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Exercise 2

Suppose that X = {f : [a, b]→ R :
∫ b
a
f 2(x)dx < +∞}, with a < b real numbers. Also consider the

metric function d(f, g) :=
(∫ b

a
(f(x)− g(x))2dx

) 1
2

on X. For 0 : [a, b] → R,0(x) := 0 ∀x ∈ [a, b],

consider Od[0, 1] and show that it is not d-totally bounded.

Solution

The d-closed ball centered at 0 ∈ X with radius 1 is a set such that

Od[0, 1] = {g ∈ X : d(0, g) ≤ 1}

= {g ∈ X :

(∫ b

a

(0(x)− g(x))2 dx

) 1
2

≤ 1}

= {g ∈ X :

(∫ b

a

g2(x)dx

) 1
2

≤ 1}

∀ε ≥ 1, Od[0, 1] ⊆ Od[0, ε] and so the whole set can be covered by a collection of one closed ball

(Od[0, ε]).

For ε < 1 consider the following sequence of functions in Od[0, 1]

(gn)n∈N : gn ∈ Od[0, 1] ∀n ∈ N, d(gm, gn) >
1

2
∀m 6= n ∈ N

Using a modified Riesz’s Lemma∗ for functional spaces, it can be shown that such a sequence exists.

Observe that G = {f : [a, b]→ R : f = gn∀n ∈ N} is a subset of Od[0, 1].

Suppose that G is a d-totally bounded subset of X. Then for ε =
1

4
there should exist a finite

number of d-closed balls in X with radius
1

4
that collectively include all of the infinitely many

functions in G and thus cover G. By the Pigeonhole Principle∗∗ each such ball must include more

than one element of G. But then, for some m 6= n this would mean that d(gm, gn) ≤ 1

4
<

1

2
.

Contradiction!
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So G cannot be a d-totally bounded subset of X and since G ⊆ Od[0, 1] we have that Od[0, 1] is

not a d-totally bounded subset of X.

(*) Riesz’s Lemma

For (X, d) normed vector space (i.e. the metric d is a p-norm), (S, d|S×S) non-dense linear subspace

of (X, d), and 0 < ε < 1, there exists x ∈ X of unit norm (i.e. d(0, x) = ||x||p = 1) such that

d(x, s) ≥ 1− ε, ∀s ∈ S.

(**) Pigeonhole Principle

For n,m, k ∈ N with n = km + 1, if we distribute n elements across m sets then at least one set

will contain at least k + 1 elements.

Remarks:

• ∃ an infinite number of f ∈ X\Od[0, 1]. E.g. consider fn(x) = n

√
1

b− a
,∀x ∈ [a, b], ∀n ∈ N.

• ∃ an infinite number of f ∈ Od[0, 1]. E.g. consider fn(x) =
1

n

√
1

b− a
, ∀x ∈ [a, b],∀n ∈ N.

Exercise 4

For (X, d) a general metric space, x, y ∈ X, and (xn)n∈N, (yn)n∈N : xn, yn ∈ X ∀n ∈ N, with

x = d− lim(xn) and y = d− lim(yn). Given that d(xn, yy)→ d(x, y) w.r.t the usual metric on R, du,

show that, given y, f = d(·, y) : X → R is du/d-continuous. Conclude analogously for g = d(y, ·).

Solution

f(x; y) = d(x, y), y ∈ X, ∀x ∈ X is du/d-continuous at x ∈ X because, by the fact that

du − lim d(xn, yn) = d(x, y), for all sequences (xn)n∈N in X with d − limxn = x the corresponding

sequence (f(xn; y))n∈N in R has du − lim f(xn; y) = du − lim d(xn, yn) = d(x, y) = f(x; y). Since

x ∈ X is arbitrary, f is du/d-continuous in X.

By symmetry of d, g = d(·, x) is du/d-continuous, since f = d(x, ·) is du/d-continuous.
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Lemma: Total Boundness and Finite Products

Let (Xi, di) metric spaces ∀i ∈ I with I a finite index set. For the cartesian product X :=
∏

i∈I Xi

there can be defined the following structured sets (X, dΠ), dΠ ∈ {dΠmax , dΠI
, dΠ| |} and dΠ are defined

as

dΠmax = max
i∈I

di

dΠI
=

(∑
i∈I

d2
i

) 1
2

dΠ| | =
∑
i∈I

di

and are appropriate metric functions on X. Let Ai ⊆ Xi,∀i ∈ I and A :=
∏

i∈I Ai, which implies

that A ⊆ X. Then A is a dΠmax(/dΠI
/dΠ| |)-totally bounded subset of X iff Ai are di-totally bounded

subsets of Xi ∀i ∈ I.

Proof

It suffices to show that

A is dΠmax-totally bounded subset of X ⇐⇒ Ai is di-totally bounded subset of Xi ∀i ∈ I

because

dΠmax ≤ dΠI
≤ dΠ| | ≤ ndΠmax

where n ∈ N∗ is the number of elements in I, and the total boundeness property for a specific set

(say A) is inherited by dΠI
and dΠ| | from dΠmax , and by dΠmax from the other two.

