MSc Course: Mathematical Analysis -Optional Exercises (2020-21)

Stelios Arvanitis

- The following set of exercises is optional.
- The details of the (electronic) submission process will be announced in time.
- The instructor retains the right to ask for clarifications on the proposed solutions.

Exercise 1. Given an X-valued sequence $(x_n)_{n \in \mathbb{N}}$, define a $(x_n)_{n \in \mathbb{N}}$ - subsequence to be any infinite subset of $(x_n)_{n \in \mathbb{N}}$. Prove that if a metric space is totally bounded then every sequence has a Cauchy subsequence.

Exercise 2. Consider $(B(\mathbb{N},\mathbb{R}), d_{sup})$ and $A = \left\{ (x_n)_{n \in \mathbb{N}}, x_n = \begin{cases} 1, & n = i \\ 2, & n \neq i \end{cases}, i \in \mathbb{N} \right\} \subset B(\mathbb{N},\mathbb{R})$. Show that A is d_{sup} - bounded but not d_{sup} - totally bounded.

Exercise 3. Suppose that (X, d) is compact. Prove that if $f : X \to \mathbb{R}$ is d_I/d - continuous then it is bounded and thereby conclude that $C(X, \mathbb{R}) \subseteq B(X, \mathbb{R})$, where $C(X, \mathbb{R}) = \{f : X \to \mathbb{R}, f \text{ is } d_I/d$ - continuous}. Prove that $C(X, \mathbb{R})$ is a closed subset of $(B(X, \mathbb{R}), d_{sup})$. Prove that $C(X, \mathbb{R})$ is d_{sup} - complete.

Exercise 4. Suppose that (X, d) is compact. Show that for $f_n : X \to \mathbb{R}$, $n \in \mathbb{N}$, if the sequence (f_n) is d_u/d - equi - Lipschitz then it is d_{sup} - bounded. Prove that if furthermore $f_n(x) \to f(x)$ as $n \to \infty$, for all $x \in X$, for some $f : X \to \mathbb{R}$, then also $d_{sup}(f_n, f) \to 0$ as $n \to \infty$, and conclude that the limit f is d_u/d - Lipschitz.

Exercise 5. Given that (\mathbb{R}, d_I) is complete, show that (\mathbb{R}^n, d_A) is complete for any n > 0 and A any positive definite $n \times n$ matrix.

Exercise 6. Suppose that (X, d) is compact. Show that for $f_n : X \to \mathbb{R}$, $n \in \mathbb{N}$, if the sequence (f_n) is d_I/d - equi - Lipschitz then it is d_{\sup} - bounded. Prove that if furthermore $f_n(x) \to f(x)$ as $n \to \infty$, for all $x \in X$, for some $f : X \to \mathbb{R}$, then also $d_{\sup}(f_n, f) \to 0$ as $n \to \infty$, and conclude that the limit f is d_I/d - Lipschitz.

Exercise 7. Prove the Matkowski Fixed Point Theorem:

Theorem. Suppose that (X, d) is complete, $f : X \to X$, and $g : \mathbb{R}_+ \to \mathbb{R}_+$ such that:

- 1. g is non-decreasing,
- 2. g is continuous at zero,

- 3. g(t) = 0 iff t = 0,
- 4. $\lim_{m\rightarrow\infty}g^{\left(m\right)}\left(t\right)=0\text{, }\forall t\in\mathbb{R}_{+}\text{, and }$
- 5. $\forall t > 0$, $\lim_{m \to \infty} rac{g^{(m+1)}(t)}{g^{(m)}(t)} = c_t < 1$.

Then if $\forall x, y \in X$, $d(f(x), f(y)) \leq g(d(x, y))$, f has a unique fixed point, say $x^* = \lim_{m \to \infty} f^{(m)}(x)$, for all $x \in X$.

Show that this is a generalization of BFPT.

Exercise 8. (Fredholm Integral Equation of the second kind.) Consider $X = C([a, b], \mathbb{R})$ with $d = d_{sup}$. Suppose that $\omega : [a, b] \times [a, b] \to \mathbb{R}$ is continuous, that $\omega(x, y) \ge 0$, $\forall x, y \in [a, b]$, that $0 < M_{\omega} := \sup_{x, y \in [a, b]} \omega(x, y)$, $h \in X$ and let $\lambda > 0$. Consider the integral equation

$$f(x) = h(x) + \lambda \int_{a}^{b} \omega(x, y) f(y) dy, \ \forall x \in [a, b].$$
(1)

Show that there exists a unique $f \in X$ that satisfies (1) if $\lambda < \frac{1}{M(b-a)}$.

Exercise 9. (Perron-Frobenius) Remember that $A = (a_{i,j})_{i=1,\dots,q,j=1,\dots,p}$ with $a_{i,j} \in \mathbb{R}$, $\forall i, j$, is called positive (A > 0) iff $a_{i,j} > 0$, $\forall i, j$. Show that if p = q and A > 0 then A has at least one positive eigenvalue and at least one positive eigenvector. (Hint: study and use the Brouwer FPT)