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Exercise 2

Suppose that X = {f : [a,b] - R : f; f?(x)dx < 400}, with a < b real numbers. Also consider the

1

metric function d(f,g) = (fab(f(x) — g(:v))%ix)a on X. For 0 : [a,b] = R,0(z) = 0 Vz € [a,],
consider O,4[0, 1] and show that it is not d-totally bounded.

Solution

The d-closed ball centered at 0 € X with radius 1 is a set such that

04)0,1] ={g € X :d(0,9) <1}

—{geX: (/:m(x)—g(x))?dxf <1)

—{geX: (/:g%x)dxf <1

Ve > 1, O4)0,1] € O4]0,¢] and so the whole set can be covered by a collection of one closed ball
(Od [07 6] ) :

For € < 1 consider the following sequence of functions in 040, 1]
1
(gn)nEN 1 0n € Od[oa 1] Vn € N? d(gmagn) > 5 Vm 75 neN

Using a modified Riesz’s Lemma* for functional spaces, it can be shown that such a sequence exists.
Observe that G = {f : [a,b] = R : f = g,¥n € N} is a subset of Og4[0,1].

1
Suppose that G is a d-totally bounded subset of X. Then for ¢ = 1 there should exist a finite

1
number of d-closed balls in X with radius 1 that collectively include all of the infinitely many

functions in G and thus cover GG. By the Pigeonhole Principle* each such ball must include more

1 1
than one element of G. But then, for some m # n this would mean that d(g,,, g,) < 1 < 7
Contradiction!



So G cannot be a d-totally bounded subset of X and since G C O,4[0, 1] we have that O4]0, 1] is
not a d-totally bounded subset of X.

(*) Riesz’s Lemma

For (X, d) normed vector space (i.e. the metric d is a p-norm), (.5, d|sxs) non-dense linear subspace
of (X,d), and 0 < € < 1, there exists + € X of unit norm (ie. d(0,z) = ||z||, = 1) such that
d(xz,s) >1—¢,VseS.

(**) Pigeonhole Principle

For n,m,k € N with n = km + 1, if we distribute n elements across m sets then at least one set

will contain at least & + 1 elements.

Remarks:
1
e 1 an infinite number of f € X\0,[0, 1]. E.g. consider f,(z) =n = a,Va: € [a,b],Yn € N.
. . ) 1 1
e J an infinite number of f € 0,40, 1]. E.g. consider f,(z) = — 2 Vo € [a,b],Vn € N.
n\b—a

Exercise 4

For (X,d) a general metric space, x,y € X, and (,)nen, (Yn)nen © Tn,Yn € X Vn € N, with
r = d—lim(z,) and y = d—lim(y,). Given that d(z,,y,) = d(x,y) w.r.t the usual metric on R, d,,
show that, given y, f = d(-,y) : X — R is d,/d-continuous. Conclude analogously for g = d(y, -).

Solution

flz;y) =d(z,y),y € X,Vo € X is d,/d-continuous at x € X because, by the fact that

dy, —limd(z,,y,) = d(x,y), for all sequences (z,)neny in X with d — limz,, = x the corresponding
sequence (f(Zn;Yy))neny in R has d, — lim f(z,;y) = d, — imd(z,,y,) = d(z,y) = f(x;y). Since
xr € X is arbitrary, f is d,/d-continuous in X.

By symmetry of d, g = d(-, x) is d,/d-continuous, since f = d(z,-) is d, /d-continuous.



Lemma: Total Boundness and Finite Products
Let (Xj,d;) metric spaces Vi € Z with Z a finite index set. For the cartesian product X = [],.; X;
there can be defined the following structured sets (X, dn), dn € {dn,,.., dn,, d, ‘} and dyy are defined

as

€z
1
dy, = <Z d?)
1€T
dy, = Z d;
i€

and are appropriate metric functions on X. Let A4; C X;,Vi € Z and A := [],.; A;, which implies
that A C X. Then A is a deaz(/dHI/dH‘ ‘)—totally bounded subset of X iff A; are d;-totally bounded
subsets of X; Vi € T.