A compact illustration of the proof is the following (statements above the ⇐⇒ sign describe how

3



to move forward, while statements below show the way back)

∀i ∈ I, Ai is di-totally bounded subset of Xi ⇐⇒

∀i ∈ I, ∀εi > 0 ∃CAi,εi := {Odi(xij, εi), xij ∈ Xi, j ∈ Ii finite} : Ai ⊆
⋃
j∈Ii

Odi(xij, εi) ⇐⇒

∀i ∈ I,∀εi > 0 ∃xij ∈ Xi, j ∈ Ii finite : ∀yi ∈ Ai, yi ∈ Odi(xij, εi) ⇐⇒

∀i ∈ I,∀εi > 0 ∃xij ∈ Xi, j ∈ Ii finite : ∀yi ∈ Ai, di(xij, yi) < εi ⇐⇒
Choose εi=ε

∀i ∈ I,∀εi > 0 ∃xij ∈ Xi, j ∈ Ii finite : ∀yi ∈ Ai,max
i∈I

di(xij, yi) < max
i∈I

εi
ε:=maxi∈I εi,I=

⋃
i∈I Ii⇐⇒

Choose Ii=I

∀ε > 0 ∃xj ∈ X, j ∈ I finite : ∀y ∈ A, dΠmax(xj, y) < ε ⇐⇒

∀ε > 0 ∃xj ∈ X, j ∈ I finite : ∀y ∈ A, y ∈ OdΠmax
(xj, ε) ⇐⇒

∀ε > 0 ∃CA,ε := {OdΠmax
(xj, ε), xj ∈ X, j ∈ I finite} : A ⊆

⋃
j∈I

OdΠmax
(xj, ε) ⇐⇒

A is dΠmax-totally bounded subset of X

More verbosely, if Ai are di-totally bounded subsets of Xi for all i ∈ I, then there exist ∀i finite

di-open covers for any εi > 0 (we choose a different εi for each Ai).

That means that each element, yi, of each Ai belongs to some di-open ball with radius εi and the

number of these balls (as well as their centres, xij) is finite for all i.

We construct elements of X and A using the above xij and yi. If we consider the dΠmax metric on

X, we can see that the distance of each y = (yn)n∈I in A from each xj = (xnj)n∈I in X, given by

dΠmax , is equal to the greatest distance between their elements, given by the corresponding di, i.e.

∀xj, y

dΠmax(xj, y) = max
i∈I

di(xij, yi)

So we can construct dΠmax-open balls using the xj-s as centres and setting ε := maxi∈I as their radii

and cover all of A with them. Their number is finite.

Thus, we have constructed a finite dΠmax-open cover of A for all ε > 0 using the fact that Ai are

di-totally bounded subsets of Xi for all i ∈ I. So A is a dΠmax-totally bounded subset of X.

Conversely, if A is a dΠmax- totally bounded subset of X, then for all ε > 0 there exists a finite cover

of dΠmax-open balls with radius ε, such that ∀y ∈ A, y belongs to one of these (finitely many) balls.

By definition of dΠmax , the above means that each element of y, yi, will belong to a di-open ball

of radius ε. For all i the union of these balls covers each Ai and their number is the same as the

number of balls used to cover A, which is finite.
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Thus we have constructed finite di-open covers of Ai and Ai are di-totally bounded subsets of Xi

for all i.

A few remarks:

• For a subset in a metric space to be totally bounded, a finite cover must exist for all radii.

Make sure you see that this is the case here.

• Pay attention to the possibility that the index sets of each cover for the various i may not

include the same indices. Thus, when constructing the index set for the cartesian product,

we use their union (I =
⋃
i∈I Ii). This means that we may need to use some xij that are not

necessary to cover Ai, but are needed to construct the xj that define the balls that cover A.

E.g. I = {1, 2} and for some ε1, ε2 > 0 the index sets of the finite covers of A1 and A2

are I1 = {1, 2} and I2 = {1, 2, 3}. Then we need I = {1, 2, 3} to construct the cover of

A = A1 × A2 of radius ε = max{ε1, ε2}.

• The minimum effective size of a finite cover’s index set depends on the size of the radius (and

will typically converge to infinity as a radius approaches zero). But for all strictly positive

radii, these index sets are finite.
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Lemma: Continuity via Open Sets (Open Balls and Neighbourhoods)

A function, f : X → Y , with (X, dX) and (Y, dY ) metric spaces, is dY /dX-continuous at a point

x ∈ X iff the following equivalent conditions hold:

• ∀δ > 0,∃εδ : f (OdX (x, εδ)) ⊆ OdY (f(x), δ)

• If A ∈ τdY (f(x)) then ∃B ∈ τdX (x) : B ⊆ f−1(A)

Proof

First, we show that the first point is a necessary and sufficient condition for dY /dX-continuity of f

at x.

