Athens University of Economics and Business
Department of Economics
Postgraduate Program - MSc in Economic Theory
Course: Mathematical Economics (Mathematics II)
Some Solutions to Exercises 1
Prof: Stelios Arvanitis
TA: Dimitris Zaverdas
Semester: Spring 2018-2019

Exercise 1

(X, d_{x}) being a metric space means that $d: X \times X \rightarrow \mathbb{R}$ is a suitable metric function on the set X. So d_{x} satisfies the following properties:
i) $d_{x}(x, y) \geq 0, \forall x, y \in X$ (positivity)
ii) $d_{x}(x, y)=0 \Longleftrightarrow x=y, \forall x, y \in X$ (separateness)
iii) $d_{x}(x, y)=d_{x}(y, x), \forall x, y \in X$ (symmetry)
iv) $d_{x}(x, y) \leq d_{x}(x, z)+d_{x}(z, y), \forall x, y, z \in X$ (subadditivity/triangle inequality)
f being injective means that $f(x)=f(y) \Longleftrightarrow x=y, \forall x, y \in Z$.

The necessary and sufficient condition to prove that $\left(Z, d_{f}\right)$ is a metric space is that d_{f} be a suitable metric on Z, i.e. that d_{f} satisfies the required properties i-iv on Z. So we have:
i) $d_{f}(x, y)=d_{x}(f(x), f(y)) \stackrel{i}{\geq} 0, \forall f(x), f(y) \in X$.

Because f is a 1-1 correspondence from Z to X, we get that $d_{f}(x, y) \geq 0, \forall x, y \in Z$.
ii) $d_{f}(x, y)=0 \Longleftrightarrow d_{x}(f(x), f(y))=0 \stackrel{i i}{\Longleftrightarrow} f(x)=f(y) \stackrel{f 1-1}{\Longleftrightarrow} x=y, \forall x, y \in Z$
iii) $d_{f}(x, y)=d_{x}(f(x), f(y)) \stackrel{i i i}{=} d_{x}(f(y), f(x)) \stackrel{f}{=} \stackrel{1-1}{=} d_{f}(y, x), \forall x, y \in Z$
iv) $d_{f}(x, y)=d_{x}(f(x), f(y)) \stackrel{i v}{\leq} d_{x}(f(x), f(z))+d_{x}(f(z), f(y)) \stackrel{f}{=} \stackrel{1-1}{=} d_{f}(x, z)+d_{f}(z, y), \forall x, y, z \in Z$

We have shown that d_{f} satisfies properties i-iv on Z. So d_{f} is a metric on Z and $\left(Z, d_{f}\right)$ is a metric space.

Exercise 2

It holds for all $x, y, z \in X$ that

$$
\begin{aligned}
|d(x, z)-d(z, y)| & \stackrel{i v}{\leq}|d(x, y)+d(y, z)-d(z, y)| \\
& \stackrel{i i i}{=}|d(x, y)| \\
& \stackrel{i}{=} d(x, y)
\end{aligned}
$$

Exercise 4

To show that e is a metric on X, we must show that it has the properties i-iv on X :
i) $d(x, y) \geq 0 \Rightarrow 1+d(x, y)>0, \forall x, y \in X$ so e is a well defined real function and $e(x, y)=\frac{d(x, y)}{1+d(x, y)} \geq 0, \forall x, y \in X$ as the ratio of a non-negative number over a positive number.
ii) $e(x, y)=0 \Longleftrightarrow \frac{d(x, y)}{1+d(x, y)}=0 \Longleftrightarrow d(x, y)=0 \Longleftrightarrow{ }^{i i} \Longleftrightarrow x=y, \forall x, y \in X$
iii) $e(x, y)=\frac{d(x, y)}{1+d(x, y)} \stackrel{i i i}{=} \frac{d(y, x)}{1+d(y, x)}=e(x, y), \forall x, y \in X$
iv) Consider the functions $f: \mathbb{R}_{+} \rightarrow \mathbb{R}, f(x)=\frac{x}{1+x}$ and $g: \mathbb{R}_{+} \rightarrow \mathbb{R}, g(x)=\frac{\alpha}{1+x}, \alpha \geq 0$. Because f and g are differentiable we can study their monotonicity by taking their first derivatives

$$
\frac{\partial f}{\partial x}(x)=\frac{1(1+x)-x \cdot 1}{(1+x)^{2}}=\frac{1}{(1+x)^{2}}>0, \forall x>0
$$

So f is strictly increasing. And

$$
\frac{\partial g}{\partial x}(x)=\frac{0(1+x)-\alpha \cdot 1}{(1+x)^{2}}=\frac{-\alpha}{(1+x)^{2}} \leq 0, \forall x>0
$$

So g is weakly decreasing.

