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Implementing QMLE for ARMA models  

and the  

Newton-Raphson numerical algorithm 
  

In this short note we show explicitly the twists and turns needed to implement 

maximum likelihood estimation for an ARMA model, including a quick mathematical 

exposition and geometric intuition for the Newton-Raphson numerical algorithm.  

By calling the approach "QMLE"(quasi-MLE) we mean  

 That we will implement a model where we will assume the normal 

density/likelihood function 

 We will be modest enough to acknowledge that the true likelihood is... likely 

not normal. 

The full technical apparatus needed to consider and reliably estimate ARMA models 

by maximum likelihood won't be repeated here (neither the regularity conditions for the 

MLE). 

We will treat the ARMA(1,1) model for clarity, but the approach generalizes 

immediately to ARMA(p,q) models. 

 

1. QMLE for ARMA models 

We have a data sample  1,..., Ty y  and we assume the following ARMA (1,1) model 

for it: 

 

 1 1 , i.i.d. N 0,1t t t t ty ay v v v                     [1] 
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Setting the variance of the error process equal to zero is a simplification to focus on 

the essence. 

Following automatically the steps to implement maximum likelihood estimation, we 

would write  

 

1 1t t t tv y ay v                       [2] 

 

and we would consider the joint density of the elements of the error process turned 

into the (average) log-likelihood of the sample (ignoring constants) 
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The problem we face is obvious: the log-likelihood does not contain only data and 

unknown parameters, but also the unobservable terms of the lagged error process. It 

cannot be computed or maximized as such. A second minor issue is that we cannot start 

the index of the sum at 1t   because we would be asking for data on 0t   also, and we 

don't have that either. 

Let's first correct this small issue: 
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Now for the big issue: how can we express the error elements in terms of data and 

unknown parameters? Writing [2] for 2t   and 3t   we note that  

 

2 2 1 1v y ay v       and  3 3 2 2v y ay v    

 

So if we just impose the additional assumption  1 0v    we will get 
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2 2 1v y ay        and  3 3 2 2 3 2 2 1v y ay v y ay y ay         

 

e.t.c. With just this one additional assumption, we can write all error terms present in 

[3] in terms of available data and unknown parameters. Let's attempt to do that, writing 

first the oldest terms:  
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   
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      


             [4] 

 

Ok, it's getting very tedious and very complicated just to write it out explicitly, let 

alone take correct derivatives manually. Happily, we don't have to do it, we let the 

software do it for us. 

The generalization to ARMA(p,q) is obvious: if the assumed MA lag-order is equal 

to q , we have to impose the assumption 1 2 ... 0qv v v    . 

Clearly, 1 0v   or 1 2 ... 0qv v v     are wrong conditions/assumptions. But in the 

weakly stationary framework we work in here, as long as we have a sample of some 

length, their effect will eventually wear out and won't really impact the quality of our 

inference. 

 

2. The Newton-Raphson numerical algorithm 

Something else that is clear from [4], is that, even if we managed to write explicitly  

the gradient of the log-likelihood (its first derivatives), we wouldn't obtain an analytical 

solution for the parameters under estimation (unknowns only on one side, data only on 

the other). If we don't get that, the software doesn't either.  

What can we do? Just guessing values for the parameters ad hoc and calculating the 

value of the gradient to see whether it equals zero (or the value of the log-likelihood itself 

for that matter), is very inefficient and may take forever. So we need an approach where 
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we start from some perhaps arbitrary values, but then we have a way to make the next 

"guess" better (as in "closer to the argmax"), using the previous guess. 

There are very many such "numerical calculation" algorithms, the oldest used in 

maximum likelihood being the "Newton-Raphson algorithm" (and many of the others 

being refinements, extensions, or similar in spirit to it). This is 17th century staff, in case 

you wonder. 

 

2.1 Newton-Raphson for maximization problems 

To connect clearly the algorithm to the maximization logic of the QMLE, we will 

assume that we have a single parameter to estimate, so we want to maximize over   the 

log-likelihood  L   where the data sample has been suppressed in notation. 

We first apply a 2nd-order Taylor expansion on the function (silently assuming that 

the log-likelihood has the properties that allow for such an expansion) around some 

perhaps arbitrarily chosen by us (and so known) value 1  : 

 

           
21

1 1 1 1 1 2 12
,L L L L R                 

 

So taking the first-derivative of the left-hand side is equivalent to taking the same 

derivative on the right hand side. The only problem is the existence of the unkowable 

Taylor remainder  2 1,R   . Since 1  is chosen without any guidance, don't think that 

 2 1,R    will be "small" - it may be really large. 