Assume that ∀δ > 0,∃εδ : f (OdX (x, εδ)) ⊆ OdY (f(x), δ).

For (xn)n∈N such that xn → x and xn, x ∈ X consider (f(xn))n∈N. Then for some δ > 0, choose a

εδ that satisfies our assumption. Because xn → x

∀n ≥ n∗(εδ), xn ∈ OdX (x, εδ)⇒

∀n ≥ n∗(εδ), f(xn) ∈ f (OdX (x, εδ))

and because we assumed that f (OdX (x, εδ)) ⊆ OdY (f(x), δ)

∀n ≥ n∗(εδ), f(xn) ∈ OdY (f(x), δ)

and since δ is arbitrary f(xn) → f(x). Because (xn)n∈N is arbitrary f is dY /dX-continuous at

x ∈ X.

So the first point is a sufficient condition for dY /dX-continuity of f at x.

Now, suppose that f is dY /dX-continuous at x ∈ X, but for some δ > 0 no εδ exists that satisfies

the property we want to prove and ∀ε > 0, f (OdX (x, ε)) 6⊆ OdY (f(x), δ). This can be equivalently

expressed as

∃δ > 0 : ∀ε > 0, f(OdX (x, ε))
⋂
O′dY (f(x), δ) 6= ∅

This implies that

∃δ > 0 : ∀n ∈ N, f(OdX (x,
1

n+ 1
))
⋂
O′dY (f(x), δ) 6= ∅

(since all n ∈ N give suitable ε). Consider the images of these sets through f−1 (which are also
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non-empty)

f−1

(
f

(
OdX

(
x,

1

n+ 1

))⋂
O′dY (f(x), δ)

)
= OdX

(
x,

1

n+ 1

)⋂
f−1(O′dY (f(x), δ)) 6= ∅,∀n ∈ N

and a sequence, (xn)n∈N, such that the n-th element of the sequence belongs to the n-th such set

xn ∈ OdX
(
x,

1

n+ 1

)⋂
f−1(O′dY (f(x), δ))⇒

xn ∈ OdX
(
x,

1

n+ 1

)

which can be shown to imply a convergence of the sequence (xn)n∈N to x. Thus, x = dX − lim(xn).

By the assumed dY /dX-continuity of f at x, we get f(x) = dY − lim(f(xn)), but

xn ∈ OdX
(
x,

1

n+ 1

)⋂
f−1(O′dY (f(x), δ))⇒

xn ∈ f−1(O′dY (f(x), δ)) ⇐⇒

f(xn) ∈ f(f−1(O′dY (f(x), δ))) = O′dY (f(x), δ) ⇐⇒

f(xn) 6∈ OdY (f(x), δ)

which can be shown to make convergence of (f(xn))n∈N at f(x) ∈ Y impossible. Hence we have a

contradiction.

So the first point is a necessary condition for dY /dX-continuity of f at x.

Now, we show that both points imply one another.

Let the second point hold.

For δ > 0 choose A = OdY (f(x), δ). By our assumption ∃ B in the neighbourhood system τdX (x)

such that B ⊆ f−1(A). Since B ∈ τdX (x) there always exists a ε > 0 such that B is a subset of a

dX-open ball with center x and radius ε. All this implies that

OdX (x, ε) ⊆ B ⊆ f−1(A)⇒

OdX (x, ε) ⊆ f−1(OdY (f(x), δ))⇒

f(OdX (x, ε)) ⊆ f(f−1(OdY (f(x), δ)))⇒

f(OdX (x, ε)) ⊆ OdY (f(x), δ)

So the second point implies the first one.
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Now, let the first point hold.

Suppose that ∃A ∈ τdY (f(x)) such that ∀B ∈ τdX (x), B is not a subset of f−1(A), i.e.

B
⋂(

f−1(A)
)′ 6= ∅ ∀B ∈ τdX (x)

Because all dX-open balls with center x belong to τdX (x)

OdX (x, ε)
⋂(

f−1(A)
)′ 6= ∅ ∀ε > 0⇒

OdX (x, ε)
⋂

f−1(A′) 6= ∅ ∀ε > 0⇒

f (OdX (x, ε)
⋂

f−1(A′)
)
6= ∅ ∀ε > 0⇒

f (OdX (x, ε))
⋂

f
(
f−1(A′)

)
6= ∅ ∀ε > 0⇒

f (OdX (x, ε))
⋂

A′ 6= ∅ ∀ε > 0

But A ∈ τdY (f(x)) so there always exists δ > 0 : OdY (f(x), δ) ⊆ A. This implies that

(OdY (f(x), δ))′ ⊇ A′ and thus

f (OdX (x, ε))
⋂

(OdY (f(x), δ))′ 6= ∅ ∀ε > 0

which is equivalent to f (OdX (x, ε)) 6⊆ OdY (f(x), δ) and contradicts our assumption.

So the first point implies the second.
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