By subadditivity of d we know that $d(x, y) \leq d(x, z)+d(z, y)$ and we have

$$
\begin{aligned}
e(x, y) & =\frac{d(x, y)}{1+d(x, y)} \\
& f \text { st.inc. } \frac{d(x, z)+d(z, y)}{1+d(x, z)+d(z, y)} \\
& =\frac{d(x, z)}{1+d(x, z)+d(z, y)}+\frac{d(z, y)}{1+d(x, z)+d(z, y)} \\
& g \text { dec. } \frac{d(x, z)}{1+d(x, z)}+\frac{d(z, y)}{1+d(z, y)} \\
& =e(x, z)+e(z, y), \forall x, y \in X
\end{aligned}
$$

We have shown that e has the properties i-iv on X. So e is a metric on X.

Exercise 5

We need to show that ν satisfies conditions i-iv on X, in order to prove it is a metric on X :
i) $\nu(x, y)=d(x, y)+e(x, y) \stackrel{i}{\geq} 0, \forall x, y \in X$ as the sum of two non-negative values.
ii) $\nu(x, y)=0 \Longleftrightarrow d(x, y)+e(x, y)=0 \Longleftrightarrow d(x, y)=0$ and $e(x, y)=0 \quad \stackrel{i i}{\Longleftrightarrow} x=y$, $\forall x, y \in X$
iii) $\nu(x, y)=d(x, y)+e(x, y) \stackrel{i i i}{=} d(y, x)+e(y, x)=\nu(y, x), \forall x, y \in X$
iv) We have that for all $x, y, z, \in X$

$$
\begin{aligned}
\nu(x, y) & =d(x, y)+e(x, y) \\
& \stackrel{i v}{\leq} d(x, z)+d(z, y)+e(x, z)+e(z, y) \\
& =d(x, z)+e(x, z)+d(z, y)+e(z, y) \\
& =\nu(x, z)+\nu(z, y)
\end{aligned}
$$

So ν is a metric on X.

Exercise 7

We will examine the cases of the discrete metric $\left(d_{\delta}\right)$ on any arbitrary set (say X) and exponential distance (d_{e}) on the real numbers, with $d_{e}(x, y)=\left|e^{x}-e^{y}\right|, \forall x, y \in \mathbb{R}$. Feel free to examine alternative distance functions (such as $d_{\|}, d_{I}$, and $d_{\max }$ seen in class) on appropriate carrier sets (!).

Discrete Metric

For all $x, y, z \in X$

$$
\begin{aligned}
d_{\delta}(x+z, y+z) & = \begin{cases}0, & x+z=y+z \\
1, & x+z \neq y+z\end{cases} \\
& = \begin{cases}0, & x=y \\
1, & x \neq y\end{cases} \\
& =d_{\delta}(x, y)
\end{aligned}
$$

So d_{δ} is translation invariant.

Exponential Distance

We have that $\forall x, y, z \in \mathbb{R}$

$$
\begin{aligned}
d_{e}(x+z, y+z) & =\left|e^{x+z}-e^{y+z}\right| \\
& =\left|e^{x} e^{z}-e^{y} e^{z}\right| \\
& =\left|e^{z}\left(e^{x}-e^{y}\right)\right| \\
& =e^{z}\left|e^{x}-e^{y}\right| \\
& =e^{z} d_{e}(x, y)
\end{aligned}
$$

which generally does not equal $d_{e}(x, y)$ for every possible $z \in \mathbb{R}$. So d_{e} is not translation invariant.

Exercise 8

The function d_{p} is called the Minkowski distance. It is a more general metric function on $\mathbb{R}^{k}, k \in \mathbb{N}^{*}$, which covers the metrics discussed in class $\left(d_{\|}, d_{I}\right.$, and $d_{\text {max }}$) as special cases (for $p=1, p=2$, and as $p \rightarrow \infty$, respectively).

