that

d(A,B) = |(A \B) ∪ (B \A)|, ∀A,B ∈ P (S)

be a function that gives the cardinality of the symmetric difference between two elements of P (S) (i.e. subsets of S).

Is d a metric on P (S)?

i) By the definition of cardinality d(A,B) = |(A \B) ∪ (B \A)| ≥ 0, ∀A,B ∈ P (S).

ii) Remember that the empty set has zero elements. Thus, its cardinality is equal to zero (and, of course, no

non-empty set can have zero cardinality).

Let A,B ∈ P (S) with A = B, then A \B = B \A = ∅ and d(A,B) = 0.

Let A,B ∈ P (S) with A 6= B, then A \B 6= ∅ or B \A 6= ∅ and d(A,B) 6= 0.

iii) d(A,B) = |(A \B) ∪ (B \A)| = |(B \A) ∪ (A \B)| = d(B,A), ∀A,B ∈ P (S)

iv) Let A, B, and C be any subsets of S (thus A,B,C ∈ P (S)). Then,

|A \B| = |A| − |A ∩B|

and

|A \B| ∪ |B \A| = |A| − |A ∩B|+ |B| − |B ∩A| = |A|+ |B| − 2|A ∩B|

Similarly

|A \ C| ∪ |C \A| = |A|+ |C| − 2|A ∩ C|

and

|B \ C| ∪ |C \B| = |B|+ |C| − 2|B ∩ C|
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And we want to show that for all A,B,C ∈ P (S)

d(A,B) ≤ d(A,C) + d(B,C)

|A \B| ∪ |B \A| ≤ |A \ C| ∪ |C \A|+ |B \ C| ∪ |C \B|

|A|+ |B| − 2|A ∩B| ≤ |A|+ |C| − 2|A ∩ C|+ |B|+ |C| − 2|B ∩ C|

0 ≤ 2|C|+ 2|A ∩B| − 2|A ∩ C| − 2|B ∩ C|

0 ≤ |C|+ |A ∩B| − |A ∩ C| − |B ∩ C|

0 ≤ |C|+ |(A ∩B) \ C|+ |A ∩B ∩ C| − |(A ∩ C) \B| − |A ∩B ∩ C| − |(B ∩ C) \A| − |A ∩B ∩ C|

0 ≤ |C|+ |(A ∩B) \ C| − |(A ∩ C) \B| − |(B ∩ C) \A| − |A ∩B ∩ C|

0 ≤ |C| − |(A ∩ C) \B| − |(B ∩ C) \A|+ |(A ∩B) \ C| − |A ∩B ∩ C|

0 ≤ |C \ (A ∪B)|+ |A ∩B ∩ C|+ |(A ∩B) \ C| − |A ∩B ∩ C|

0 ≤ |C \ (A ∪B)|+ |(A ∩B) \ C|

which always holds as the sum of non-negative values.

So d is a metric on P (S).

Exercise 9 [Sutherland Ex. 5.14]

Let n be a positive natural number. The distance functions:

1. d1 : Rn × Rn → R such that d1(x, y) =
∑n
i=1 |xi − yi|, ∀x, y ∈ Rn (Manhattan distance)

2. d2 : Rn × Rn → R such that d2(x, y) =
√∑n

i=1 |xi − yi|2, ∀x, y ∈ Rn (Euclidean distance)

3. d∞ : Rn × Rn → R such that d∞(x, y) = maxni=1 |xi − yi|, ∀x, y ∈ Rn (Chebyshev distance)

are all metrics on Rn. Show that the following functional inequalities hold:

d∞ ≤ d2 ≤ d1 ≤ n · d∞ ≤ n · d2 ≤ n · d1

Let x and y be arbitrary elements of Rn.

