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Total Boundedness



Total boundedness
Remember : by 4 reducing, any finite open (closed)
cover to a single ball we have proven an

equivalent definition of boundedness :

* A EX is d - bounded iff F e>O : I a finite
(closed)

collection of open balls of radius e thot covers A
.

③ What do we obtain if we transform the firstexistentialquantifier CF) to a universal Ct)

is we have to be careful: allow the finite collection

characteristics [centers
, cardinality] to depend on e in

order to obtain something "general"
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↳ contrast this with
boundedness



↳ the "curious, discrete spaces can also be useful
in uncovering the

"

strength, of "similar, , notions

pls
counterexamples are easy to

construce: e.og . Cpi , d⇒ , In, dmad , Tdd
are not bounded⇒ they are not totally boundedair. t

. the respective metrics .
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↳ bae ( apologies for the multi-notation !)
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[Our approach : not very rigorous

*to

↳ well defined as a function of e,d,A
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Finally % What about total boundedness in Metric
subspaces ?

Cos a subset of X)
it A is totally bounded then f e>O F r

p r
-

{QcxiI thatrcauerst -r
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I ?dCxixi.CA , it , . . .,nee)) covers A r
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He>0 if E Odacxi ,e) , into. ., need covers A =D
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Hence, *ofAidAistotaldyboan@Leaeaeoc.t

. is Cd -I totally bounded ith the Metric
space t ,da is totally bounded/

-

(we can simply restrict our attention to whole Metric
spaces) .



*When is A EX not totally bounded Carr
.
e. d)?

F =

⇐ I Deny the property: "the>0 , F a finite collection of open

ballsofrocdiuse-chatcove.rs#y⇒ Fe>O
,
(f) every finite collection of open balls ofradiuseeam.to?en!!qg;.qg.#ognanes

* total boundedness =D boundedness ⇒

A is not bounded⇒ A is not totally bounded

* From the denial of the definition of total boundedness

we obtain :

if A EB and A is not totally bounded

=D B is not totally bounded

Hence dually to the previous lemma,
"

failure
, ,
of

total boundedness is inherited by the supersetS,


