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Exercise 1
(X, d,) being a metric space means that d : X x X — R is a suitable metric function on the set X.

So d, satisfies the following properties:
i) dy(z,y) > 0,Vz,y € X (positivity)
i) dy(z,y) =0 <= x=y,Vz,y € X (separateness)
iii) dy(z,y) = d.(y,z),Vz,y € X (symmetry)
iv) dy(z,y) < d.(z,2) +d,(2,y),Vz,y, 2 € X (subadditivity/triangle inequality)
f being injective means that f(x) = f(y) <= x =y, Vo,y € Z.

The necessary and sufficient condition to prove that (Z, dy) is a metric space is that dy be a suitable

metric on Z, i.e. that d; satisfies the required properties i-iv on Z. So we have:

i) di(z,y) = d.(f(2), f(y) = 0,Vf(2), f(y) € X.
Because f is a 1-1 correspondence from Z to X, we get that ds(z,y) > 0,Vz,y € Z.
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i) di(z,y) =0 <= d.(f(2),f(¥) =0 <= f(x)=fy) &= a=y, Vo,ye Z
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iii) dy(z,y) = du(f(2), F(®) 2 do(f (), f(2)) T £ dy(y, 2), Yo,y € Z

iv) d(z,y) = do(f(2), (1)) < do(f(2), F(2)Fdo(F(2), f(y) T =" dp(, 2)+dp(2,y), Va,y,2 € Z

We have shown that d; satisfies properties i-iv on Z. So dy is a metric on Z and (Z,dy) is a metric

space.



Exercise 2

It holds for all x,y, z € X that

< Jd(z,y) + d(y, 2) — d(z, )|
= |d(z,y)|
< d(z,y)

|d(z, 2) = d(2,y)

Exercise 4

To show that e is a metric on X, we must show that it has the properties i-iv on X:

i) dlz,y) > 0 = 1 +d(z,y) > 0,Vo,y € X so e is a well defined real function and
d(z,y)

——>— > 0,Vx,y € X as the ratio of a non-negative number over a positive
1+d(z,y)

e(z,y) =
number.

d(z, y)
1+d(z,y)

d(z,y) w _d(y,x)
1+d(z,y) 1+d(y,x)

i) e(z,y) =0 < =0 < d(z,y) =0 <> z=y,Vo,y e X

i) e(z,y) = =e(z,y),Vr,y € X

iv) Consider the functions f : R, — R, f(x) = 7 Y and g: Ry = Rg(x) = %,a > 0.
x x

Because f and g are differentiable we can study their monotonicity by taking their first

derivatives
of 1(1+2)—a-1 1
) = = v
ax(:c) L e >0,Vz >0
So f is strictly increasing. And
Jg 0l+z)—a-1 —
) = = <0,V 0
8:1;() (1+ x)? (1+z)2~ 7 v

So ¢ is weakly decreasing.



By subadditivity of d we know that d(z,y) < d(z, z) + d(z,y) and we have

_ d(z,y)

1+ d(x,y)

J st.ine. d(l’, Z) + d(’Z? y)
— 1+d(x,z)+d(z,y)

e(r,y)

_ d(z, 2) N d(z,y)
L+d(z,2)+d(zy)  1+d(z,2)+d(zy)
gd<80- d(z, z) d(z,y)

Ltd(z,2)  1+d(zy)
=e(z,2) +e(zy), Ve,y e X

We have shown that e has the properties i-iv on X. So e is a metric on X.

Exercise 5

We need to show that v satisfies conditions i-iv on X, in order to prove it is a metric on X:
i) v(z,y) =d(z,y) +e(z,y) >0, Y,y € X as the sum of two non-negative values.

i) v(z,y) =0 < dx,y) +elx,y) =0 <= dx,y) = Oande(z,y) =0 <= z =y,
Ve,y € X

iii) v(z,y) = d(z,y) + e(z,y) = d(y, ) + e(y, 7) = v(y,z), Yo,y € X

iv) We have that for all x,y,z,€ X

v(z,y) = d(z,y) + e(z,y)
< d(w,2) +d(z,y) + ez, 2) + e(z,1)
=d(z,2) +e(x,2) +d(z,y) +e(z,y)

=v(r,2)+v(z,y)
So v is a metric on X.

Exercise 7

We will examine the cases of the discrete metric (ds) on any arbitrary set (say X) and
exponential distance (d.) on the real numbers, with d.(z,y) = |e* — €¥|, Vz,y € R. Feel free to
examine alternative distance functions (such as d)|, d;, and dp.., seen in class) on appropriate

carrier sets (!).



Discrete Metric

For all x,y,z € X

(
0, rT+z=y+z2
ds(x + z,y+ 2) =

k1, rT+zFy+z
(

0, r=y

L1 T #y

= ds(z,y)

So ds is translation invariant.