We will start with d∞ ≤ d2 (and consequently n · d∞ ≤ n · d2):

Observe that by taking the square of d∞ we get

d2
∞(x, y) =

(
n

max
i=1
|xi − yi|

)2

=
n

max
i=1
|xi − yi|2

By squaring d2 we get

d2
2(x, y) =

( n∑
i=1

|xi − yi|2
) 1

2

2

=

n∑
i=1

|xi − yi|2
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Obviously the greatest among the |xi − yi|2 is among the summed (non-negative) elements, thus naturally

n
max
i=1
|xi − yi|2 ≤

n∑
i=1

|xi − yi|2

d2
∞(x, y) ≤ d2

2(x, y)

d∞(x, y) ≤ d2(x, y)

because squaring is an affine transformation.

So d∞ ≤ d2 (and n · d∞ ≤ n · d2).

We proceed with d2 ≤ d1 (and consequently n · d2 ≤ n · d1):

Again, we square both metric and get

d2
2(x, y) =

n∑
i=1

|xi − yi|2

and

d2
1(x, y) =

(
n∑
i=1

|xi − yi|

)2

Observe that d2
1(x, y) is the square of the sum of n non-negative real numbers, while d2

2(x, y) is the sum of those

same numbers squared. Thus,

d2
1(x, y) =

(
n∑
i=1

|xi − yi|

)2

=

n∑
i=1

|xi − yi|2 + 2

n∑
i=1

i−1∑
j=1

|xi − yi||xj − yj |

= d2
2(x, y) + 2

n∑
i=1

i−1∑
j=1

|xi − yi||xj − yj |

where the trailing sum is positive.

So d2 ≤ d1 (and n · d2 ≤ n · d1), which also means that d∞ ≤ d2 ≤ d1 (and n · d∞ ≤ n · d2 ≤ n · d1).

Finally, consider summing up d∞ n times. Then

n∑
i=1

d∞(x, y) =

n∑
i=1

n
max
i=1
|xi − yi|

Naturally this sum cannot be smaller than the plain sum of all |xi − yi|

n∑
i=1

|xi − yi| ≤
n∑
i=1

n
max
i=1
|xi − yi|

n∑
i=1

|xi − yi| ≤ n ·
n

max
i=1
|xi − yi|

d1(x, y) ≤ n · d∞(x, y)
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So d1 ≤ n · d∞.

Thus, we have proven that

d∞ ≤ d2 ≤ d1 ≤ n · d∞ ≤ n · d2 ≤ n · d1

Exercise 10

Let X be an n×m real matrix, with n,m ∈ N∗ and n > m, such that rank(X) = m. Then PX = X(X ′X)−1X ′ is the

projection matrix of X. Let Y ⊆ Rn be non-empty and Ŷ be its projected image through PX . Define dX : Y ×Y → R

such that dX(x, y) = ||PX · x − PX · y||, ∀x, y ∈ Y (i.e. dX is the Euclidean norm of an n-dimensional real vector).

Show that (Y, dX) is a pseudo-metric space.

(Hint: Consider the example of exercise 3. Under which conditions for f is (X, df ) a pseudo-metric space?)

Let d be the appropriate Euclidean metric on Ŷ . Define f : Y → Ŷ as f(x) = PXx, ∀x ∈ Y . We will consider dX as

the composition dX(·, ·) = d(f(·), f(·)).

In exercise 3 we basically showed that for some metric space (Y, d) and some injective function f : X → Y , the

composition df (·, ·) = d(f(·), f(·)) is a metric on X.

Observe that the properties i, iii, iv hold as long as f is a properly defined function from X to Y . The injective

property is only needed for ii. Further notice, however, that as long as f is thus well defined

x = y ⇒ f(x) = f(y) ⇐⇒ d(f(x), f(y)) = 0

for all such x and y in X, while for any x, y ∈ X such that d(f(x), f(y)) = 0 it doesn’t necessarily follow that x = y.

So if f is a well defined function f : X → Y , df is a pseudo-metric on X.

