MSc Course: Mathematical Analysis Optional Exercises (2020-21)

Stelios Arvanitis

- The following set of exercises is optional.
- The details of the (electronic) submission process will be announced in time.
- The instructor retains the right to ask for clarifications on the proposed solutions.

Exercise 1. Given an X-valued sequence $\left(x_{n}\right)_{n \in \mathbb{N}^{\prime}}$ define a $\left(x_{n}\right)_{n \in \mathbb{N}^{-}}$subsequence to be any infinite subset of $\left(x_{n}\right)_{n \in \mathbb{N}}$. Prove that if a metric space is totally bounded then every sequence has a Cauchy subsequence.

Exercise 2. Consider $\left(B(\mathbb{N}, \mathbb{R}), d_{\text {sup }}\right)$ and $A=\left\{\left(x_{n}\right)_{n \in \mathbb{N}}, x_{n}=\left\{\begin{array}{ll}1, & n=i \\ 2, & n \neq i\end{array}, i \in \mathbb{N}\right\} \subset\right.$ $B(\mathbb{N}, \mathbb{R})$. Show that A is $d_{\text {sup }}$ - bounded but not $d_{\text {sup }}$ - totally bounded.

Exercise 3. Suppose that (X, d) is compact. Prove that if $f: X \rightarrow \mathbb{R}$ is d_{I} / d - continuous then it is bounded and thereby conclude that $C(X, \mathbb{R}) \subseteq B(X, \mathbb{R})$, where $C(X, \mathbb{R})=\left\{f: X \rightarrow \mathbb{R}, f\right.$ is d_{I} / d-continuous $\}$. Prove that $C(X, \mathbb{R})$ is a closed subset of $\left(B(X, \mathbb{R}), d_{\text {sup }}\right)$. Prove that $C(X, \mathbb{R})$ is $d_{\text {sup }}$ - complete.

Exercise 4. Suppose that (X, d) is compact. Show that for $f_{n}: X \rightarrow \mathbb{R}, n \in \mathbb{N}$, if the sequence $\left(f_{n}\right)$ is d_{u} / d - equi - Lipschitz then it is $d_{\text {sup }}$-bounded. Prove that if furthermore $f_{n}(x) \rightarrow f(x)$ as $n \rightarrow \infty$, for all $x \in X$, for some $f: X \rightarrow \mathbb{R}$, then also $d_{\text {sup }}\left(f_{n}, f\right) \rightarrow 0$ as $n \rightarrow \infty$, and conclude that the limit f is d_{u} / d-Lipschitz.
Exercise 5. Given that $\left(\mathbb{R}, d_{I}\right)$ is complete, show that $\left(\mathbb{R}^{n}, d_{A}\right)$ is complete for any $n>0$ and A any positive definite $n \times n$ matrix.

Exercise 6. Suppose that (X, d) is compact. Show that for $f_{n}: X \rightarrow \mathbb{R}, n \in \mathbb{N}$, if the sequence $\left(f_{n}\right)$ is d_{I} / d - equi - Lipschitz then it is $d_{\text {sup }}$ - bounded. Prove that if furthermore $f_{n}(x) \rightarrow f(x)$ as $n \rightarrow \infty$, for all $x \in X$, for some $f: X \rightarrow \mathbb{R}$, then also $d_{\text {sup }}\left(f_{n}, f\right) \rightarrow 0$ as $n \rightarrow \infty$, and conclude that the limit f is d_{I} / d-Lipschitz.

Exercise 7. Prove the Matkowski Fixed Point Theorem:
Theorem. Suppose that (X, d) is complete, $f: X \rightarrow X$, and $g: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$such that:

1. g is non-decreasing,
2. g is continuous at zero,
3. $g(t)=0$ iff $t=0$,
4. $\lim _{m \rightarrow \infty} g^{(m)}(t)=0, \forall t \in \mathbb{R}_{+}$and
5. $\forall t>0, \lim _{m \rightarrow \infty} \frac{g^{(m+1)}(t)}{g^{(m)}(t)}=c_{t}<1$.

Then if $\forall x, y \in X, d(f(x), f(y)) \leq g(d(x, y))$, f has a unique fixed point, say $x^{\star}=$ $\lim _{m \rightarrow \infty} f^{(m)}(x)$, for all $x \in X$.

Show that this is a generalization of BFPT.
Exercise 8. (Fredholm Integral Equation of the second kind.) Consider $X=C([a, b], \mathbb{R})$ with $d=d_{\text {sup }}$. Suppose that $\omega:[a, b] \times[a, b] \rightarrow \mathbb{R}$ is continuous, that $\omega(x, y) \geq$ $0, \forall x, y \in[a, b]$, that $0<M_{\omega}:=\sup _{x, y \in[a, b]} \omega(x, y), h \in X$ and let $\lambda>0$. Consider the integral equation

$$
\begin{equation*}
f(x)=h(x)+\lambda \int_{a}^{b} \omega(x, y) f(y) d y, \forall x \in[a, b] . \tag{1}
\end{equation*}
$$

Show that there exists a unique $f \in X$ that satisfies (1) if $\lambda<\frac{1}{M_{\omega}(b-a)}$.
Exercise 9. (Perron-Frobenius) Remember that $A=\left(a_{i, j}\right)_{i=1, \ldots, q, j=1, \ldots, p}$ with $a_{i, j} \in$ $\mathbb{R}, \forall i, j$, is called positive $(A>0)$ iff $a_{i, j}>0, \forall i, j$. Show that if $p=q$ and $A>0$ then A has at least one positive eigenvalue and at least one positive eigenvector. (Hint: study and use the Brouwer FPT)

