
An Imprecise Introduction to Stochastic Processes

Stelios Arvanitis

2018

Acknowledgement. I am grateful to Anastasia Chatzilena that helped with the typesetting
of the present notes.

Part I

1 General Definitions

Remember that a random variable is a real valued function between measurable spaces,
which preserves the relevant measurability structures. Consider a probability measure, i.e.
a triple (Ω, ℱ, ℙ) where Ω is a non-empty carrier set, ℱ is a set of subsets of Ω to which
probabilities can be consistently attributed to (𝜎-algebra) and ℙ is a probability measure
(or distribution), ℙ ∶ ℱ → ℝ that satisfies positivity, normalization and countable addi-
tivity. Let (ℝ, ℬℝ) be the set of reals with its (without loss of generality) Borel algebra. If
𝑥 ∶ Ω → ℝ is a random variable, then 𝑥 and ℙ define a unique probability measure on ℝ
by transfer (push out measure). This is also termed as themarginal distribution of 𝑥, or the
distribution that 𝑥 follows.

Analogous is the definition of a random 𝑛−vector as a measurable function 𝐱𝑛 ∶ Ω →
ℝ𝑛. Again 𝐱𝑛 and ℙ define a unique probability measure on ℝ𝑛 by transfer (push outmea-
sure). Simultaneously 𝐱𝑛 = (𝑥1, … , 𝑥𝑛), i.e. a vector of random variables. In order for this
couple of definitions to be consistent some consistency conditionsmust hold between the
transfer measure on ℝ𝑛 with the marginal distributions of the random variables that com-
prise the vector. We can generalize the construction to obtain the notion of a stochastic
process.

Definition1. Let (Ω, ℱ, ℙ) aprobability space,Θ anonempty set and (ℝ, 𝐵ℝ) themeasur-
able space consisting of ℝ with some 𝜎-algebra (usually the Borel). An ℝ-valued stochastic
process over Θ (say 𝑥) is a Θ-collection of random variables onΩ, i.e.

𝑥 = {𝑥𝜃 ∶ Ω → ℝ, 𝑥𝜃 measurable, 𝜃 ∈ ϴ} ,
such that a probability measure is consistently defined via ℙ and 𝑥 on the set

ℝϴ = {𝑓 ∶ ϴ → ℝ} ,
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with respect to some appropriately constructed 𝜎-algebra on ℝϴ via the consideration of
𝐵ℝ and ϴ.

Remark 1. The definition can be extended so that the stochastic process to be a collection
of random elements assuming their values in a more general, with appropriate properties
space 𝑆 (in the particular definition 𝑆 = ℝ). In this respect, such a process is a random
element defined on Ω with values in 𝑆ϴ ≜ {𝑓 ∶ ϴ → 𝑆}, equipped with an appropriate
𝜎-algebra. In some cases it is desirable to define and study processes with values in some
subspace of 𝑆ϴ(e.g. when 𝑆 and ϴ are also equipped with the necessary mathematical
structure, the subspace of continuous functions from ϴ to 𝑆, etc). Finally notice that the
extension to a general 𝑆 is almost straightforward when 𝑆 = ℝ𝜅, 𝜅 ⩾ 1, yet it can bemore
involved for more general 𝑆.

Remark 2. The definition implies that ∀𝜔 ∈ Ω, 𝑥 (𝜔) = 𝑓𝜔 ∶ ϴ → ℝ. Any such 𝑓𝜔 is termed
as a sample path of the process.

Remark 3. The definition is not at all precise, since several notions from function spaces
and measure theory would be needed. However it reveals the fact that 𝑥 is “simply” an
appropriately measurable functionΩ → ℝϴ, i.e. a construct that on each 𝜔 ∈ Ω it assigns
𝑥 (𝜔) ∶ ϴ → ℝ in a “measurable”manner. Hence, alongwithℙ it defines a probabilitymea-
sure on ℝϴ, i.e. a distribution on a function space which is a quite complex mathematical
entity. Part of the theory of stochastic processes revolves around the issue of representa-
tion of such a distribution bymore familiar concepts. In any case a “classical” theorem, the
Kolmogorov’s Consistency Theorem (also known as (Daniell)-Kolmogorov Extension Theo-
rem) implies that under some weak consistency conditions (involving permutations and
integration) the distribution on ℝϴ is completely characterized by the set of finite dimen-
sional distributions (fidi(s)).

