Lemarar A. Suppose that d, d_{z} ave both well delined metrics with which X conn be endowed and for which $\exists 4>0: \forall x, y \in X \quad d_{2}(x, y) \leq G d_{2}(x, y)$, ie.

$$
d_{L} \leqslant<d_{z} \text { as functions. }
$$

Then if $A \leq X$ is d_{k}-bounded it is also d_{1}-bounded.
Proof. A da-bounded $\Leftrightarrow \exists x \in X, \varepsilon>0: A \subseteq O_{d_{2}}(x, \varepsilon) \Leftrightarrow$

$$
(y<A \Rightarrow d x, y)<\varepsilon) \Rightarrow\left(y \in A \Rightarrow d_{2}(x, y><d \varepsilon) \Leftrightarrow A \leq O_{d}(x, d z)\right.
$$

and thereby A is d_{2}-bounded.
Exercise: Prove the dour, ie. if A is not d_{1}-bounded then it is not also d_{2}-bounded.

Rencember that for $x=N R^{k}$,

$$
d_{\text {rear }} \leq d_{x} \leq d_{11} \leftrightarrow 0
$$

Notice that $d_{11}(x, y)=\sum_{i=1}^{k}\left|x_{i}-y_{i}\right| \leq \sum_{i=1}^{k} \operatorname{mox}\left|x_{i}-y_{i}\right|$

$$
=\operatorname{\mu lax}_{i}\left|x_{i}-y_{i}\right| \sum_{i=1}^{K} 1=k \max _{i}^{i=1}\left|x_{i}-y_{i}\right|=k \operatorname{dncax}(x, y),
$$

hence since $x y$ were arbitrary, we obtain

$$
d_{11} \leqslant k d_{\max }(* *) \text {. }
$$

Hence due to $(*)+a(x)$ dar $\leq d_{11} \leq k d_{\text {max }}$.

Furthermore $f_{\text {rom }}(*)+(* *)$, $d_{\text {max }} \leqslant d_{1} \leqslant k d_{\text {max }}$,

$$
d_{I} \leq d_{11} \leq k d_{I}, \frac{1}{k} d_{11} \leq d_{\text {area } x} \leq d_{11}, \frac{1}{k} d_{I} \leq d_{A \operatorname{cox}} \leq d_{I}
$$

and $\frac{1}{k} d_{11} \leq d_{2} \leq d_{11}$. Using those ineopualatier with
Leman A we drain the follaing result.
Leaver B. $A \subseteq \mathbb{R}^{k}$ is $d x$-bounded off it is do-bounded for $a, b=$ max, 11,1 .
Proof. (Provide the details).
[The notes are in a state of perpetual correction. They do not substitute the lectures. Please report any typos to stelios@aueb.gr or the course's e-class.]

