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Part II

1 Stationarity and Birkhoff’s LLN

The two stationarity notions do not suffice for the establishment of LLN’s with degenerate
limits. Further restrictions are needed on the dependence between the elements of the
process as structured in the fidis. There are several ways to proceed in order to handle this
structure. Given the non-rigorous nature of the notes themost convenientway to proceed
(w.r.t. the simplicity of verification in what follows) is by the utilization of the notion of
ergodicity.

In order to proceed in this fashion, we briefly examine the asymptotic behavior of arith-
metic means in the framework of strict stationarity. Suppose thus that 𝑥 = (𝑥𝑡)𝑡∈ℤ is a
stationary process. The following definition concerns an information set constructed by
the measurable subsets of the set of sample paths of the process which have a particular
connection to the action of the 𝐿⋆ operator.

Definition 1. The algebra of invariant events 𝒥𝑥 of 𝑥 is the one generated by every mea-
surable subset of the set of sample paths of 𝑥 that remains invariant w.r.t. 𝐿⋆, i.e. every
such 𝐴, for which 𝐿⋆ (𝐴) ⊆ 𝐴.

Intuitively 𝒥𝑥 can be perceived as equivalent to the informational content of the set of
random processes essentially constructed by the elements of the sets of invariant events.
It can be chosen to be “large enough” so as not to depend on the particular process 𝑥
but merely on the 𝜎-algebra with which its range is endowed with. 𝒥𝑥 is trivial iff every
event in it has either zero or one probability (w.r.t. ℙ). This is equivalent to that every
one of the aforementioned random processes is essentially constant. By the definition of
the conditional expectation if 𝔼 (|𝑥0|) < +∞, then 𝔼 (𝑥0/𝒥𝑥) is a well defined random
variable, with expectation equal to 𝔼 (𝑥0) due to the L.I.E., and 𝔼 (𝑥0/𝒥𝑥) is constant iff
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𝒥𝑥 is trivial. The following LLN may therefore specify convergence to a non-constant (i.e.
stochastic) limit.

Lemma 1. [Birkhoff’s LLN-Stationarity] If 𝑥 = (𝑥𝑡)𝑡∈ℤ is stationary and 𝔼 (|𝑥0| < +∞) then
1
𝑇

𝑇
∑
𝑡=1

𝑥𝑡 → 𝔼 (𝑥0/𝒥𝑥),ℙ a.s.

Proof. Out of the scope of the course.

Hence the arithmetic mean may converge to a random variable, and this is precisely
the case when (and only then) 𝒥𝑥 is non trivial.

Example 1. Suppose that 𝜀 = (𝜀𝑡)𝑡∈ℤ is a stationary white noise process (WN(𝜎2)) and
let the causal 𝑥 = (𝑥𝑡)𝑡∈ℤ be defined by 𝑥𝑡 =

∞
∑
𝑗=0

𝛽𝑗𝜀𝑡−𝑗 for (𝛽𝑗)𝑗∈ℕ
absolutely summable.

Suppose that for some 𝑏0 ∈ ℝ, 𝑦 = (𝑦𝑡)𝑡∈ℤ be defined by 𝑦𝑡 = 𝑏0𝑥𝑡−1 + 𝜀𝑡. Given the
results in the paragraph Transformations and Hereditarity in Part I, and the ones about
Causal Linear Processes we have that (𝑥2

𝑡−1)𝑡∈ℤ, (𝜀𝑡𝑥𝑡−1)𝑡∈ℤ are stationary, and that (why?)

𝔼 (𝜀0𝑥−1) = 0. Given a sample (𝑦𝑡, 𝑥𝑡−1)𝑡=1,…,𝑇 the OLSE for 𝑏0 is 𝑏𝑇 = ∑𝑇
𝑡=1 𝑦𝑡𝑥𝑡−1

∑𝑇
𝑡=1 𝑥2

𝑡−1
= 𝑏0 +

1
𝑇 ∑𝑇

𝑡=1 𝜀𝑡𝑥𝑡−1
1
𝑇 ∑𝑇

𝑡=1 𝑥2
𝑡−1

. As noted abovewhen𝒥𝜀 is chosen tobe “large enough” then it canbe shown

to coincide with the algebra of invariant events of (𝜀𝑡𝑥𝑡−1)𝑡∈ℤ, and the one of (𝑥𝑡−1)𝑡∈ℤ. If
𝔼 (𝑥2

−1/𝒥𝜀) > 0 a.s., due to the previous LLN and the CMT (continuousmapping theorem),

𝑏𝑇 → 𝑏0 + 𝔼 (𝜀0𝑥−1/𝒥𝜀)
𝔼 (𝑥2

−1/𝒥𝜀) , ℙ a.s.

