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An example of a "Long-memory" process 

Definition: A weakly stationary stochastic process  t t
x


 with autocovariance function 

γk  is said to have "long-memory" if 
0
γkk




   . 

 

An example. 

Consider  t t
u


a strictly stationary White Noise process  2WN u , and a real sequence 

 j j



 .  t   we initially define  

 

 

   0

, , 0,
1

t j t j j

j

j d
y u d

j d
 







 
  

  
  

 

where     is the Gamma function. The parameter d  is called the "memory parameter". 

We will see that in order for ty  to be well defined, we will have to strengthen the 

restrictions on the value of d  to 0 1 2d  . 

 

The Gamma function satisfies the identity   

 

   
 

   
1 j

j d
j j j

j j d


 
     

 
 

 

The following exact relation holds between the Gamma function and the Beta function  

 

 
   

   
1

,
,

j

j d
j d

j d j j d


 
   

  
 

 

Using the Stirling approximation for "large" j  and fixed/small d  as is our case, we have  
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   
    1

1 1
, d

j jd d
j d d j

j d j d j
 

 
      

 
  while note that 0 1   exactly. 

 

Note also that  d  is bounded and does not depend on the index. 

 

Convergence. 

From the theory of infinite series we know that  

 

1
1

1
d

j j






   diverges since 1 1, 0d d     

 

So 
  1

0 0 1

1 1
1j j d

j j jd j
 

  


  

   


    

 

And the coefficient series is not absolutely summable. 

 

But consider  

 

  
2

2 2 2
0 1

1 1
1j d

j j jd


 


 

 


    

 

Whether this converges depends on the actual value of d . 

 

If 0 1 2d   we obtain  
1

2 2 2 2 1
2

d    , in which case 2

0

j

j






  .  

 

Namely,  for 0 1 2d  we have square-summability of the coefficient series.   

Square-summability guarantees that 
0

t j t j

j

y u






  "converges in mean-square" to some 

random variable (see Hamilton's book Appendix 3.A, pp 69-70).  

 

So we eventually impose 0 1 2d  , and we have square-summability but not absolute 

summability. Square-summability (and hence convergence), implies also that we can 

interchange the expected value (an integral) with the infinite summation. 
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Weak stationarity of ty  . 

 

1.      0

0 0 0 0

0 0t j t j j t j j j

j j j j

E y E u E u E u   
   

 

   

 
      

 
     

 

2.   
2

0 0 0

Var t j t j j t j j t j

j j j

y E u E u u  
  

  

  

     
       

      
    

 

     

2 2 2 2

0 0

2 2 2 2

0 0

0

j t j j i t j t i j t j j i t j t i

j j i j j i

j t j j i t j t i u j

j j i j

E u u u E u E u u

E u E u E u

     

    

   

     

   

  

  

  

     
        

     

    

   

  

 

 

 ...finite and not depending on the index. 

 

 We see that we need square summability in order to obtain a finite variance. 

 

 

3. Autocovariance . 

 

         γ Cov ,k t t k t t k t t k t t ky y E y y E y E y E y y        

 

1

0 0 0 0

1

0 0 0

k

j t j j t k j j t j j t j j t k j

j j j j k j

k

j t j j t k j j t j j t k j

j j j k j

E u u E u u u

E u u E u u
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   

    

      

    

   

     

   

        
          

           

        
         

           

    

   

 

 

  1 1 0 1 1

0

0 ... ...j t j j t k j k t k k t k t k t k

j k j

E u u E u u u u     
 

         

 

   
         

    
   

 

 Cross-products are zero so we are left with  

 

     2 2 2 2

0 1 1 1 0 1 1 1γ ... ...k k t k k t k k t k k t kE u u E u E u                   
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 

   

 

   
2 2

0 0

γ
1 1

k u j j k u

j j

j d j k d

j d j k d
   

 



 

    
  

      
   

 

This expression, which is just a single covariance term,  does not depend on the index ( it is 

"summed out" in the analogous sense that we "integrate out" a variable). We can 

write 

 

         

2
2 2 2 2

1 2 11 2
0 1 1

1 1 1
γ u

k u j j k u k u u kd dd
j j jd j d j k d j jk


       

  

  
  

    
    

  

 

Since k is fixed, the leαding term in the denominator is equivalent to 
2 2

1
dj 

 which leads to 

convergence as long as 0 1 2d  . So the autocovariance function exists for all k. 

Also, it does not depend on the index, and certainly not on t , but on k only. 

 

So the y-process is weakly stationary. 

 

But   2 2 2 2

0 1 2

0 0

γ ...k u u u u j

k j

       
 

 

        

 

So the infinite sum  
0

γk

k





  diverges. Therefore, the process  

 

 

   0

1
, , 0 ,

1 2
t j t j j

j

j d
y u d

j d
 







 
   

  
  

 

is weakly stationary with "long memory". 

 

Note: "Long memory" alone would not be a useful concept and tool. But together with 

weak stationarity, it enhances the concepts we have available to model and estimate 

real-world phenomena. 

 

Exercises : Examine summability, weak stationarity etc in the following cases: 

1. 
0

,t j t j

j

y u  






   , everything else the same. 

2. For 
0

t j t j

j

y u






  suppose that  t t
u


 has the same properties as before, except that 

now   0tE u   .-- 