Definition 2. The set of fidis of 𝑥 is

{ℙ𝑥𝜃1 ,𝑥𝜃2 ,…,𝑥𝜃𝜅
, 𝜃1, 𝜃2, … , 𝜃𝜅 ∈ ϴ⋆, ϴ⋆ ≠ Ø, Θ⋆ finite and ordered} ,

where
ℙ𝑥𝜃1 ,𝑥𝜃2 ,…,𝑥𝜃𝜅

≜ ℙ (𝑥𝜃1
∈ ⋅, 𝑥𝜃2

∈ ⋅, … , 𝑥𝜃𝜅
∈ ⋅) ,

i.e. it is the joint distribution of the random vector (𝑥𝜃1
, 𝑥𝜃2

, … , 𝑥𝜃𝜅
).

Hence, iff the aforementioned conditions of the Consistency Theorem are satisfied,
then the set of the joint distributions of the random vectors that can be constructed from
the elements of 𝑥, completely specifies the distribution on ℝϴ. 1 Hence the theorem rep-
resents a probability measure on a function space by a set of multivariate distributions,
hence it reduces the former to the more familiar latter.

Example 1. The criteria we have encountered in the theory of 𝑀 -estimation (likelihood
functions, GMMcriteria, sumof squares, etc) are typically stochastic processes definedover
the relevant parameter spaces under the appropriate conditions.

1iff abbreviates if and only if.
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Example 2. When Θ = {1} we recover the notion of the random variable, and when
Θ = {1, 2, … , 𝑛} (as an ordered set) the notion of the 𝑛−random vector. (Describe the set
of fidi’s in the latter case!).

The following provides with a category of processes with familiar properties.

Definition 3. A Gaussian ℝ-valued process over ϴ is a stochastic process for which every
fidi is a normal distribution. It is possible to prove that a Gaussian process is completely
characterized by the the following two functions: (i) the mean function 𝜇 ∶ ϴ → ℝ where
𝜇 (𝜃) ≜ 𝔼 (𝑥𝜃) (ii) the covariance function (covariance kernel) Γ ∶ ϴ × ϴ → ℝ where
Γ (𝜃, 𝜃⋆) ≜ 𝔼 (𝑥𝜃𝑥𝜃⋆) − 𝜇 (𝜃) 𝜇 (𝜃⋆).

Example 3. ϴ = ℤ, 𝑧 ∼ 𝑁 (0, 1), 𝑥𝜃 = 𝜃𝑧 can be proven to be a Gaussian process with
𝜇 (𝜃) = 𝔼 (𝑥𝜃) = 𝜃𝔼 (𝑧) = 0 ∀𝜃 ∈ ℝ and Γ (𝜃, 𝜃⋆) = 𝔼 (𝑥𝜃𝑥𝜃⋆) = 𝜃𝜃⋆𝐸 (𝑧2) = 𝜃𝜃⋆.2

Definition 4. An ℝ-valued time series is a stochastic process where ϴ is a totally ordered
set, hence represents time.

Remark 4. ϴ is usually a subset of ℝ with the usual order. When ϴ is an interval, then the
time series is said to evolve in continuous time (the aforementioned Gaussian process is an
example of a continuous time, time series). When ϴ is discrete, the evolution is in discrete
time. When Θ = ℕ or ℤ (or just countable), then 𝑥 is also called a (possibly double)3

random sequence. In what follows, mostly ϴ = ℤ (or ℕ with slight modifications) and a
typical element of ϴ will be denoted as 𝑡 with the obvious connotation.

In this context 𝑥 = (𝑥𝑡)𝑡∈ℤ ≜ (… , 𝑥−1, 𝑥0, 𝑥1, …), where 𝑥𝑡 is necessarily a random
variable for each 𝑡 ∈ ℤ .

Example 4. 𝑥 is i.i.d.