Then 𝑏𝑇 would be (strongly) consistent iff 𝒥𝜀 is trivial.

2 Ergodicity

Given the heuristic description of 𝒥𝑥 the precise understanding of the concept of ergodic-
ity requires notions fromdynamical systems andmeasure theory that lie beyond the scope
of our lectures. However, the following definition is precise.

Definition 2. A stationary process 𝑥 = (𝑥𝑡)𝑡∈ℤ is ergodic (w.r.t. 𝐿⋆) iff 𝒥𝑥 is trivial.

Example 2. If 𝑥 is i.i.d. then it is stationary, ergodic. This is essentially due to Kolmogorov’s
zero-one law.

Example 3. When independence is retained but heterogeneity is introduced then 𝑥 can
not be ergodic, since it can not be stationary.
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Example4. There exist stationaryprocesses, that arenot ergodic. For anexample consider
𝜀 = (𝜀𝑡)𝑡∈ℤ be i.i.d. and 𝜀0 ∼ Unif[−1,1]. Suppose that 𝑧 ∼ 𝑁(0, 1) and 𝑧 is independent
of 𝜀𝑡 for all 𝑡 ∈ ℤ. Consider 𝑥 = (𝑥𝑡)𝑡∈ℤ with 𝑥𝑡 = 𝜀𝑡 + 𝑧 . The latter is stationary since for
any 𝜅 ∈ ℕ and any 𝑚 ∈ ℤ, due to the L.I.E. (Law of Iterated Expectations),

ℙ (𝑥𝑡1
∈ ⋅, 𝑥𝑡2

∈ ⋅, … , 𝑥𝑡1𝜅
∈ ⋅) L.I.E.= 𝔼 (ℙ (𝑥𝑡1

∈ ⋅, 𝑥𝑡2
∈ ⋅, … , 𝑥𝑡1𝜅

∈ ⋅) /𝜎 (𝑧))

ind.= 𝔼 (
𝜅

∏
𝑖=1

ℙ (𝑥𝑡𝑖
∈ ⋅) /𝜎 (𝑧)) ident.= 𝔼 (

𝜅
∏
𝑖=1

ℙ (𝑥𝑡𝑖+𝑚 ∈ ⋅) /𝜎 (𝑧))

ind.= 𝔼 (ℙ (𝑥𝑡1+𝑚 ∈ ⋅, 𝑥𝑡2+𝑚 ∈ ⋅, … , 𝑥𝑡1𝜅+𝑚 ∈ ⋅) /𝜎 (𝑧))
L.I.E.= ℙ (𝑥𝑡1+𝑚 ∈ ⋅, 𝑥𝑡2+𝑚 ∈ ⋅, … , 𝑥𝑡1𝜅+𝑚 ∈ ⋅) .

For ergodicity consider 𝐴 △= {𝑥𝑡 ≤ −1, 𝑡 ∈ ℤ}. Then

𝐿⋆ (𝐴) = {𝐿𝑥𝑡 ≤ −1, 𝑡 ∈ ℤ} = {𝑥𝑡−1 ≤ −1, 𝑡 ∈ ℤ} = 𝐴.

Hence 𝐴 is invariant. But,

ℙ (𝐴) = ℙ ({𝜀𝑡 + 𝑧 ≤ −1, 𝑡 ∈ ℤ}) = ℙ (max
𝑡∈ℤ

[𝜀𝑡 + 𝑧] ≤ −1)

≥ 𝑃 (𝑧 ≤ −2) = Φ (−2) > 0,
where Φ denotes the cdf of the standard normal distribution. Furthermore,

ℙ (𝐴) = ℙ ({𝜀𝑡 + 𝑧 ≤ −1, 𝑡 ∈ ℤ}) ≤ ℙ (min
𝑡∈ℤ

[𝜀𝑡 + 𝑧] ≤ −1)

≤ 𝑃 (𝑧 ≤ 0) = Φ (0) = 1
2,

thus we obtain that for the invariant event 𝐴,

0 < ℙ (𝐴) ≤ 1
2,

hence 𝑥 cannot be ergodic.