Proof
It suffices to show that

Ais dj,,, -totally bounded subset of X <= A; is d;-totally bounded subset of X; Vi € T

because

Ay, < dn, < dnj < ndn,,,

where n € N* is the number of elements in Z, and the total boundeness property for a specific set
(say A) is inherited by dp, and dp,, from dp,,,,, and by dn,,,, from the other two.

A compact illustration of the proof is the following (statements above the <= sign describe how



to move forward, while statements below show the way back)

Vi € T, A; is d;-totally bounded subset of X; <=

VieZ,Ve; >0 HOAZ.@. = {Odi(ftij,@),l’i]‘ e X;,7€el; ﬁnite} cA; C U Odi<xij78i) <~
JEL;
Vi € I, VEZ‘ >0 Elill'ij € Xz,j c Iz finite : Vyl € Azayz < Odi<xij78i> <
Vi € I, Ve; >0 Ell’ij € XZ,] €1 finite : Vyz € Azydz(-f;z];yz) < &; Chﬁ-*
. . . g=maXx;er 6i1f:UiEZIi
Vi € I,Ve; > 03x;; € X;,j € Z, finite : Vy; € A;, max d;(z;5,y;) < maxe, —
€L 1€ Choose Z;=T
Ve > 03z; € X,j €T finite : Vy € A, dn,,, (7;,y) <& <
Ve>03z; € X,j € finite: Vy € A,y € Oy, (zj,6) <
Ve > 03Cs, = {0y, . (xj,¢),2; € X,j €T finite} : A C U Ouay,, . (x),8) <=
=

Ais dy,,, -totally bounded subset of X

More verbosely, if A; are d;-totally bounded subsets of X; for all i € Z, then there exist Vi finite
d;-open covers for any ¢; > 0 (we choose a different ¢; for each A;).

That means that each element, y;, of each A; belongs to some d;-open ball with radius ¢; and the
number of these balls (as well as their centres, z;;) is finite for all i.

We construct elements of X and A using the above z;; and y;. If we consider the dy,,,, metric on
X, we can see that the distance of each y = (y,)nez in A from each z; = (2,;)nez in X, given by
dm,,.., is equal to the greatest distance between their elements, given by the corresponding d;, i.e.
Vi, y

Mnax (xj ) y) Ii’leaix 7 (',”UZ]’ yl)

So we can construct diy,,,,-open balls using the x;-s as centres and setting ¢ := max;c7 as their radii
and cover all of A with them. Their number is finite.
Thus, we have constructed a finite dyy,,, -open cover of A for all € > 0 using the fact that A; are

d;-totally bounded subsets of X; for all ¢ € Z. So A is a dj,,, -totally bounded subset of X.

Conversely, if A is a dyy,, - totally bounded subset of X, then for all € > 0 there exists a finite cover
of dy,,,,-open balls with radius ¢, such that Yy € A, y belongs to one of these (finitely many) balls.
By definition of dy,, ., the above means that each element of y, y;, will belong to a d;-open ball
of radius . For all ¢ the union of these balls covers each A; and their number is the same as the

number of balls used to cover A, which is finite.



Thus we have constructed finite d;-open covers of A; and A; are d;-totally bounded subsets of X;

for all 4.

A few remarks:

e For a subset in a metric space to be totally bounded, a finite cover must exist for all radii.

Make sure you see that this is the case here.

e Pay attention to the possibility that the index sets of each cover for the various ¢ may not
include the same indices. Thus, when constructing the index set for the cartesian product,
we use their union (Z = U,ez Zi). This means that we may need to use some z;; that are not

necessary to cover A;, but are needed to construct the x; that define the balls that cover A.

E.g. T = {1,2} and for some e1,e5 > 0 the index sets of the finite covers of A; and A,
are 7, = {1,2} and Z, = {1,2,3}. Then we need Z = {1,2,3} to construct the cover of

A = A; x Ay of radius € = max{ey, &3}

e The minimum effective size of a finite cover’s index set depends on the size of the radius (and
will typically converge to infinity as a radius approaches zero). But for all strictly positive

radii, these index sets are finite.



