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An example of a "Long-memory" process

Definition: A weakly stationary stochastic process (Xt )teZ with autocovariance function

Y, is said to have "long-memory" if Zf:0|Yk| =0 .

An example.

Consider (ut )te‘Z a strictly stationary White Noise process WN (O'U2 ) , and a real sequence

(Hj )j N VteZ we initially define

© o - r(j+d)

=>0u_., =, d>0,
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where I’ () is the Gamma function. The parameter d is called the "memory parameter".
We will see that in order for Y, to be well defined, we will have to strengthen the

restrictions on the value of d to 0<d <1/2.

The Gamma function satisfies the identity

N _ I(j+d)
r(ji+1)=ijr(j)= Q-W

The following exact relation holds between the Gamma function and the Beta function

B(j,a)-tUWI@ 1

- T(j+d) 7 iB(j,d)

Using the Stirling approximation for "large" j and fixed/small d as is our case, we have
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B(j,d)~T(d)j'=6 r——— = 6 ~———— while note that §, =1 tly.
(j,d)=T(d)j " =¥, RO = 0 I while note that 6, =1 exactly

Note also that I" (d ) is bounded and does not depend on the index.

Convergence.

From the theory of infinite series we know that

zjli_d diverges since 1-d <1, Vd >0

=1

And the coefficient series is not absolutely summable.

But consider

- c 1
20— 1+ 2w

1
= (r(d)) =i
Whether this converges depends on the actual value of d .

If 0<d <1/2 we obtain 2-2d >2—2%:1, in which case ZQJZ < 400,

j=0

Namely, for 0<d <1/2 we have square-summability of the coefficient series.
Square-summability guarantees that Y, = Zﬁj U,_; "converges in mean-square” to some
j=0

random variable (see Hamilton's book Appendix 3.A, pp 69-70).

So we eventually impose 0<d <1/2, and we have square-summability but not absolute

summability. Square-summability (and hence convergence), implies also that we can

interchange the expected value (an integral) with the infinite summation.
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Weak stationarity of vy, .

{26’2 : +29 ‘9 ut—jut—i} = E{iefutz—j]" E|:iejei ut—jut—i:|

j=0 j#i j=0

-3 OE( )+ 2 AAE (U JE(u) -0t X6t + 0 <
1= i=

j=i
...finite and not depending on the index.

We see that we need square summability in order to obtain a finite variance.

3. Autocovariance .

Vi :COV(yta yt—k): E(ytyt—k)_E(yt)E(yt—k): E(ytyt—k)
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=k

Cross-products are zero so we are left with

Y = E(eogkutz—k +919k+1ut2—k—1+- ) 60, E( t- k)+90k+lE( t—k 1)+
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> 2 +d r(j+k+d
=Y, =0.2.0,0,., = Z r(i+d) (J )
j=0

ST(j+1)r(d)r(j+k+1r(d)

This expression, which is just a single covariance term, does not depend on the index (it is

"summed out" in the analogous sense that we "integrate out" a variable). We can

write

2% 2 2% 1 1 2 o w 1
Y. =0,) 00, =00 + o, — _ —=0,0, + 4 —
k JZ_(; 7tk k JZ_];F(d)Jld F(d)(]—'—k)ld k (F d)Z;('Z_}_jk)ld

which leads to

Since k is fixed, the leading term in the denominator is equivalent to ——
J

convergence as long as 0<d <1/2. So the autocovariance function exists for all k.

Also, it does not depend on the index, and certainly not on t, but on k only.

So the y-process is weakly stationary.

2 2 2 2
But sz > 0'u6’0+0'u91+0'u02+...—0'u29j—>oo
k=0 j=0

So the infinite sum Z v, diverges. Therefore, the process
k=0

e r(j+d) 1
= 0 iy 0-=—, O d )
%=2 0 S a0

is weakly stationary with "long memory".

Note: "Long memory" alone would not be a useful concept and tool. But together with
weak stationarity, it enhances the concepts we have available to model and estimate

real-world phenomena.

Exercises : Examine summability, weak stationarity etc in the following cases:

1y =u+ ZHJ. U_;, M€ R, everything else the same.
j=0

2.For y, = ZHJ- U,_; suppose that (ut )teZ has the same properties as before, except that

now E(u)=6#0 .-