Remark 1. It can beproven that ergodicity is somewhat asymptotic independence on aver-
age between the elements of the process, i.e. lim𝑘→∞ 1

𝑘 ∑𝑘
𝑗=1 Cov (𝑓 (𝑥0) , 𝑔 (𝑥−𝑗)) = 0,

for any measurable real functions 𝑓, 𝑔 for which the covariance exists.
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3 Ergodicity: Transformations and Hereditarity

As with the concepts of stationarity we examine the hereditarity of ergodicity w.r.t. analo-
gous transformations. It is possible to prove the following result.

Lemma 2. If in Lemmata 1-3 (with 1 appropriately modified) in Part I the initial processes
are assumed not only strictly stationary but also ergodic then the resulting processes are also
strictly stationary and ergodic.

The following result concerns the existence of “unique” stationary and ergodic solu-
tions of systems of recurrence relations, termed stochastic recurrence equations-SREs (or
stochastic difference equations). Those systemsdefinenewprocesses as solutions of those
recursions, given initial ones that structure the relations. They constitute the second ma-
jor method of obtaining a stochastic process that we will use in the course, apart from the
linear transformations that resulted in the category of causal linear processes that we have
already begun to examine. In some cases the two methods may coincide.

Lemma 3. Suppose that 𝜀 = (𝜀𝑡)𝑡∈ℤ is stationary, ergodic. Suppose that 𝑓 ∶ ℝ2 → ℝ is
appropriatelymeasurableand forany𝑧 ∈ ℝ𝑓 (·, 𝑧) is continuouslydifferentiablew.r.t. thefirst
argument. Suppose that certain conditions hold (2) and that 𝔼 (ln (sup

𝑥∈ℝ
∣𝜕𝑓
𝜕𝑥 (𝑥, 𝜀0)∣)) < 0

(or−∞). Then there exists a “unique” process 𝑥 = (𝑥𝑡)𝑡∈ℤ satisfying

𝑥𝑡 = 𝑓 (𝑥𝑡−1, 𝜀𝑡) , 𝑡 ∈ ℤ,

defined as
𝑥𝑡 = lim

𝑚→∞
𝑓 ∘ 𝑓 ∘ 𝑓 ∘ … ∘ 𝑓⏟⏟⏟⏟⏟⏟⏟

𝑚
(𝑦, 𝜀𝑡, … , 𝜀𝑡−𝑚) , ℙ a.s.,

for some 𝑦 ∈ ℝ, that is strictly stationary and ergodic.

Remark 2. Those conditions involve the existence of positive logarithmic moments for 𝜀0
and the existence of 𝑦 ∈ ℝ such that the positive logarithmic moment of the distance
between 𝑦 and 𝑓 (𝑦, 𝜀0) exists. We do not further specify them since they anyhow hold
in all cases that we will be using the result and for all relevant 𝑦. Notice that this lemma
can be further generalized w.r.t. the form and properties of 𝑓 . It is essentially based on
the Banach Fixed Point Theorem. A generalization based on a more general fixed point
theorem, which is obviously quite outside the scope of the course, can be found in https:
//doi.org/10.1080/23311835.2017.1380392

Example 5. AR(1) recursion. Suppose that 𝜀 = (𝜀𝑡)𝑡∈ℤ is a stationary and ergodic white
noise (∼ WN (𝜎2)). Let 𝑓 (𝑥1, 𝑥2) = 𝛽𝑥1 +𝑥2 . Consider the recursion 𝑥𝑡 = 𝑓 (𝑥𝑡−1, 𝜀𝑡) =
𝑏0𝑥𝑡−1 + 𝜀𝑡 , 𝑡 ∈ ℤ. Obviously 𝑓 (⋅, 𝑧) is continuously differentiable w.r.t. ⋅ for all 𝑧. Then
𝜕𝑓(𝑥,𝑧)

𝜕𝑥 = 𝑏0 and ln (sup
𝑥

∣𝜕𝑓(𝑥,𝜀0)
𝜕𝑥 ∣) = ln |𝑏0| = 𝐸 (ln(sup

𝑥∈ℝ
∣𝜕𝑓(𝑥,𝑒0)