Lemma: Continuity via Open Sets (Open Balls and Neighbourhoods)
A function, f: X — Y, with (X,dx) and (Y, dy) metric spaces, is dy /dx-continuous at a point

x € X iff the following equivalent conditions hold:
o V6 >0,3e5: f(Ouy(x,65)) C Ouy (f(2),9)

o If A€y (f(z)) then 3B € 74, (x) : BC f71(A)

Proof
First, we show that the first point is a necessary and sufficient condition for dy /dx-continuity of f

at z.

Assume that V§ > 0,3es 1 f (Ouy (x,65)) C Oay (f(x),0).
For (z,)nen such that x, — x and z,, 2 € X consider (f(z,)),cy- Then for some § > 0, choose a

€s that satisfies our assumption. Because z,, — x

Vn > n*(gs), xn € Ouy (T,65) =

Vn > n*(55>, f(-rn) € f (de (ZE,€5))

and because we assumed that f (Og, (x,€5)) € Ogy (f(x),0)

Vn > n*(55)7 f(xn) S Ody (f(x)’ 5)

and since ¢ is arbitrary f(z,) — f(x). Because (x,)nen is arbitrary f is dy/dx-continuous at
reX.

So the first point is a sufficient condition for dy /dx-continuity of f at .

Now, suppose that f is dy /dx-continuous at = € X, but for some § > 0 no &5 exists that satisfies
the property we want to prove and Ve > 0, f (Ouy (2,¢€)) € Ouy, (f(x),0). This can be equivalently

expressed as

36> 0: Ve > 0, f(Ouy (z,2)) [ | Ohy (f(2),0) # @

This implies that
1 no:
30 >0:Vn € N, f(OdX (.Z’, n——i—l)) Ody(f(l'),(5> 7£ %]

(since all n € N give suitable €). Consider the images of these sets through f~! (which are also



non-empty)

(1 (0n (2527 ) ) N9 G@0)) = 0u (2 ) 11 &) £ 5.¥n €N

and a sequence, (z,)nen, such that the n-th element of the sequence belongs to the n-th such set

1 1 /
0 € Ouy ( m) N (Ol (f(x),0) =

1
n €0 ;
X dX(.CE n—l—l)

which can be shown to imply a convergence of the sequence (z,)nen to . Thus, 2 = dx — lim(x,,).

By the assumed dy /dx-continuity of f at z, we get f(x) = dy — lim(f(z,)), but

xneodx(, )mf (O (F(x).6)) =
0 € fHOL (f(a),8)) =
Fe) € O (F(2).0)) = Ol (F(x),8) =
F(e) & Oy (£(),0)

which can be shown to make convergence of (f(x,))nen at f(x) € Y impossible. Hence we have a
contradiction.

So the first point is a necessary condition for dy /dx-continuity of f at x.
Now, we show that both points imply one another.

Let the second point hold.
For 6 > 0 choose A = Oy, (f(x),0). By our assumption 3 B in the neighbourhood system 7,4, ()
such that B C f~!(A). Since B € 74, (x) there always exists a € > 0 such that B is a subset of a

dx-open ball with center x and radius €. All this implies that

So the second point implies the first one.



Now, let the first point hold.
Suppose that 3A € 74, (f(x)) such that VB € 74, (), B is not a subset of f~(A), i.e.

B((f(4) #2  VBer,(v)

Because all dx-open balls with center x belong to 74, ()

Ouy (x,6) () (F (A ))’7&@ Ve>0=
Ouy :c,é?)ﬂf Ve > 0=
f(Ouy(x,e) () FH(A)) £ 2 Ve > 0=
F (Oax () f(f Ve > 0=
f@dxxs)ﬂA’%g Ve > 0

But A € 74,(f(z)) so there always exists 6 > 0 : Oy (f(z),d) € A. This implies that
(Oyy, (f(x),0)) D A and thus

f (de (1:76)) ﬂ (Ody(f(x)75>>, 7£ ) Ve >0

which is equivalent to f (O, (x,€)) € Ouy (f(x),0) and contradicts our assumption.
So the first point implies the second.