Example 5. 𝑥𝑡 ∼ 𝑁 (𝑡, 𝑡2) and 𝑥 independent.

2 Properties: (Strict) Stationarity

Given a process 𝑥 = (𝑥𝑡)𝑡∈ℤ, consider the finite subset of ℤ, {𝑡1, 𝑡2, … , 𝑡𝜅} where 𝜅 ∈ ℕ.
This defines the fidi ℙ𝑥𝑡1 ,𝑥𝑡2 ,…,𝑥𝑡𝜅

. Given that ϴ = ℤ, we can shift time just by adding a
constant toeachelement, obtainingagaina subsetofϴ. Suppose that𝑚 ∈ ℤandconsider
the set {𝑡1 + 𝑚, 𝑡2 + 𝑚, … , 𝑡𝜅 + 𝑚}, call this as the 𝑚-time translation of {𝑡1, 𝑡2, … , 𝑡𝜅}
and the fidi that corresponds to the 𝑚-time translation is ℙ𝑥𝑡1+𝑚,𝑥𝑡2+𝑚,…,𝑥𝑡𝜅+𝑚

. For a gen-
eral stochastic process this two fidis won’t coincide.

Definition 5. If for all 𝑚 ∈ ℤ, ℙ𝑥𝑡1 ,𝑥𝑡2 ,…,𝑥𝑡𝜅
= ℙ𝑥𝑡1+𝑚,𝑥𝑡2+𝑚,…,𝑥𝑡𝜅+𝑚

then we say that the
particular fidi remains invariant with respect to time shifts.

2For another simpleexample seehttps://eclass.aueb.gr/modules/document/file.php/OIK230/ExGauss.pdf
3This holds when Θ does not have an initial element.
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Definition 6. 𝑥 is (strictly) stationary iff every fidi remains invariant w.r.t. time shifts.

Hence, strict stationarity is essentially invariance of the fidis w.r.t. time shifts, and it
constitutes of a strong collection of restrictions on the behavior of the process. We imme-
diately obtain the following necessary condition for stationarity.

Corollary 1. If 𝑥 is (strictly) stationary then ℙ𝑥𝑡
= ℙ𝑥𝑡⋆ for all 𝑡, 𝑡⋆ ∈ ℤ, i.e. the marginal

coincide.

Proof. Consider {𝑡} as a singleton subset of ℤ and apply the definition.

Example 6. The process in example 4 is stationary since

ℙ𝑥𝑡1 ,𝑥𝑡2 ,…,𝑥𝑡𝜅

ind.= ℙ𝑥𝑡1
⋅ … ⋅ ℙ𝑥𝑡𝜅

hom.= ℙ𝑥𝑡1+𝑚
⋅ … ⋅ ℙ𝑥𝑡𝜅+𝑚

ind.= ℙ𝑥𝑡1+𝑚,𝑥𝑡2+𝑚,…,𝑥𝑡𝜅+𝑚,

for 𝜅, 𝑚 arbitrary.

Example 7. The process in example 5 is not stationary since it violates Corollary (1) (ex-
plain!).

3 Properties: Weak Stationarity

Definition 7. 𝑥 is weakly stationary (or covariance stationary, or second order stationarity)
iff it satisfies the following conditions:

a. 𝔼 (𝑥𝑡) ∈ ℝ and is independent of 𝑡

b. 𝕍𝑎𝑟 (𝑥𝑡) < +∞ and is independent of 𝑡, and

c. 𝐶𝑜𝑣 (𝑥𝑡, 𝑥𝑡−𝜅) is independent of 𝑡 (but may depend on 𝜅), ∀𝜅 ∈ ℤ.

Notice that the notion involvesmoment existence conditions, while the covariances in
the third condition exist due to condition 2 and the Cauchy-Schwarz inequality. A primal
example of a weakly stationary process is that of a white noise process.