𝜕𝑥 ∣)) < 0 (or −∞) iff
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|𝑏0| < 1. Hence, the previous condition implies alongwith Lemma 3 that the recursion de-
fined above admits a “unique” stationary and ergodic solution 𝑥 = (𝑥𝑡)𝑡∈ℤ defined by the

limiting arguments 𝑥𝑡 = lim
𝑚→∞

𝑓 ∘ 𝑓 ∘ 𝑓 ∘ … ∘ 𝑓⏟⏟⏟⏟⏟⏟⏟
𝑚

(𝑦, 𝜀𝑡, … , 𝜀𝑡−𝑚) = lim
𝑚→∞

𝑏𝑚
0 𝑦 + lim

𝑚→∞

𝑚
∑
𝑖=0

𝑏𝑖
0𝜀𝑡−𝑖 =

∞
∑
𝑖=0

𝑏𝑖
0𝜀𝑡−𝑖 ℙ a.s. Thereby, when |𝛽| < 1 the linear process 𝑥 defined on (𝜀𝑡)𝑡∈ℤ,

(𝛽𝑖)𝑖∈ℕ is the unique stationary ergodic solution of the recursion 𝑥𝑡 = 𝑏0𝑥𝑡−1 + 𝜀𝑡 termed
as the AR(1) recursion.

4 Birkhoff’s Law of Large Numbers

Ergodicity implies a simple yet powerful corollary of Doob’s LLN, termed as Birkhoff’s LLN.

Lemma4. (Birkhoff’s LLN) Suppose that𝑥 = (𝑥𝑡)𝑡∈ℤ is stationary ergodic, and that𝔼(|𝑥0|) <
+∞ exists as a real number. Then,

lim
𝑇 →∞

1
𝑇

𝑇
∑
𝑡=1

𝑥𝑡 → 𝔼(𝑥0), ℙa.s.

Obviously this extends Kolmogorov’s LLN and suffices for consistency of the OLSE in
frameworks such as the one in Example 1 as long as ergodicity is added.

Example 6. Consider the framework of Example 1, suppose that 𝜀 is also ergodic, and let
𝑥𝑡 = 𝑦𝑡−1, for all 𝑡 ∈ ℤ, and 𝛽𝑖 = 𝑏𝑖

0, ∀𝑖 ∈ ℤ. Hence we obtain a regression model that

corresponds to the linear AR(1) recursion in Example 5. Since now 𝑏𝑇 = ∑𝑇
𝑡=1 𝑦𝑡𝑦𝑡−1

∑𝑇
𝑡=1 𝑦2

𝑡−1
, due to

Lemmata 2, 3, 4, and the results on the causal linear processes, we have that

1
𝑇

𝑇
∑
𝑡=1

𝑦𝑡𝑦𝑡−1 → 𝔼 (𝑦0𝑦−1) = 𝑏0
𝜎2

1 − 𝑏2
0
, ℙ a.s.,

1
𝑇

𝑇
∑
𝑡=1

𝑦2
𝑡−1 → 𝔼 (𝑦2

−1) = 𝜎2

1 − 𝑏2
0

> 0, ℙ a.s.,

and thereby due to the CMT (why is it applicable?) 𝑏𝑛 → 𝑏0, ℙ a.s., hence, the OLSE is

strongly consistent. Question, is the OLSE unbiased? (hint: if 𝑋 = (𝑦0, 𝑦1, … , 𝑦𝑇 −1)
′
and

𝜖 = (𝜀1, 𝜀2, … , 𝜀𝑇 )
′
, does 𝔼 (𝜖/𝜎 (𝑋)) = 0𝑇 ×1 hold in this case?).

Remark 3. Stationarity andergodicity are not sufficient for the establishment of the asymp-

totic behavior of 1√
𝑇

𝑇
∑
𝑡=1

(𝑥𝑡 − 𝔼(𝑥0)) given the on average asymptotic independence in-

terpretation of the latter. Conditions that ensure that Cov (𝑓 (𝑥𝑡) , 𝑔 (𝑥𝑡−𝑘)) converges to
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zero appropriately fast as 𝑘 → ∞, along with moment existence conditions for the ele-
ments of the process can suffice. The former are related to relevant notions ofmixing (with
appropriate rates) between the elements of the process.

Thenotes are in state of ”perpetual” correction. Theydonot substitute the lectures.
Please report any typos to stelios@aueb.gr on the course’s e-class.
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