To prove that d_{p} is a metric on \mathbb{R}^{k}, we need to show that it satisfies the properties of metric functions, i-iv, on \mathbb{R}^{k}. To show subadditivity we will employ Hölder's inequality.
i) For all $x, y \in \mathbb{R}^{k}$ and $x_{i}, y_{i} \in \mathbb{R}$ the i-th elements of x and y, respectively, we have

$$
\begin{aligned}
\left|x_{i}-y_{i}\right| & \geq 0, \forall i \in\{1,2, \ldots, k\} \\
\left|x_{i}-y_{i}\right|^{p} & \geq 0, \forall i \in\{1,2, \ldots, k\} \Longleftrightarrow \\
\sum_{i=1}^{k}\left|x_{i}-y_{i}\right|^{p} & \geq 0 \Longleftrightarrow \\
\left(\sum_{i=1}^{k}\left|x_{i}-y_{i}\right|^{p}\right)^{\frac{1}{p}} & \geq 0 \Longleftrightarrow \\
d_{p}(x, y) & \geq 0
\end{aligned}
$$

ii) For all $x, y \in \mathbb{R}^{k}$

$$
\begin{aligned}
& d_{p}(x, y)=0 \Longleftrightarrow \\
&\left(\sum_{i=1}^{k}\left|x_{i}-y_{i}\right|^{p}\right)^{\frac{1}{p}}=0 \Longleftrightarrow \\
& \sum_{i=1}^{k}\left|x_{i}-y_{i}\right|^{p}=0 \Longleftrightarrow \\
&\left|x_{i}-y_{i}\right|^{p}=0, \forall i \in\{1,2, \ldots, k\} \Longleftrightarrow \\
&\left|x_{i}-y_{i}\right|=0, \forall i \in\{1,2, \ldots, k\} \quad \Longleftrightarrow \\
& x_{i}=y_{i}, \quad \forall i \in\{1,2, \ldots, k\} \Longleftrightarrow \\
& x=y
\end{aligned}
$$

iii) $d_{p}(x, y)=\left(\sum_{i=1}^{k}\left|x_{i}-y_{i}\right|^{p}\right)^{\frac{1}{p}}=\left(\sum_{i=1}^{k}\left|y_{i}-x_{i}\right|^{p}\right)^{\frac{1}{p}}=d_{p}(y, x), \forall x, y \in \mathbb{R}^{k}$
iv) Consider Hölder's inequality for all $x, y \in \mathbb{R}^{N}$

$$
\sum_{i=1}^{N}\left|x_{i} y_{i}\right| \leq\left(\sum_{i=1}^{N}\left|x_{i}\right|^{\alpha}\right)^{\frac{1}{\alpha}}\left(\sum_{i=1}^{N}\left|y_{i}\right|^{\beta}\right)^{\frac{1}{\beta}}
$$

with $\alpha, \beta \in(1,+\infty)$ such that $\frac{1}{\alpha}+\frac{1}{\beta}=1$. For $\alpha=\beta=2$ we get the Cauchy-Schwartz inequality. For $x \in \mathbb{R}^{N}$ we call $\|x\|_{p}:=\left(\sum_{i=1}^{N}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}$ the p-norm of x.
Because of the restriction on $\alpha \neq 1$ and $\beta \neq 1$, we need to consider the case of $p=1$ separately.

Case: $p=1$
If for d_{p} we have $p=1$, then $d_{p}=d_{\| \mid}$and subadditivity can be shown easily. For $p>1$, we proceed as follows.

Case: $p>1$
For any $x, y, z \in \mathbb{R}^{k}$ such that $x=y$ we want to show that

$$
d_{p}(x, y) \leq d_{p}(x, z)+d_{p}(z, y) \stackrel{i i}{\Longleftrightarrow} 0 \leq d_{p}(x, z)+d_{p}(z, y) \stackrel{i}{\Longleftrightarrow} d_{p}(x, z) \geq 0 \text { and } d_{p}(z, y) \geq 0
$$

which trivially holds for all $z \in \mathbb{R}^{k}$.

For any $x, y, z \in \mathbb{R}^{k}$ such that $x \neq y$, consider the value of $d_{p}(x, y)$ raised to the power p

$$
\begin{aligned}
\left(d_{p}(x, y)\right)^{p} & =\sum_{i=1}^{k}\left|x_{i}-y_{i}\right|^{p} \\
& =\sum_{i=1}^{k}\left|x_{i}-z_{i}+z_{i}-y_{i}\right|^{p} \\
& =\sum_{i=1}^{k}\left|x_{i}-z_{i}+z_{i}-y_{i}\right|\left|x_{i}-z_{i}+z_{i}-y_{i}\right|^{p-1} \\
& \leq \sum_{i=1}^{k}\left(\left|x_{i}-z_{i}\right|+\left|z_{i}-y_{i}\right|\right)\left|x_{i}-z_{i}+z_{i}-y_{i}\right|^{p-1} \\
& =\sum_{i=1}^{k}\left|x_{i}-z_{i}\right|\left|x_{i}-z_{i}+z_{i}-y_{i}\right|^{p-1}+\sum_{i=1}^{k}\left|z_{i}-y_{i}\right|\left|x_{i}-z_{i}+z_{i}-y_{i}\right|^{p-1} \\
& =\sum_{i=1}^{k}\left|x_{i}-z_{i}\right|\left|x_{i}-y_{i}\right|^{p-1}+\sum_{i=1}^{k}\left|z_{i}-y_{i}\right|\left|x_{i}-y_{i}\right|^{p-1}
\end{aligned}
$$