Example 8. (White noise process-WN (𝜎2)). Let 𝜎2 > 0. Then 𝜀 = (𝜀𝑡)𝑡∈ℤ ∼ WN(𝜎2) iff
𝔼 (𝜀𝑡) = 0, ∀𝑡, 𝕍𝑎𝑟 (𝜀𝑡) = 𝜎2, ∀𝑡 and 𝐶𝑜𝑣 (𝜀𝑡, 𝜀𝑡−𝜅) = 0, ∀𝑡, 𝜅. White noise processes exist
(See example 4 along with 𝜀𝑡 ∼ 𝑁 (0, 𝜎2)). They are obviously weakly stationary (why?).

Notice that conditions 2, 3 in the definition of weak stationarity can be equivalently
stated by restricting 𝜅 ∈ ℕ (why?). Using this remark, we readily obtain the following
definitions.

Definition8. Suppose that𝑥 isweakly stationary. Then the function𝛾𝜅 ∶ ℕ → ℝwith𝛾𝜅
∆=

𝐶𝑜𝑣 (𝑥𝑡, 𝑥𝑡−𝜅) is called autocovariance function of 𝑥. Analogously 𝜌𝜅
∆= 𝛾𝜅𝛾0

= 𝐶𝑜𝑣(𝑥𝑡,𝑥𝑡−𝜅)
𝑉 𝑎𝑟(𝑥𝑡)

is called autocorrelation function of 𝑥.
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Those codify the covariance structure (and hence part of the dependence structure)
of the elements of the process. If we restrict this structure to asymptotic uncorrelateness
then we obtain the following chain of definitions.

Definition 9. Suppose that 𝑥 is weakly stationary. If 𝛾𝜅 → 0 as 𝜅 → ∞ then 𝑥 is called
regular.

Definition 10. Suppose that 𝑥 is weakly stationary.
∞
∑
𝜅=0

|𝛾𝜅| < +∞, i.e. the autocovari-

ance function is absolutely summable, then 𝑥 is called short memory.

Remark 5. Regularity implies asymptotic uncorrelateness. Short memory implies that the
elements of the process become uncorrelated asymptotically at an appropriately fast rate.

This is due to that
∞
∑
𝜅=0

|𝛾𝜅| < +∞ implies that 𝛾𝜅 → 0 as 𝜅 → ∞, thus short memory

implies regularity. However, the converse does not hold (e.g. suppose that 𝛾𝜅 = 1
𝜅+1 ,

hence 𝛾𝜅 → 0 as 𝜅 → ∞, yet
∞
∑
𝜅=0

1
𝜅+1 = +∞-harmonic series, in the linear processes

paragraph we will see that there exist processes with this autocovariance function).

Example9. Suppose that 𝜀 ∼ WN(𝜎2), then𝛾𝜅 = { 𝜎2

0
𝜅 = 0
𝜅 > 0 , 𝜌𝜅 = { 1

0
𝜅 = 0
𝜅 > 0

hence a white noise process is a regular short memory process. Furthermore,
∞
∑
𝜅=0

|𝛾𝜅| =
𝜎2 < +∞ hence it is also short memory.

4 Comparison: Strict and Weak Stationarity in the Inde-
pendence Framework

In what follows suppose that 𝑥 is a well defined time series comprised by independent
random variables. In this framework we will provide with examples which imply that
any combination of those processes is possible, hence the linguistic interpretation of the
terms can be misleading. During the course we will examine more complex analogous
examples in the framework of dependence.

Example 10. [Neither Strictly, Nor Weakly Stationary]. See example 5 (heterogeneity and
moments depending on 𝑡 imply that both properties fail to hold).

Example11. [BothStrictly andWeakly Stationary] Seeexample4alongwith𝑥𝑡 ∼ 𝑁 (0, 𝜎2)
(homogeneity andenoughmoment existence conditions imply that bothproperties hold).

Example 12. [Strictly but not Weakly Stationary] 𝑥𝑡 ∼ 𝑡𝑣, where 𝑣 ≤ 2 (homogeneity
implies strict stationarity, while insufficient moment existence conditions imply weak sta-
tionarity does not hold due to the failure of condition 2 (and 1 when 𝑣 ≤ 1)).
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Example 13. [Not Strictly but Weakly Stationary] 𝑥𝑡 ∼ 𝑁 (0, 1) , 𝑡 ≠ 0, √ 𝑣
𝑣−2𝑥0 ∼ 𝑡𝑣,

where 𝑣 > 2 (heterogeneity implies that strict stationarity does not hold, yet indepen-
dence and sufficient moment existence conditions that are independent of 𝑡, imply that
weak stationarity holds).