The usual exposition here goes something like "ignore the remainder and take the 

first derivative on the rest", but we can provide a bit more intuition. Move the remainder 

to the left-hand side, 

 

           
21

2 1 1 1 1 1 12
,L R L L L                             [5] 

 

...and we see that by attempting to maximize the right hand side, in reality we attempt 

to maximize the difference of the value of the log-likelihood from the Taylor remainder: 
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           
21

2 1 1 1 1 1 12
,L R L L L         

 

              
 

 

Think about that. Maximizing this difference means that  2 1,R    gets small and/or 

that  L   gets large. Either tendency is a desirable direction to take, so it appears that we are 

onto something here. We then set the derivative equal to zero, 

 

            
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1 1 1 1 1 1 1 12
0 0L L L L L          



             
 
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                    [6] 

 

Equation [6] gives us the optimal value for   given the arbitrarily chosen 1 . Informally, it 

is the best that we can do at this stage, given the constraint of our initial ignorance. So we 

do not expect that * ˆ
MLE  , i.e. that it is the actual argmax of the log-likelihood. But *  

has a great advantage over 1 : it is optimally chosen (under the ignorance constraint), not 

arbitrarily. And also, nobody said that we have to stop here. Now, instead of an arbitrarily 

chosen value for  , we have a better value for it. So why not start over? So we name 

*

2   and we write again  

 

           
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,L R L L L                 
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So, 3  optimizes in relation to 2 that was the optimal choice given the arbitrary 1 ... we 

have now put two rounds of optimal choice between us and the initial arbitrary value. 

Next, a third round of optimization, etc. It sounds not naive to expect that such a 

procedure, after a finite number of steps, say m , will lead us to  
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 ˆ ˆ: 0m MLE MLEL                      [8] 

 

And indeed it can do that, subject of course to certain "nice" properties of the 

likelihood function. For example, from the above equation we see that we would not want 

the second derivative of the likelihood to become zero or very close to zero, since we want 

it in the denominator.  

In any case, note that what we obtain is a "stationary" point of the function, a 

candidate exrtremum, not necessarily a maximum, and not necessarily the global maximum.  

It is in order to have assurance that we are hunting a maximum that we usually 

require the log-likelihood to be a concave function (in the parameters).  

Still, if the likelihood is not monotonic in the unknown parameter, it may be the case, 

that by unfortunate choice of the initial 1 , we are lead by the algorithm to a local 

maximum, not the global one. 

 

This is why it is mandatory for good empirical research to estimate a model using 

more than one (and more than two) "starting values" for the numerical algorithms, i.e 

different values for 1 in our case. Additionally, we should exploit any out of sample 

information to infuse these initial guesses with some realism (say, that they most likely be 

"smaller than unity" for example, given the data, the model, the real world situation we 

examine, etc). Sometimes we estimate them through some other estimation procedure like 

OLS. 

The reason why many numerical algorithms exist, is that we have not found one that 

always converges to where it is supposed to, and does so more efficiently than any other. 

So the Newton-Raphson algorithm may fail in certain cases. Usually, statistical and 

econometric software offer various alternative algorithms to choose from. 

 

2.2 Newton-Raphson - geometrical intuition 

We now present a diagram that shows the geometric logic of the Newton-Raphson 

algorithm. 
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          The descending line is the graph of the gradient of the log-likelihood, and we want 

to arrive at the black dot and ˆMLE  that gives  ˆ 0MLEL   . 

We start at an arbitrary 1 . We find the corresponding point in the graph of  1L   

(point A) and draw the tangent to it until we cross the horizontal axis (point B). The angle 

ABC equals the value of the derivative of  1L  ,  1L  . At the same time, it is equal to 

the ratio of the height  1AC L  divided by the length 2 1BC     (and the minus sign 

since the slope is negative). Rearranging the expression shown in the diagram, we obtain   
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But this is exactly what we will obtain if we maximize with respect to   the Taylor 

expansion of  L  around 1 (without the remainder). We then start from 2 , find the 

corresponding point of  2L  , draw the tangent to get 3 , etc. We see that we tend to get 

closer to ˆMLE . -- 
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