We can apply Hölder's inequality for each of the two sums above. Choose $\alpha=p$ and find β as

$$
\frac{1}{p}+\frac{1}{\beta}=1 \Longleftrightarrow \frac{1}{\beta}=1-\frac{1}{p} \Longleftrightarrow \beta=\frac{1}{1-\frac{1}{p}} \Longleftrightarrow \beta=\frac{p}{p-1}
$$

So now by Hölder's inequality we have

$$
\begin{aligned}
\left(d_{p}(x, y)\right)^{p} & \leq\left(\sum_{i=1}^{k}\left|x_{i}-z_{i}\right|^{p}\right)^{\frac{1}{p}}\left(\sum_{i=1}^{k}\left(\left|x_{i}-y_{i}\right|^{p-1}\right)^{\frac{p}{p-1}}\right)^{\frac{p-1}{p}} \\
& +\left(\sum_{i=1}^{k}\left|z_{i}-y_{i}\right|^{p}\right)^{\frac{1}{p}}\left(\sum_{i=1}^{k}\left(\left|x_{i}-y_{i}\right|^{p-1}\right)^{\frac{p}{p-1}}\right)^{\frac{p-1}{p}} \\
& =\left(\left(\sum_{i=1}^{k}\left|x_{i}-z_{i}\right|^{p}\right)^{\frac{1}{p}}+\left(\sum_{i=1}^{k}\left|z_{i}-y_{i}\right|^{p}\right)^{\frac{1}{p}}\right)\left(\sum_{i=1}^{k}\left(\left|x_{i}-y_{i}\right|^{p-1}\right)^{\frac{p}{p-1}}\right)^{\frac{p-1}{p}} \\
& =\left(\left(\sum_{i=1}^{k}\left|x_{i}-z_{i}\right|^{p}\right)^{\frac{1}{p}}+\left(\sum_{i=1}^{k}\left|z_{i}-y_{i}\right|^{p}\right)^{\frac{1}{p}}\right)\left(\sum_{i=1}^{k}\left|x_{i}-y_{i}\right|^{p}\right)^{\frac{p-1}{p}} \\
& =\left(d_{p}(x, z)+d_{p}(z, y)\right)\left(d_{p}(x, y)\right)^{p-1}
\end{aligned}
$$

Because $x \neq y \Longleftrightarrow d_{p}(x, y) \neq 0$, by multiplying both sides by $\left(d_{p}(x, y)\right)^{1-p}$ we get

$$
d_{p}(x, y) \leq d_{p}(x, z)+d_{p}(z, y)
$$

as required.
We have proven that the Minkowski distance, d_{p}, satisfies conditions i-iv on $\mathbb{R}^{k}, k \in \mathbb{N}^{*}$, so d_{p} is a metric on $\mathbb{R}^{k}, k \in \mathbb{N}^{*}$.

Exercise 12

To define a metric, a carrier set is needed, which the exercise does not provide. So the answer is no.

If we were to choose as a carrier the set $X \subseteq \mathbb{R}^{n}, n \in \mathbb{N}$, we can show that the proposed distance function (henceforth d) does not possess the properties of metric functions (even if A a positive definite matrix). For example:
$X=\mathbb{R}^{2}, \quad A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right], \quad x=\left[\begin{array}{l}0 \\ 0\end{array}\right], \quad y=\left[\begin{array}{l}2 \\ 0\end{array}\right], \quad z=\left[\begin{array}{l}1 \\ 0\end{array}\right]$
$d(x, y)=(x-z)^{\prime} A(x-z)=(0-2)^{2}+(0-0)^{2}=4$
$d(x, z)=(x-y)^{\prime} A(x-y)=(0-1)^{2}+(0-0)^{2}=1$
$d(z, y)=(z-y)^{\prime} A(z-y)=(1-2)^{2}+(0-0)^{2}=1$
which give $d(x, y)>d(x, z)+d(z, y)$ (because $4>1+1$), which violates the triangle inequality.