5 Transformations and Hereditarity

Our setup is incomplete, yet it is sufficient to study the issues of hereditarity of the pre-
vious properties under particular transformations. This will be useful when for example,
we study whether such properties are valid for processes defined either by linear transfor-
mations, and/or as solutions of stochastic difference equations (or stochastic recurrence
equations-SREs), w.r.t. processes that we already know that they have them. We first de-
fine an extension of the property of stationarity.

Definition 11. The processes 𝑥1 = (𝑥1𝑡
)

𝑡∈ℤ
, 𝑥2 = (𝑥2𝑡

)
𝑡∈ℤ

, …, 𝑥𝜌 = (𝑥𝜌𝑡
)

𝑡∈ℤ
are jointly

strictly stationary iff the joint distribution of every finite collection of random variables
from 𝑥1, 𝑥2, … , 𝑥𝜌 is invariant w.r.t. time shifts.

Hence stationarity is a subcase of joint stationarity for 𝜌 = 1. Notice that joint sta-
tionarity implies stationarity for every of the involved processes but the converse does not
necessarily hold.

Lemma1. Suppose that𝑥1 = (𝑥1𝑡
)

𝑡∈ℤ
,𝑥2 = (𝑥2𝑡

)
𝑡∈ℤ

,…,𝑥𝜌 = (𝑥𝜌𝑡
)

𝑡∈ℤ
are jointly strictly

stationary. Let 𝑓 ∶ ℝ𝜌 → ℝ bemeasurable (appropriately). Then 𝑦 = (𝑓 (𝑥1𝑡
, … , 𝑥𝜌𝑡

))
𝑡∈ℤ

is
strictly stationary.

Proof. Out of the scope of the course (although not that difficult! Try it as an optional
exercise.).

Example 14. 𝜌 = 1, 𝑓 (𝑧) = 𝑧4. 𝑦 = (𝑥4
𝑡 )𝑡∈ℤ is strictly stationary if 𝑥 is. 𝜌 = 2 𝑓 (𝑧1, 𝑧2) =

𝑧1 + 𝑧2 + 𝑧1𝑧2, then 𝑦 = (𝑥4
1𝑡

+ 𝑥2𝑡
+ 𝑥1𝑡

𝑥4
2𝑡

)
𝑡∈ℤ

is strictly stationary, if 𝑥1, 𝑥2 are jointly

strictly stationary.

Notice that the results of Lemma 1 do not generally hold for weak stationarity since 𝑓
may destroy moment existence conditions (find examples!).

Remember the lag operator 𝐿, and via this, consider the operator 𝐿⋆ ∶ ℝℤ → ℝℤ de-

fined by 𝐿⋆𝑥 ∆= (𝐿𝑥𝑡)𝑡∈ℤ = (𝑥𝑡−1)𝑡∈ℤ. It is easy to see 𝐿⋆ is linear, i.e. if 𝛼, 𝛽 ∈ ℝ, then
𝐿⋆ (𝛼𝑥 + 𝛽𝑦) = 𝛼𝐿⋆𝑥 + 𝛽𝐿⋆𝑦, and invertible, i.e. 𝐿−1

⋆ 𝑥 = (𝐿−1𝑥𝑡)𝑡∈ℤ = (𝑥𝑡+1)𝑡∈ℤ, due
to the fact that 𝐿⋆ is defined via pointwise application of 𝐿 and the latter has those prop-

