In the context of the UDC are can extend the definition of the AANA Models so as to include the case of non-zero Nean. In this respect, and if yell (using the already established notation) define:

Φ(L) $y_{\ell} = y_{\ell} + Θ(L)$ e_{ℓ} , $\forall_{\ell} \in 2 \in 1$ $y_{\ell} = Φ^{-1}(L)(y_{\ell} Θ(L) \in D)$, $\forall_{\ell} \in 2 \in 1$ $y_{\ell} = Φ^{-1}(L)(y_{\ell} + Φ^{-1}(L) Θ(L))$ $\forall_{\ell} \in 2 \in 1$ $Φ(L)(y_{\ell} - Φ^{-1}(L)(Q)) = Θ(L)$ e_{ℓ} , e_{ℓ} e_{ℓ} $Φ(L)(y_{\ell} - Φ^{-1}(L)(Q)) = Θ(L)$ e_{ℓ} , e_{ℓ} e_{ℓ}

 $\Phi(1)$ $y_t^* = \Theta(1)$ to t_t , $t_t \in \mathbb{Z}$, where $y_t^* = y_t - \Phi'(1)y_t$, $t_t \in \mathbb{Z}$. and the latter form is essentially the typical form of the ARMA(p,q) recursion for the transformed process $(y_t^*)_{t\in\mathbb{Z}}$ which is essentially a pointwise translation by $-\Phi'(0)y$ of the $(y_t)_{t\in\mathbb{Z}}$ process.

(Notice that for the translation constant Φ'' is realwayed at 1 due to the face that 1 acts as identity on constant sequences).

Thereby in acr from work $(y_i^*)_{i\in I}$ has all the relevant proporties upe have already established (ander the appropriate conditions)* which implies that:

1. $E(y_{\ell}) = E(y_{\ell}^* + \Phi^{-1}(1)_{\gamma}) = \Phi^{-1}(1)_{\gamma}$ 2. $VaR(y_{\ell}) = Vax(y_{\ell}^* + \Phi^{-1}(1)_{\gamma}) = Vax(y_{\ell}^*) = Vax(y_{\ell}^*)$ 3. k>0, $y_{k} = E(y_{\ell} - \Phi^{-1}(1)_{\gamma})(y_{\ell}_{k} - \Phi^{-1}(1)_{\gamma}) = E(y_{\ell}^* + \Phi^{-1}(1)_{\gamma} - \Phi^{-1}(1)_{\gamma}) = E(y_{\ell}^* + \Phi^{-1}(1)_{\gamma} - \Phi^{-1}(1)_{\gamma}) = E(y_{\ell}^* + y_{\ell}^* - k) = y_{\ell}^*$ 3. v4. where v5. where v6. is the relevant autocovariance of v6. v7. v8. v

Example. When p=1, then $\Phi^{-1}(1)_{\varphi} = \sum_{i=0}^{\infty} B_i^{i} 1^{i} \varphi = \frac{\varphi}{1-B_L}$

It is easy to derive the Modification for the bassian Auasi-Likeli-hood function, it the actual value of 4 (ray 40) is unknown and the analogous extension for the definition of AMIE.

* e.g. when (E1) ter is strictly stationary and ergodic, then (4) LER	
* e.g. when (El)ter is strictly stationary and ergosic, then (yt)ter is also strictly stationary and ergodic (why?)	
[The notes are in a state of perpetual correction. They do not substitute the lectures. Please r eport any typos to stelios@aueb.gr or the course's	
e-class.]	