Exponential Distance

We have that Vz,y, 2 € R

de(r + 2,y + 2) = |e"T% — V7|
= |ee* — e¥e?|
= |e(e” —¢)]
= e*le® — eY|

= GZde(CE, y)

which generally does not equal d.(x,y) for every possible z € R. So d. is not translation invariant.

Exercise 8

The function d,, is called the Minkowski distance. It is a more general metric function on R*, k € N*|
which covers the metrics discussed in class (d||, dr, and dp.q.) as special cases (for p =1, p = 2, and
as p — 0o, respectively).

To prove that d, is a metric on R¥, we need to show that it satisfies the properties of metric

functions, i-iv, on R*. To show subadditivity we will employ Hélder’s inequality.



i) For all z,y € R¥ and z;,y; € R the i-th elements of x and y, respectively, we have

|z, — vyl > 0,Vie{1,2,....k} <=

|J]Z‘ — yz|p > O,V’L S {1,2, ,]{7} S

k
Z|$z‘—?ﬁ|p20 —
i=1
i 1
(ZW _yi|p> 20 —
i=1

dp(xa y) 2 O

ii) For all z,y € R”

k ’
(Z |z — ?Jz’|p> =0
=1

k
Z|$z’—yz'|p:0 —

i=1
lz; —ys|P =0,Vie {1,2,...,k} < (sum of non-negative real numbers)
lz; —y;| = 0,Vi € {1,2, ...k} —
T = Vi, Vie{l,2,..,k} —

r=y
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ii) dy(v,y) = (S0 o —wil) " = (S0 e — i) = dy(y.2), Vay € R

iv) Consider Holder’s inequality for all z,y € RY

N N é N %
Z |ziyi| < (Z \$i|a> (Z |Z/z'|ﬁ)
=1 =1 =1

1 1
with a, 8 € (1,+00) such that — + 3 = 1. For a« = f = 2 we get the Cauchy-Schwartz
o
1
inequality. For z € RY we call ||z||, == (Zf\il |$i\p> " the p-norm of x.

Because of the restriction on a # 1 and 3 # 1, we need to consider the case of p = 1 separately.



Case: p=1
If for d, we have p = 1, then d, = d|| and subadditivity can be shown easily. For p > 1, we

proceed as follows.

Case: p>1

For any z,7, 2 € R such that = y we want to show that
dy(z,y) < dy(z, z) + dy(z,y) <0< dy(z,2) + dy(2,y) VRAN dy(z,z) > 0 and dy(z,y) > 0
which trivially holds for all z € RF.

For any x,y, z € R” such that x # y, consider the value of d,(x,y) raised to the power p

(dp(, )" = Z |z — il

k
=Z|$i—2i+2i—yi|p

i=1

k
= Z‘xz —zit 2z —yillwi — 2+ 2z =yl

i=1

k
< (i =zl + |z — wil)lwi — 2+ 2 — il

i=1

k k
= Z |z — zillei — zi+ 2 —wlP 7 + Z 2 — yillws — 2o + 2z — il

i=1 =1

k k
= Z i — zillws — wslP + Z |2 = yillzs =y~
i=1 i=1

We can apply Holder’s inequality for each of the two sums above. Choose a = p and find

as

1 1 1 P
—=l-- <= f=—7F < f=——
p B B p 1L p—1

p



So now by Hoélder’s inequality we have

o= (Frn ) (St -ar )

k » [k P
+ (Z yz|p> <Z (|5Ez - yz|p 1>p1>
=1 1z:l -
k » k v k P
= <Z|xz_zz|p> + <Z|Zz—yz|p) (Z (|xz_yz|p l)pl)
i=1 =1 i=1
K 5k > =
= (Z\wi—zi\p> + (Z‘Zz_wp) (Z‘xl_%’p
=1 =1 =1

Because  # y <= d,(z,y) # 0, by multiplying both sides by (d,(z, y))l_p we get
dy(z,y) < dp(z, 2) + dy(2,y)

as required.

We have proven that the Minkowski distance, d,, satisfies conditions i-iv on R* &k € N*, so d,, is a

metric on R*, k € N*.

Exercise 12

To define a metric, a carrier set is needed, which the exercise does not provide. So the answer is no.

If we were to choose as a carrier the set X C R",n € N, we can show that the proposed distance
function (henceforth d) does not possess the properties of metric functions (even if A a positive

definite matrix). For example:

10 0 2 1
X = RQ, A = 5 Tr = 3 y = , z =

01 0 0 0
d(z,y —2)A(x — 2 0—2)24(0-0)?2=

d(z,2) = (x —y)Alz —y) = (0-1)*+ (0-0)* =1
d(z,y) = (z=y)Az—y) = (1 -2+ (0-03 =1
which give d(z,y) > d(x, z) + d(z,y) (because 4 > 1+ 1), which violates the triangle inequality.