erties. Then for any 𝑚 ∈ ℤ, we can extend it to 𝐿𝑚
⋆

∆=
⎧{{
⎨{{⎩

𝑚−𝑡𝑖𝑚𝑒𝑠
⏞⏞⏞⏞⏞⏞⏞𝐿⋆ ∘ 𝐿⋆ ∘ … ∘ 𝐿⋆

𝐿−1⋆ ∘ 𝐿−1⋆ ∘ … ∘ 𝐿−1⋆⏟⏟⏟⏟⏟⏟⏟⏟⏟
|𝑚|−𝑡𝑖𝑚𝑒𝑠

𝜅 ≥ 0
𝜅 < 0

i.e. 𝐿𝑚
⋆ 𝑥 = (𝑥𝑡−𝑚)𝑡∈ℤ .
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Lemma 2. If 𝑥 is strictly stationary then 𝐿𝑚
⋆ 𝑥 is strictly stationary. If 𝑥 is weakly stationary

then𝐿𝑚
⋆ 𝑥 is weakly stationary, and 𝛾𝜅 (𝑥) = 𝛾𝜅 (𝐿𝑚

⋆ 𝑥) ∀𝜅 ≥ 0.

Proof. Exercise!

Example 15. If 𝑥 is strictly stationary then 𝑦 = (𝑥3
𝑡 𝑥2

𝑡−𝑚) is strictly stationary. Simply
combine Lemmata 1-2.

Lemma3. If𝑥 is strictly stationaryand𝑓𝑚:ℝℕ → ℝmeasurableand𝑓𝑚 (𝑦1, 𝑦2, …) → 𝑓 (𝑦1, 𝑦2, …)
forℙ almost every element ofℝℕ as𝑚 → ∞ (see 6). Then 𝑦 = (𝑓 (𝑥𝑡, 𝑥𝑡−1, …))𝑡∈ℤ exists as a
stochastic process and is strictly stationary.

Proof. Out of the scope of the course.

Example 16. Suppose that 𝑓𝑚 (𝑦1, 𝑦2, …) = 𝑓 (𝑦1, 𝑦2, …) = max0≤𝑖≤100 𝑦𝑖. Then if 𝑥 is
stationary, 𝑦 = (max0≤𝑖≤100 𝑦𝑡−𝑖)𝑡∈ℤ is stationary due to Lemma 3.

6 Linear Transformations: Causal Linear Processes

One important example of processes obtained by some transformation (as the above)
of a given building block process is the one of linear processes. A particular instance is
that of a causal linear process based on a white noise and a sequence of coefficients that
converge to zero in a sufficiently high rate. Suppose that 𝜀 = (𝜀𝑡)𝑡∈ℤ is a white noise

process(𝜀 ∼ WN (𝜎2)). Furthermore, for the real sequence (𝛽𝑗)𝑗∈ℕ
, suppose that

∞
∑
𝑗=0

∣𝛽𝑗∣ < +∞,

i.e. the coefficient sequence is absolute summable, and in order to avoid degeneracies,
suppose that 𝛽𝑗 ≠ 0 for some 𝑗 ∈ ℕ.

Remark 6. It can be proven (using the completeness of relevant space of random variables
endowed with the 𝐿1-norm, and the assumed properties of 𝜀 and (𝛽𝑗)𝑗∈ℕ

) that ∀𝑡 ∈ ℤ

the randomvariable 𝑦𝑡 =
∞
∑
𝑗=0

𝛽𝑗𝜀𝑡−𝑗, obtained as a stochastic series based on elements of 𝜀

and the coefficients sequence (𝛽𝑗)𝑗∈ℕ
, is well defined. Furthermore, and via a dominated

convergence argument it can be proven that in this framework, and when the relevant

expectations exist, then the 𝔼 and the
∞
∑
𝑗=0

operators commute.

Definition 12. The process 𝑦 = (𝑦𝑡)𝑡∈ℤ is called linear causal on (𝜀𝑡)𝑡∈ℤ and the absolutely

summable (𝛽𝑗)𝑗∈ℕ
.
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Remark 7. Given the time interpretation of ϴ = ℤ, the term causal, refers to the fact that
each element 𝑦𝑡 of 𝑦, is determined by the elements of the constructing process 𝜀 that
correspond to time instances 𝑠 ≤ 𝑡 (Justify the term linear!).

Proposition 1. 𝑦 is weakly stationary.