Here we have that (Ŷ , d) is a metric space and are given a function f : Y → Ŷ such that dX(·, ·) = d(f(·), f(·)) :

Y × Y → R. By the above, we get that dX is a pseudo-metric on Y and (Y, dX) a pseudo-metric space.

Exercise 11

Let (X, d) be a metric space and consider a real function f : R → R. Define d′ : X ×X → R such that d′(x, y) =

f(d(x, y)), ∀x, y ∈ X.

1. Deduce the necessary conditions for f for d′ to be a metric on X.

d′ has to satisfy properties i-iv on X:

i) For positivity we want ∀x, y ∈ X

d′(x, y) ≥ 0 ⇐⇒ f(d(x, y)) ≥ 0

and notice that x, y ∈ X ⇒ d(x, y) ≥ 0. So for positivity we need x ≥ 0⇒ f(x) ≥ 0.
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ii) For separateness we want:

d′(x, y) = 0 ⇐⇒ x = y, ∀x, y ∈ X

f(d(x, y)) = 0 ⇐⇒ x = y, ∀x, y ∈ X

f(d(x, y)) = 0 ⇐⇒ d(x, y) = 0

So for separateness we need f(x) = 0 ⇐⇒ x = 0.

iii) It naturally holds that d′(x, y) = f(d(x, y)) = f(d(y, x)) = d′(y, x), ∀x, y ∈ X. So no extra condition

needs to hold for symmetry.

iv) For the triangle inequality (aslo called subadditivity) we want:

d′(x, y) ≤ d′(x, z) + d′(z, y), ∀x, y, z ∈ X

f(d(x, y)) ≤ f(d(x, z)) + f(d(z, y)), ∀x, y, z ∈ X

Don’t forget that it also always holds that d(x, y) ≤ d(x, z) + d(z, y), ∀x, y, z ∈ X. When this holds with

equality (i.e. when d(x, y) = d(x, z) + d(z, y)) the desired property for f is called subadditivity and is

defined as

f(x+ y) ≤ f(x) + f(y),∀x, y ∈ R

So f has to be subadditive.

For the cases when d(x, y) < d(x, z) + d(z, y), let’s consider z < x+ y and notice that if f(z) ≤ f(x+ y),

by subadditivity we get

f(z) ≤ f(x+ y) ≤ f(x) + f(y)

which is the desired property. So (weak) monotonicity is also necessary.

So f has to be (weakly) increasing and subadditive.

Finally, notice that monotonicity and f(0) = 0 already guarantee that x ≥ 0⇒ f(x) ≥ 0.

So to summarize, for d′ to be a metric on X, the necessary conditions for f are that f be a weakly increasing

subadditive function with f(0) = 0.

2. Is it a sufficient condition for f to be a strictly increasing concave real function with f(0) = 0 for d′ to be a

metric on X?

Yes, because strict monotonicity also implies weak monotonicity and concave functions that take the value of

zero when evaluated at zero are also subadditive.
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Useful Theorems and Results

Cardinality and Set Operations

Cardinality is a measure of the number of elements in a set. The following properties hold with respect to cardinality:

|∅| = 0 (1)

|A|+ |B| = |A ∪B|+ |A ∩B| (2)

|A \B| = |A| − |A ∩B| (3)

Square of the sum of N numbers

(
N∑
i=1

ai

)2

=

N∑
i=1

a2
i + 2

N∑
i=1

i−1∑
j=1

aiaj (4)

Hölder’s inequality

For all x, y ∈ RN and α, β ∈ (1,+∞) such that
1

α
+

1

β
= 1, it holds that

N∑
i=1

|xiyi| ≤

(
N∑
i=1

|xi|α
) 1
α
(

N∑
i=1

|yi|β
) 1
β

(5)

For α = β = 2 we get the Cauchy-Schwartz inequality.

For x ∈ RN we call ||x||p :=
(∑N

i=1 |xi|p
) 1
p

the p-norm of x.
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