Proof. Given Remark 6 we readily perform the following computations:

a. 𝔼 (𝑦𝑡) = 𝔼 (
∞
∑
𝑗=0

𝛽𝑗𝜀𝑡−𝑗) =
∞
∑
𝑗=0

𝛽𝑗𝔼 (𝜀𝑡−𝑗) = 𝔼 (𝜀0)
∞
∑
𝑗=0

𝛽𝑗 = 0, since the series

converges and 𝔼 (𝜀0) = 0. Hence the first moments exist and are independent of 𝑡.

b. Due to the previous,

𝕍𝑎𝑟 (𝑦𝑡) = 𝔼 (𝑦2
𝑡 ) = 𝔼 (

∞
∑
𝑗=0

∞
∑
𝑗⋆=0

𝛽𝑗𝛽𝑗⋆𝜀𝑡−𝑗𝜀𝑡−𝑗⋆) =
∞

∑
𝑗,𝑗⋆=0

𝛽𝑗𝛽𝑗⋆𝔼 (𝜀𝑡−𝑗𝜀𝑡−𝑗⋆) .

Notice that since 𝜀 iswhitenoise𝔼 (𝜀𝑡−𝑗𝜀𝑡−𝑗⋆) = { 0,
𝜎2,

𝑗 ≠ 𝑗⋆

𝑗 = 𝑗⋆ hence𝑉 𝑎𝑟 (𝑦𝑡) =

𝜎2
∞
∑
𝑗=0

𝛽2
𝑗 , which converges since

∞
∑
𝑗=0

∣𝛽𝑗∣ converges. Hence the variances exist and

are independent of 𝑡.

c. Analogously, for any 𝜅 ∈ ℕ⋆,

𝐶𝑜𝑣 (𝑦𝑡, 𝑦𝑡−𝜅) = 𝔼 (𝑦𝑡, 𝑦𝑡−𝜅) = 𝔼 (
∞

∑
𝑗=0

∞
∑
𝑗⋆=0

𝛽𝑗𝛽𝑗⋆𝜀𝑡−𝑗𝜀𝑡−𝜅−𝑗⋆)

=
∞

∑
𝑗,𝑗⋆=0

𝛽𝑗𝛽𝑗⋆𝐸 (𝜀𝑡−𝑗𝜀𝑡−𝜅−𝑗⋆) .

Notice that 𝔼 (𝜀𝑡−𝑗𝜀𝑡−𝜅−𝑗⋆) = { 0
𝜎2

𝑗 ≠ 𝑗⋆ + 𝜅
𝑗 = 𝑗⋆ + 𝜅 . Hence

𝐶𝑜𝑣 (𝑦𝑡, 𝑦𝑡−𝜅) = 𝜎2
∞

∑
𝑗⋆=0,𝑗=𝑗⋆+𝜅

𝛽𝑗𝛽𝑗⋆ = 𝜎2
∞

∑
𝑗=0

𝛽𝑗𝛽𝑗+𝜅

which converges since
∞
∑
𝑗=0

∣𝛽𝑗∣ converges. Notice that 𝜎2
∞
∑
𝑗=0

𝛽𝑗𝛽𝑗+𝜅 is independent

of 𝑡 (yet it may depend on 𝜅).
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Remark 8. By an argument involving partial sum sequences, it is easy to see that, since

𝔼 (𝜀𝑡) = 0 ∀𝑡, then 𝔼 (
∞
∑
𝑗=0

𝛽𝑗𝜀𝑡−𝑗) = 0, even if
∞
∑
𝑗=0

𝛽𝑗 diverges. Given this it is easy to see

that the results in this paragraph would hold under the weaker condition
∞
∑
𝑗=0

𝛽2
𝑗 < +∞,

with the appropriate modifications.

Remark 9. Notice that for any 𝜅 ≥ 0, due to the Cauchy-Schwarz inequality
∞
∑
𝑗=0

𝛽𝑗𝛽𝑗+𝜅 ≤

√
∞
∑
𝑗=0

𝛽2
𝑗

∞
∑
𝑗=0

𝛽2
𝑗+𝜅 (∗). Also, there exists some 𝐶 > 0 such that

∞
∑
𝑗=0

𝛽2
𝑗 ≤ 𝐶

∞
∑
𝑗=0

∣𝛽𝑗∣ (why?),

while
∞
∑
𝑗=0

∣𝛽𝑗+𝜅∣ =
𝑖=𝑗+𝜅

∞
∑
𝑖=𝜅

|𝛽𝑖| ≤
∞
∑
𝑖=0

|𝛽𝑖| < +∞. Hence, the right hand side of (∗) is less

than or equal to
∞
∑
𝑗=0

∣𝛽𝑗∣ < +∞.

Remark 10. 𝑦 has autocovariance function𝛾𝜅 = 𝜎2
∞
∑
𝑗=0

𝛽𝑗𝛽𝑗+𝜅, 𝜅 ∈ ℕ, and autocorrelation

function 𝜌𝜅 =
∞
∑

𝑗=0
𝛽𝑗𝛽𝑗+𝜅

∞
∑

𝑗=0
𝛽2

𝑗

, 𝜅 ∈ ℕ.

Example 17. Suppose that 𝛽𝑗 = 𝛽𝑗 for some 𝛽 ∈ (−1, 1). Then 𝛾𝜅 = 𝜎2
∞
∑
𝑗=0

𝛽𝑗𝛽𝑗+𝜅 =

𝜎2𝛽𝜅
∞
∑
𝑗=0

𝛽2𝑗 = 𝜎2 𝛽𝜅

1−𝛽2 , and 𝜌𝜅 = 𝛽𝜅. Notice that 𝛾𝜅 → 0, 𝜅 → ∞ and
∞
∑
𝜅=0

𝛾𝜅 = 𝜎2
𝟏−𝜷𝟐

∞
∑
𝜅=0

𝛽𝜅 = 𝜎2
(1−𝛽2)(1−𝛽) . Hence, it is a regular short memory process, termed as an AR(1) process.

Example18. Supposeas a further example that for some𝑚 ∈ ℕ,𝛽𝑚 ≠ 0, 𝛽𝑚+𝑗 = 0, ∀𝑗 >

0. Then we have that 𝛾𝜅 = 𝜎2
∞
∑
𝑗=0

𝛽𝑗𝛽𝑗+𝜅 =
⎧{
⎨{⎩

𝜎2
𝑚−𝜅
∑
𝑗=0

𝛽𝑗𝛽𝑗+𝜅, if 𝜅 ≤ 𝑚

0, if 𝜅 > 𝑚
. Hence,

𝛾0 = 𝜎2
𝑚
∑
𝑗=0

𝛽2
𝑗 and thereby 𝜌𝜅 =

⎧{{
⎨{{⎩

𝑚−𝜅
∑

𝑗=0
𝛽𝑗𝛽𝑗+𝜅

𝑚
∑

𝑗=0
𝛽2

𝑗

, if 𝜅 ≤ 𝑚

0, if 𝜅 > 𝑚

. Obviously, this is also a

regular short memory process termed as an MA(𝑚) process (why?).

Remark 11. In the proof of general linear causal case the notation ∑
𝑗∈𝐴,𝑗∗∈𝐵

denotes the

double sum ∑
𝑗∈𝐴

∑
𝑗∗∈𝐵

. Furthermore, when a functional relation is present between the two

indices, e.g.
∞
∑

𝑗∗=0,𝑗=𝑓(𝑗∗)
then this is actually a single sum (why?).
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Proposition 2. If 𝜀 is also strictly stationary then 𝑦 is strictly stationary.

Proof. Use Lemma 3 with 𝑓𝑚 (𝑥0, 𝑥1, …) =
𝑚
∑
𝜅=0

𝛽𝜅𝑥𝜅 and 𝑓 (𝑥0, 𝑥1, …) =
∞
∑
𝜅=0

𝛽𝜅𝑥𝜅 along

with Remark 6.

Remark 12. We can extend the notion of a linear causal process, by allowing 𝜀 to be arbi-
trary, and/or the sequence of coefficients to possess weaker properties. In doing so it is
possible that several of the aforementioned properties would cease to hold.

Thenotes are in state of ”perpetual” correction. Theydonot substitute the lectures.
Please report any typos to stelios@aueb.gr on the course’s e-class.
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